| //! Common context that is passed around during parsing and codegen. |
| |
| use super::super::time::Timer; |
| use super::analysis::{ |
| analyze, as_cannot_derive_set, CannotDerive, DeriveTrait, |
| HasDestructorAnalysis, HasFloat, HasTypeParameterInArray, |
| HasVtableAnalysis, HasVtableResult, SizednessAnalysis, SizednessResult, |
| UsedTemplateParameters, |
| }; |
| use super::derive::{ |
| CanDerive, CanDeriveCopy, CanDeriveDebug, CanDeriveDefault, CanDeriveEq, |
| CanDeriveHash, CanDeriveOrd, CanDerivePartialEq, CanDerivePartialOrd, |
| }; |
| use super::function::Function; |
| use super::int::IntKind; |
| use super::item::{IsOpaque, Item, ItemAncestors, ItemSet}; |
| use super::item_kind::ItemKind; |
| use super::module::{Module, ModuleKind}; |
| use super::template::{TemplateInstantiation, TemplateParameters}; |
| use super::traversal::{self, Edge, ItemTraversal}; |
| use super::ty::{FloatKind, Type, TypeKind}; |
| use crate::clang::{self, ABIKind, Cursor}; |
| use crate::codegen::CodegenError; |
| use crate::BindgenOptions; |
| use crate::{Entry, HashMap, HashSet}; |
| |
| use proc_macro2::{Ident, Span, TokenStream}; |
| use quote::ToTokens; |
| use std::borrow::Cow; |
| use std::cell::{Cell, RefCell}; |
| use std::collections::{BTreeSet, HashMap as StdHashMap}; |
| use std::iter::IntoIterator; |
| use std::mem; |
| |
| /// An identifier for some kind of IR item. |
| #[derive(Debug, Copy, Clone, Eq, PartialOrd, Ord, Hash)] |
| pub(crate) struct ItemId(usize); |
| |
| /// Declare a newtype around `ItemId` with convesion methods. |
| macro_rules! item_id_newtype { |
| ( |
| $( #[$attr:meta] )* |
| pub(crate) struct $name:ident(ItemId) |
| where |
| $( #[$checked_attr:meta] )* |
| checked = $checked:ident with $check_method:ident, |
| $( #[$expected_attr:meta] )* |
| expected = $expected:ident, |
| $( #[$unchecked_attr:meta] )* |
| unchecked = $unchecked:ident; |
| ) => { |
| $( #[$attr] )* |
| #[derive(Debug, Copy, Clone, Eq, PartialOrd, Ord, Hash)] |
| pub(crate) struct $name(ItemId); |
| |
| impl $name { |
| /// Create an `ItemResolver` from this ID. |
| #[allow(dead_code)] |
| pub(crate) fn into_resolver(self) -> ItemResolver { |
| let id: ItemId = self.into(); |
| id.into() |
| } |
| } |
| |
| impl<T> ::std::cmp::PartialEq<T> for $name |
| where |
| T: Copy + Into<ItemId> |
| { |
| fn eq(&self, rhs: &T) -> bool { |
| let rhs: ItemId = (*rhs).into(); |
| self.0 == rhs |
| } |
| } |
| |
| impl From<$name> for ItemId { |
| fn from(id: $name) -> ItemId { |
| id.0 |
| } |
| } |
| |
| impl<'a> From<&'a $name> for ItemId { |
| fn from(id: &'a $name) -> ItemId { |
| id.0 |
| } |
| } |
| |
| #[allow(dead_code)] |
| impl ItemId { |
| $( #[$checked_attr] )* |
| pub(crate) fn $checked(&self, ctx: &BindgenContext) -> Option<$name> { |
| if ctx.resolve_item(*self).kind().$check_method() { |
| Some($name(*self)) |
| } else { |
| None |
| } |
| } |
| |
| $( #[$expected_attr] )* |
| pub(crate) fn $expected(&self, ctx: &BindgenContext) -> $name { |
| self.$checked(ctx) |
| .expect(concat!( |
| stringify!($expected), |
| " called with ItemId that points to the wrong ItemKind" |
| )) |
| } |
| |
| $( #[$unchecked_attr] )* |
| pub(crate) fn $unchecked(&self) -> $name { |
| $name(*self) |
| } |
| } |
| } |
| } |
| |
| item_id_newtype! { |
| /// An identifier for an `Item` whose `ItemKind` is known to be |
| /// `ItemKind::Type`. |
| pub(crate) struct TypeId(ItemId) |
| where |
| /// Convert this `ItemId` into a `TypeId` if its associated item is a type, |
| /// otherwise return `None`. |
| checked = as_type_id with is_type, |
| |
| /// Convert this `ItemId` into a `TypeId`. |
| /// |
| /// If this `ItemId` does not point to a type, then panic. |
| expected = expect_type_id, |
| |
| /// Convert this `ItemId` into a `TypeId` without actually checking whether |
| /// this ID actually points to a `Type`. |
| unchecked = as_type_id_unchecked; |
| } |
| |
| item_id_newtype! { |
| /// An identifier for an `Item` whose `ItemKind` is known to be |
| /// `ItemKind::Module`. |
| pub(crate) struct ModuleId(ItemId) |
| where |
| /// Convert this `ItemId` into a `ModuleId` if its associated item is a |
| /// module, otherwise return `None`. |
| checked = as_module_id with is_module, |
| |
| /// Convert this `ItemId` into a `ModuleId`. |
| /// |
| /// If this `ItemId` does not point to a module, then panic. |
| expected = expect_module_id, |
| |
| /// Convert this `ItemId` into a `ModuleId` without actually checking |
| /// whether this ID actually points to a `Module`. |
| unchecked = as_module_id_unchecked; |
| } |
| |
| item_id_newtype! { |
| /// An identifier for an `Item` whose `ItemKind` is known to be |
| /// `ItemKind::Var`. |
| pub(crate) struct VarId(ItemId) |
| where |
| /// Convert this `ItemId` into a `VarId` if its associated item is a var, |
| /// otherwise return `None`. |
| checked = as_var_id with is_var, |
| |
| /// Convert this `ItemId` into a `VarId`. |
| /// |
| /// If this `ItemId` does not point to a var, then panic. |
| expected = expect_var_id, |
| |
| /// Convert this `ItemId` into a `VarId` without actually checking whether |
| /// this ID actually points to a `Var`. |
| unchecked = as_var_id_unchecked; |
| } |
| |
| item_id_newtype! { |
| /// An identifier for an `Item` whose `ItemKind` is known to be |
| /// `ItemKind::Function`. |
| pub(crate) struct FunctionId(ItemId) |
| where |
| /// Convert this `ItemId` into a `FunctionId` if its associated item is a function, |
| /// otherwise return `None`. |
| checked = as_function_id with is_function, |
| |
| /// Convert this `ItemId` into a `FunctionId`. |
| /// |
| /// If this `ItemId` does not point to a function, then panic. |
| expected = expect_function_id, |
| |
| /// Convert this `ItemId` into a `FunctionId` without actually checking whether |
| /// this ID actually points to a `Function`. |
| unchecked = as_function_id_unchecked; |
| } |
| |
| impl From<ItemId> for usize { |
| fn from(id: ItemId) -> usize { |
| id.0 |
| } |
| } |
| |
| impl ItemId { |
| /// Get a numeric representation of this ID. |
| pub(crate) fn as_usize(&self) -> usize { |
| (*self).into() |
| } |
| } |
| |
| impl<T> ::std::cmp::PartialEq<T> for ItemId |
| where |
| T: Copy + Into<ItemId>, |
| { |
| fn eq(&self, rhs: &T) -> bool { |
| let rhs: ItemId = (*rhs).into(); |
| self.0 == rhs.0 |
| } |
| } |
| |
| impl<T> CanDeriveDebug for T |
| where |
| T: Copy + Into<ItemId>, |
| { |
| fn can_derive_debug(&self, ctx: &BindgenContext) -> bool { |
| ctx.options().derive_debug && ctx.lookup_can_derive_debug(*self) |
| } |
| } |
| |
| impl<T> CanDeriveDefault for T |
| where |
| T: Copy + Into<ItemId>, |
| { |
| fn can_derive_default(&self, ctx: &BindgenContext) -> bool { |
| ctx.options().derive_default && ctx.lookup_can_derive_default(*self) |
| } |
| } |
| |
| impl<T> CanDeriveCopy for T |
| where |
| T: Copy + Into<ItemId>, |
| { |
| fn can_derive_copy(&self, ctx: &BindgenContext) -> bool { |
| ctx.options().derive_copy && ctx.lookup_can_derive_copy(*self) |
| } |
| } |
| |
| impl<T> CanDeriveHash for T |
| where |
| T: Copy + Into<ItemId>, |
| { |
| fn can_derive_hash(&self, ctx: &BindgenContext) -> bool { |
| ctx.options().derive_hash && ctx.lookup_can_derive_hash(*self) |
| } |
| } |
| |
| impl<T> CanDerivePartialOrd for T |
| where |
| T: Copy + Into<ItemId>, |
| { |
| fn can_derive_partialord(&self, ctx: &BindgenContext) -> bool { |
| ctx.options().derive_partialord && |
| ctx.lookup_can_derive_partialeq_or_partialord(*self) == |
| CanDerive::Yes |
| } |
| } |
| |
| impl<T> CanDerivePartialEq for T |
| where |
| T: Copy + Into<ItemId>, |
| { |
| fn can_derive_partialeq(&self, ctx: &BindgenContext) -> bool { |
| ctx.options().derive_partialeq && |
| ctx.lookup_can_derive_partialeq_or_partialord(*self) == |
| CanDerive::Yes |
| } |
| } |
| |
| impl<T> CanDeriveEq for T |
| where |
| T: Copy + Into<ItemId>, |
| { |
| fn can_derive_eq(&self, ctx: &BindgenContext) -> bool { |
| ctx.options().derive_eq && |
| ctx.lookup_can_derive_partialeq_or_partialord(*self) == |
| CanDerive::Yes && |
| !ctx.lookup_has_float(*self) |
| } |
| } |
| |
| impl<T> CanDeriveOrd for T |
| where |
| T: Copy + Into<ItemId>, |
| { |
| fn can_derive_ord(&self, ctx: &BindgenContext) -> bool { |
| ctx.options().derive_ord && |
| ctx.lookup_can_derive_partialeq_or_partialord(*self) == |
| CanDerive::Yes && |
| !ctx.lookup_has_float(*self) |
| } |
| } |
| |
| /// A key used to index a resolved type, so we only process it once. |
| /// |
| /// This is almost always a USR string (an unique identifier generated by |
| /// clang), but it can also be the canonical declaration if the type is unnamed, |
| /// in which case clang may generate the same USR for multiple nested unnamed |
| /// types. |
| #[derive(Eq, PartialEq, Hash, Debug)] |
| enum TypeKey { |
| Usr(String), |
| Declaration(Cursor), |
| } |
| |
| /// A context used during parsing and generation of structs. |
| #[derive(Debug)] |
| pub(crate) struct BindgenContext { |
| /// The map of all the items parsed so far, keyed off ItemId. |
| items: Vec<Option<Item>>, |
| |
| /// Clang USR to type map. This is needed to be able to associate types with |
| /// item ids during parsing. |
| types: HashMap<TypeKey, TypeId>, |
| |
| /// Maps from a cursor to the item ID of the named template type parameter |
| /// for that cursor. |
| type_params: HashMap<clang::Cursor, TypeId>, |
| |
| /// A cursor to module map. Similar reason than above. |
| modules: HashMap<Cursor, ModuleId>, |
| |
| /// The root module, this is guaranteed to be an item of kind Module. |
| root_module: ModuleId, |
| |
| /// Current module being traversed. |
| current_module: ModuleId, |
| |
| /// A HashMap keyed on a type definition, and whose value is the parent ID |
| /// of the declaration. |
| /// |
| /// This is used to handle the cases where the semantic and the lexical |
| /// parents of the cursor differ, like when a nested class is defined |
| /// outside of the parent class. |
| semantic_parents: HashMap<clang::Cursor, ItemId>, |
| |
| /// A stack with the current type declarations and types we're parsing. This |
| /// is needed to avoid infinite recursion when parsing a type like: |
| /// |
| /// struct c { struct c* next; }; |
| /// |
| /// This means effectively, that a type has a potential ID before knowing if |
| /// it's a correct type. But that's not important in practice. |
| /// |
| /// We could also use the `types` HashMap, but my intention with it is that |
| /// only valid types and declarations end up there, and this could |
| /// potentially break that assumption. |
| currently_parsed_types: Vec<PartialType>, |
| |
| /// A map with all the already parsed macro names. This is done to avoid |
| /// hard errors while parsing duplicated macros, as well to allow macro |
| /// expression parsing. |
| /// |
| /// This needs to be an std::HashMap because the cexpr API requires it. |
| parsed_macros: StdHashMap<Vec<u8>, cexpr::expr::EvalResult>, |
| |
| /// A map with all include locations. |
| /// |
| /// This is needed so that items are created in the order they are defined in. |
| /// |
| /// The key is the included file, the value is a pair of the source file and |
| /// the position of the `#include` directive in the source file. |
| includes: StdHashMap<String, (String, usize)>, |
| |
| /// A set of all the included filenames. |
| deps: BTreeSet<Box<str>>, |
| |
| /// The active replacements collected from replaces="xxx" annotations. |
| replacements: HashMap<Vec<String>, ItemId>, |
| |
| collected_typerefs: bool, |
| |
| in_codegen: bool, |
| |
| /// The translation unit for parsing. |
| translation_unit: clang::TranslationUnit, |
| |
| /// Target information that can be useful for some stuff. |
| target_info: clang::TargetInfo, |
| |
| /// The options given by the user via cli or other medium. |
| options: BindgenOptions, |
| |
| /// Whether a bindgen complex was generated |
| generated_bindgen_complex: Cell<bool>, |
| |
| /// Whether a bindgen float16 was generated |
| generated_bindgen_float16: Cell<bool>, |
| |
| /// The set of `ItemId`s that are allowlisted. This the very first thing |
| /// computed after parsing our IR, and before running any of our analyses. |
| allowlisted: Option<ItemSet>, |
| |
| /// Cache for calls to `ParseCallbacks::blocklisted_type_implements_trait` |
| blocklisted_types_implement_traits: |
| RefCell<HashMap<DeriveTrait, HashMap<ItemId, CanDerive>>>, |
| |
| /// The set of `ItemId`s that are allowlisted for code generation _and_ that |
| /// we should generate accounting for the codegen options. |
| /// |
| /// It's computed right after computing the allowlisted items. |
| codegen_items: Option<ItemSet>, |
| |
| /// Map from an item's ID to the set of template parameter items that it |
| /// uses. See `ir::named` for more details. Always `Some` during the codegen |
| /// phase. |
| used_template_parameters: Option<HashMap<ItemId, ItemSet>>, |
| |
| /// The set of `TypeKind::Comp` items found during parsing that need their |
| /// bitfield allocation units computed. Drained in `compute_bitfield_units`. |
| need_bitfield_allocation: Vec<ItemId>, |
| |
| /// The set of enums that are defined by a pair of `enum` and `typedef`, |
| /// which is legal in C (but not C++). |
| /// |
| /// ```c++ |
| /// // in either order |
| /// enum Enum { Variants... }; |
| /// typedef int16_t Enum; |
| /// ``` |
| /// |
| /// The stored `ItemId` is that of the `TypeKind::Enum`, not of the |
| /// `TypeKind::Alias`. |
| /// |
| /// This is populated when we enter codegen by `compute_enum_typedef_combos` |
| /// and is always `None` before that and `Some` after. |
| enum_typedef_combos: Option<HashSet<ItemId>>, |
| |
| /// The set of (`ItemId`s of) types that can't derive debug. |
| /// |
| /// This is populated when we enter codegen by `compute_cannot_derive_debug` |
| /// and is always `None` before that and `Some` after. |
| cannot_derive_debug: Option<HashSet<ItemId>>, |
| |
| /// The set of (`ItemId`s of) types that can't derive default. |
| /// |
| /// This is populated when we enter codegen by `compute_cannot_derive_default` |
| /// and is always `None` before that and `Some` after. |
| cannot_derive_default: Option<HashSet<ItemId>>, |
| |
| /// The set of (`ItemId`s of) types that can't derive copy. |
| /// |
| /// This is populated when we enter codegen by `compute_cannot_derive_copy` |
| /// and is always `None` before that and `Some` after. |
| cannot_derive_copy: Option<HashSet<ItemId>>, |
| |
| /// The set of (`ItemId`s of) types that can't derive hash. |
| /// |
| /// This is populated when we enter codegen by `compute_can_derive_hash` |
| /// and is always `None` before that and `Some` after. |
| cannot_derive_hash: Option<HashSet<ItemId>>, |
| |
| /// The map why specified `ItemId`s of) types that can't derive hash. |
| /// |
| /// This is populated when we enter codegen by |
| /// `compute_cannot_derive_partialord_partialeq_or_eq` and is always `None` |
| /// before that and `Some` after. |
| cannot_derive_partialeq_or_partialord: Option<HashMap<ItemId, CanDerive>>, |
| |
| /// The sizedness of types. |
| /// |
| /// This is populated by `compute_sizedness` and is always `None` before |
| /// that function is invoked and `Some` afterwards. |
| sizedness: Option<HashMap<TypeId, SizednessResult>>, |
| |
| /// The set of (`ItemId's of`) types that has vtable. |
| /// |
| /// Populated when we enter codegen by `compute_has_vtable`; always `None` |
| /// before that and `Some` after. |
| have_vtable: Option<HashMap<ItemId, HasVtableResult>>, |
| |
| /// The set of (`ItemId's of`) types that has destructor. |
| /// |
| /// Populated when we enter codegen by `compute_has_destructor`; always `None` |
| /// before that and `Some` after. |
| have_destructor: Option<HashSet<ItemId>>, |
| |
| /// The set of (`ItemId's of`) types that has array. |
| /// |
| /// Populated when we enter codegen by `compute_has_type_param_in_array`; always `None` |
| /// before that and `Some` after. |
| has_type_param_in_array: Option<HashSet<ItemId>>, |
| |
| /// The set of (`ItemId's of`) types that has float. |
| /// |
| /// Populated when we enter codegen by `compute_has_float`; always `None` |
| /// before that and `Some` after. |
| has_float: Option<HashSet<ItemId>>, |
| } |
| |
| /// A traversal of allowlisted items. |
| struct AllowlistedItemsTraversal<'ctx> { |
| ctx: &'ctx BindgenContext, |
| traversal: ItemTraversal<'ctx, ItemSet, Vec<ItemId>>, |
| } |
| |
| impl<'ctx> Iterator for AllowlistedItemsTraversal<'ctx> { |
| type Item = ItemId; |
| |
| fn next(&mut self) -> Option<ItemId> { |
| loop { |
| let id = self.traversal.next()?; |
| |
| if self.ctx.resolve_item(id).is_blocklisted(self.ctx) { |
| continue; |
| } |
| |
| return Some(id); |
| } |
| } |
| } |
| |
| impl<'ctx> AllowlistedItemsTraversal<'ctx> { |
| /// Construct a new allowlisted items traversal. |
| pub(crate) fn new<R>( |
| ctx: &'ctx BindgenContext, |
| roots: R, |
| predicate: for<'a> fn(&'a BindgenContext, Edge) -> bool, |
| ) -> Self |
| where |
| R: IntoIterator<Item = ItemId>, |
| { |
| AllowlistedItemsTraversal { |
| ctx, |
| traversal: ItemTraversal::new(ctx, roots, predicate), |
| } |
| } |
| } |
| |
| impl BindgenContext { |
| /// Construct the context for the given `options`. |
| pub(crate) fn new( |
| options: BindgenOptions, |
| input_unsaved_files: &[clang::UnsavedFile], |
| ) -> Self { |
| // TODO(emilio): Use the CXTargetInfo here when available. |
| // |
| // see: https://reviews.llvm.org/D32389 |
| let index = clang::Index::new(false, true); |
| |
| let parse_options = |
| clang_sys::CXTranslationUnit_DetailedPreprocessingRecord; |
| |
| let translation_unit = { |
| let _t = |
| Timer::new("translation_unit").with_output(options.time_phases); |
| |
| clang::TranslationUnit::parse( |
| &index, |
| "", |
| &options.clang_args, |
| input_unsaved_files, |
| parse_options, |
| ).expect("libclang error; possible causes include: |
| - Invalid flag syntax |
| - Unrecognized flags |
| - Invalid flag arguments |
| - File I/O errors |
| - Host vs. target architecture mismatch |
| If you encounter an error missing from this list, please file an issue or a PR!") |
| }; |
| |
| let target_info = clang::TargetInfo::new(&translation_unit); |
| let root_module = Self::build_root_module(ItemId(0)); |
| let root_module_id = root_module.id().as_module_id_unchecked(); |
| |
| // depfiles need to include the explicitly listed headers too |
| let deps = options.input_headers.iter().cloned().collect(); |
| |
| BindgenContext { |
| items: vec![Some(root_module)], |
| includes: Default::default(), |
| deps, |
| types: Default::default(), |
| type_params: Default::default(), |
| modules: Default::default(), |
| root_module: root_module_id, |
| current_module: root_module_id, |
| semantic_parents: Default::default(), |
| currently_parsed_types: vec![], |
| parsed_macros: Default::default(), |
| replacements: Default::default(), |
| collected_typerefs: false, |
| in_codegen: false, |
| translation_unit, |
| target_info, |
| options, |
| generated_bindgen_complex: Cell::new(false), |
| generated_bindgen_float16: Cell::new(false), |
| allowlisted: None, |
| blocklisted_types_implement_traits: Default::default(), |
| codegen_items: None, |
| used_template_parameters: None, |
| need_bitfield_allocation: Default::default(), |
| enum_typedef_combos: None, |
| cannot_derive_debug: None, |
| cannot_derive_default: None, |
| cannot_derive_copy: None, |
| cannot_derive_hash: None, |
| cannot_derive_partialeq_or_partialord: None, |
| sizedness: None, |
| have_vtable: None, |
| have_destructor: None, |
| has_type_param_in_array: None, |
| has_float: None, |
| } |
| } |
| |
| /// Returns `true` if the target architecture is wasm32 |
| pub(crate) fn is_target_wasm32(&self) -> bool { |
| self.target_info.triple.starts_with("wasm32-") |
| } |
| |
| /// Creates a timer for the current bindgen phase. If time_phases is `true`, |
| /// the timer will print to stderr when it is dropped, otherwise it will do |
| /// nothing. |
| pub(crate) fn timer<'a>(&self, name: &'a str) -> Timer<'a> { |
| Timer::new(name).with_output(self.options.time_phases) |
| } |
| |
| /// Returns the pointer width to use for the target for the current |
| /// translation. |
| pub(crate) fn target_pointer_size(&self) -> usize { |
| self.target_info.pointer_width / 8 |
| } |
| |
| /// Returns the ABI, which is mostly useful for determining the mangling kind. |
| pub(crate) fn abi_kind(&self) -> ABIKind { |
| self.target_info.abi |
| } |
| |
| /// Get the stack of partially parsed types that we are in the middle of |
| /// parsing. |
| pub(crate) fn currently_parsed_types(&self) -> &[PartialType] { |
| &self.currently_parsed_types[..] |
| } |
| |
| /// Begin parsing the given partial type, and push it onto the |
| /// `currently_parsed_types` stack so that we won't infinite recurse if we |
| /// run into a reference to it while parsing it. |
| pub(crate) fn begin_parsing(&mut self, partial_ty: PartialType) { |
| self.currently_parsed_types.push(partial_ty); |
| } |
| |
| /// Finish parsing the current partial type, pop it off the |
| /// `currently_parsed_types` stack, and return it. |
| pub(crate) fn finish_parsing(&mut self) -> PartialType { |
| self.currently_parsed_types.pop().expect( |
| "should have been parsing a type, if we finished parsing a type", |
| ) |
| } |
| |
| /// Add the location of the `#include` directive for the `included_file`. |
| pub(crate) fn add_include( |
| &mut self, |
| source_file: String, |
| included_file: String, |
| offset: usize, |
| ) { |
| self.includes |
| .entry(included_file) |
| .or_insert((source_file, offset)); |
| } |
| |
| /// Get the location of the first `#include` directive for the `included_file`. |
| pub(crate) fn included_file_location( |
| &self, |
| included_file: &str, |
| ) -> Option<(String, usize)> { |
| self.includes.get(included_file).cloned() |
| } |
| |
| /// Add an included file. |
| pub(crate) fn add_dep(&mut self, dep: Box<str>) { |
| self.deps.insert(dep); |
| } |
| |
| /// Get any included files. |
| pub(crate) fn deps(&self) -> &BTreeSet<Box<str>> { |
| &self.deps |
| } |
| |
| /// Define a new item. |
| /// |
| /// This inserts it into the internal items set, and its type into the |
| /// internal types set. |
| pub(crate) fn add_item( |
| &mut self, |
| item: Item, |
| declaration: Option<Cursor>, |
| location: Option<Cursor>, |
| ) { |
| debug!( |
| "BindgenContext::add_item({:?}, declaration: {:?}, loc: {:?}", |
| item, declaration, location |
| ); |
| debug_assert!( |
| declaration.is_some() || |
| !item.kind().is_type() || |
| item.kind().expect_type().is_builtin_or_type_param() || |
| item.kind().expect_type().is_opaque(self, &item) || |
| item.kind().expect_type().is_unresolved_ref(), |
| "Adding a type without declaration?" |
| ); |
| |
| let id = item.id(); |
| let is_type = item.kind().is_type(); |
| let is_unnamed = is_type && item.expect_type().name().is_none(); |
| let is_template_instantiation = |
| is_type && item.expect_type().is_template_instantiation(); |
| |
| if item.id() != self.root_module { |
| self.add_item_to_module(&item); |
| } |
| |
| if is_type && item.expect_type().is_comp() { |
| self.need_bitfield_allocation.push(id); |
| } |
| |
| let old_item = mem::replace(&mut self.items[id.0], Some(item)); |
| assert!( |
| old_item.is_none(), |
| "should not have already associated an item with the given id" |
| ); |
| |
| // Unnamed items can have an USR, but they can't be referenced from |
| // other sites explicitly and the USR can match if the unnamed items are |
| // nested, so don't bother tracking them. |
| if !is_type || is_template_instantiation { |
| return; |
| } |
| if let Some(mut declaration) = declaration { |
| if !declaration.is_valid() { |
| if let Some(location) = location { |
| if location.is_template_like() { |
| declaration = location; |
| } |
| } |
| } |
| declaration = declaration.canonical(); |
| if !declaration.is_valid() { |
| // This could happen, for example, with types like `int*` or |
| // similar. |
| // |
| // Fortunately, we don't care about those types being |
| // duplicated, so we can just ignore them. |
| debug!( |
| "Invalid declaration {:?} found for type {:?}", |
| declaration, |
| self.resolve_item_fallible(id) |
| .unwrap() |
| .kind() |
| .expect_type() |
| ); |
| return; |
| } |
| |
| let key = if is_unnamed { |
| TypeKey::Declaration(declaration) |
| } else if let Some(usr) = declaration.usr() { |
| TypeKey::Usr(usr) |
| } else { |
| warn!( |
| "Valid declaration with no USR: {:?}, {:?}", |
| declaration, location |
| ); |
| TypeKey::Declaration(declaration) |
| }; |
| |
| let old = self.types.insert(key, id.as_type_id_unchecked()); |
| debug_assert_eq!(old, None); |
| } |
| } |
| |
| /// Ensure that every item (other than the root module) is in a module's |
| /// children list. This is to make sure that every allowlisted item get's |
| /// codegen'd, even if its parent is not allowlisted. See issue #769 for |
| /// details. |
| fn add_item_to_module(&mut self, item: &Item) { |
| assert!(item.id() != self.root_module); |
| assert!(self.resolve_item_fallible(item.id()).is_none()); |
| |
| if let Some(ref mut parent) = self.items[item.parent_id().0] { |
| if let Some(module) = parent.as_module_mut() { |
| debug!( |
| "add_item_to_module: adding {:?} as child of parent module {:?}", |
| item.id(), |
| item.parent_id() |
| ); |
| |
| module.children_mut().insert(item.id()); |
| return; |
| } |
| } |
| |
| debug!( |
| "add_item_to_module: adding {:?} as child of current module {:?}", |
| item.id(), |
| self.current_module |
| ); |
| |
| self.items[(self.current_module.0).0] |
| .as_mut() |
| .expect("Should always have an item for self.current_module") |
| .as_module_mut() |
| .expect("self.current_module should always be a module") |
| .children_mut() |
| .insert(item.id()); |
| } |
| |
| /// Add a new named template type parameter to this context's item set. |
| pub(crate) fn add_type_param( |
| &mut self, |
| item: Item, |
| definition: clang::Cursor, |
| ) { |
| debug!( |
| "BindgenContext::add_type_param: item = {:?}; definition = {:?}", |
| item, definition |
| ); |
| |
| assert!( |
| item.expect_type().is_type_param(), |
| "Should directly be a named type, not a resolved reference or anything" |
| ); |
| assert_eq!( |
| definition.kind(), |
| clang_sys::CXCursor_TemplateTypeParameter |
| ); |
| |
| self.add_item_to_module(&item); |
| |
| let id = item.id(); |
| let old_item = mem::replace(&mut self.items[id.0], Some(item)); |
| assert!( |
| old_item.is_none(), |
| "should not have already associated an item with the given id" |
| ); |
| |
| let old_named_ty = self |
| .type_params |
| .insert(definition, id.as_type_id_unchecked()); |
| assert!( |
| old_named_ty.is_none(), |
| "should not have already associated a named type with this id" |
| ); |
| } |
| |
| /// Get the named type defined at the given cursor location, if we've |
| /// already added one. |
| pub(crate) fn get_type_param( |
| &self, |
| definition: &clang::Cursor, |
| ) -> Option<TypeId> { |
| assert_eq!( |
| definition.kind(), |
| clang_sys::CXCursor_TemplateTypeParameter |
| ); |
| self.type_params.get(definition).cloned() |
| } |
| |
| // TODO: Move all this syntax crap to other part of the code. |
| |
| /// Mangles a name so it doesn't conflict with any keyword. |
| #[rustfmt::skip] |
| pub(crate) fn rust_mangle<'a>(&self, name: &'a str) -> Cow<'a, str> { |
| if name.contains('@') || |
| name.contains('?') || |
| name.contains('$') || |
| matches!( |
| name, |
| "abstract" | "alignof" | "as" | "async" | "await" | "become" | |
| "box" | "break" | "const" | "continue" | "crate" | "do" | |
| "dyn" | "else" | "enum" | "extern" | "false" | "final" | |
| "fn" | "for" | "if" | "impl" | "in" | "let" | "loop" | |
| "macro" | "match" | "mod" | "move" | "mut" | "offsetof" | |
| "override" | "priv" | "proc" | "pub" | "pure" | "ref" | |
| "return" | "Self" | "self" | "sizeof" | "static" | |
| "struct" | "super" | "trait" | "true" | "try" | "type" | "typeof" | |
| "unsafe" | "unsized" | "use" | "virtual" | "where" | |
| "while" | "yield" | "str" | "bool" | "f32" | "f64" | |
| "usize" | "isize" | "u128" | "i128" | "u64" | "i64" | |
| "u32" | "i32" | "u16" | "i16" | "u8" | "i8" | "_" |
| ) |
| { |
| let mut s = name.to_owned(); |
| s = s.replace('@', "_"); |
| s = s.replace('?', "_"); |
| s = s.replace('$', "_"); |
| s.push('_'); |
| return Cow::Owned(s); |
| } |
| Cow::Borrowed(name) |
| } |
| |
| /// Returns a mangled name as a rust identifier. |
| pub(crate) fn rust_ident<S>(&self, name: S) -> Ident |
| where |
| S: AsRef<str>, |
| { |
| self.rust_ident_raw(self.rust_mangle(name.as_ref())) |
| } |
| |
| /// Returns a mangled name as a rust identifier. |
| pub(crate) fn rust_ident_raw<T>(&self, name: T) -> Ident |
| where |
| T: AsRef<str>, |
| { |
| Ident::new(name.as_ref(), Span::call_site()) |
| } |
| |
| /// Iterate over all items that have been defined. |
| pub(crate) fn items(&self) -> impl Iterator<Item = (ItemId, &Item)> { |
| self.items.iter().enumerate().filter_map(|(index, item)| { |
| let item = item.as_ref()?; |
| Some((ItemId(index), item)) |
| }) |
| } |
| |
| /// Have we collected all unresolved type references yet? |
| pub(crate) fn collected_typerefs(&self) -> bool { |
| self.collected_typerefs |
| } |
| |
| /// Gather all the unresolved type references. |
| fn collect_typerefs( |
| &mut self, |
| ) -> Vec<(ItemId, clang::Type, clang::Cursor, Option<ItemId>)> { |
| debug_assert!(!self.collected_typerefs); |
| self.collected_typerefs = true; |
| let mut typerefs = vec![]; |
| |
| for (id, item) in self.items() { |
| let kind = item.kind(); |
| let ty = match kind.as_type() { |
| Some(ty) => ty, |
| None => continue, |
| }; |
| |
| if let TypeKind::UnresolvedTypeRef(ref ty, loc, parent_id) = |
| *ty.kind() |
| { |
| typerefs.push((id, *ty, loc, parent_id)); |
| }; |
| } |
| typerefs |
| } |
| |
| /// Collect all of our unresolved type references and resolve them. |
| fn resolve_typerefs(&mut self) { |
| let _t = self.timer("resolve_typerefs"); |
| |
| let typerefs = self.collect_typerefs(); |
| |
| for (id, ty, loc, parent_id) in typerefs { |
| let _resolved = |
| { |
| let resolved = Item::from_ty(&ty, loc, parent_id, self) |
| .unwrap_or_else(|_| { |
| warn!("Could not resolve type reference, falling back \ |
| to opaque blob"); |
| Item::new_opaque_type(self.next_item_id(), &ty, self) |
| }); |
| |
| let item = self.items[id.0].as_mut().unwrap(); |
| *item.kind_mut().as_type_mut().unwrap().kind_mut() = |
| TypeKind::ResolvedTypeRef(resolved); |
| resolved |
| }; |
| |
| // Something in the STL is trolling me. I don't need this assertion |
| // right now, but worth investigating properly once this lands. |
| // |
| // debug_assert!(self.items.get(&resolved).is_some(), "How?"); |
| // |
| // if let Some(parent_id) = parent_id { |
| // assert_eq!(self.items[&resolved].parent_id(), parent_id); |
| // } |
| } |
| } |
| |
| /// Temporarily loan `Item` with the given `ItemId`. This provides means to |
| /// mutably borrow `Item` while having a reference to `BindgenContext`. |
| /// |
| /// `Item` with the given `ItemId` is removed from the context, given |
| /// closure is executed and then `Item` is placed back. |
| /// |
| /// # Panics |
| /// |
| /// Panics if attempt to resolve given `ItemId` inside the given |
| /// closure is made. |
| fn with_loaned_item<F, T>(&mut self, id: ItemId, f: F) -> T |
| where |
| F: (FnOnce(&BindgenContext, &mut Item) -> T), |
| { |
| let mut item = self.items[id.0].take().unwrap(); |
| |
| let result = f(self, &mut item); |
| |
| let existing = mem::replace(&mut self.items[id.0], Some(item)); |
| assert!(existing.is_none()); |
| |
| result |
| } |
| |
| /// Compute the bitfield allocation units for all `TypeKind::Comp` items we |
| /// parsed. |
| fn compute_bitfield_units(&mut self) { |
| let _t = self.timer("compute_bitfield_units"); |
| |
| assert!(self.collected_typerefs()); |
| |
| let need_bitfield_allocation = |
| mem::take(&mut self.need_bitfield_allocation); |
| for id in need_bitfield_allocation { |
| self.with_loaned_item(id, |ctx, item| { |
| let ty = item.kind_mut().as_type_mut().unwrap(); |
| let layout = ty.layout(ctx); |
| ty.as_comp_mut() |
| .unwrap() |
| .compute_bitfield_units(ctx, layout.as_ref()); |
| }); |
| } |
| } |
| |
| /// Assign a new generated name for each anonymous field. |
| fn deanonymize_fields(&mut self) { |
| let _t = self.timer("deanonymize_fields"); |
| |
| let comp_item_ids: Vec<ItemId> = self |
| .items() |
| .filter_map(|(id, item)| { |
| if item.kind().as_type()?.is_comp() { |
| return Some(id); |
| } |
| None |
| }) |
| .collect(); |
| |
| for id in comp_item_ids { |
| self.with_loaned_item(id, |ctx, item| { |
| item.kind_mut() |
| .as_type_mut() |
| .unwrap() |
| .as_comp_mut() |
| .unwrap() |
| .deanonymize_fields(ctx); |
| }); |
| } |
| } |
| |
| /// Iterate over all items and replace any item that has been named in a |
| /// `replaces="SomeType"` annotation with the replacement type. |
| fn process_replacements(&mut self) { |
| let _t = self.timer("process_replacements"); |
| if self.replacements.is_empty() { |
| debug!("No replacements to process"); |
| return; |
| } |
| |
| // FIXME: This is linear, but the replaces="xxx" annotation was already |
| // there, and for better or worse it's useful, sigh... |
| // |
| // We leverage the ResolvedTypeRef thing, though, which is cool :P. |
| |
| let mut replacements = vec![]; |
| |
| for (id, item) in self.items() { |
| if item.annotations().use_instead_of().is_some() { |
| continue; |
| } |
| |
| // Calls to `canonical_name` are expensive, so eagerly filter out |
| // items that cannot be replaced. |
| let ty = match item.kind().as_type() { |
| Some(ty) => ty, |
| None => continue, |
| }; |
| |
| match *ty.kind() { |
| TypeKind::Comp(..) | |
| TypeKind::TemplateAlias(..) | |
| TypeKind::Enum(..) | |
| TypeKind::Alias(..) => {} |
| _ => continue, |
| } |
| |
| let path = item.path_for_allowlisting(self); |
| let replacement = self.replacements.get(&path[1..]); |
| |
| if let Some(replacement) = replacement { |
| if *replacement != id { |
| // We set this just after parsing the annotation. It's |
| // very unlikely, but this can happen. |
| if self.resolve_item_fallible(*replacement).is_some() { |
| replacements.push(( |
| id.expect_type_id(self), |
| replacement.expect_type_id(self), |
| )); |
| } |
| } |
| } |
| } |
| |
| for (id, replacement_id) in replacements { |
| debug!("Replacing {:?} with {:?}", id, replacement_id); |
| let new_parent = { |
| let item_id: ItemId = id.into(); |
| let item = self.items[item_id.0].as_mut().unwrap(); |
| *item.kind_mut().as_type_mut().unwrap().kind_mut() = |
| TypeKind::ResolvedTypeRef(replacement_id); |
| item.parent_id() |
| }; |
| |
| // Relocate the replacement item from where it was declared, to |
| // where the thing it is replacing was declared. |
| // |
| // First, we'll make sure that its parent ID is correct. |
| |
| let old_parent = self.resolve_item(replacement_id).parent_id(); |
| if new_parent == old_parent { |
| // Same parent and therefore also same containing |
| // module. Nothing to do here. |
| continue; |
| } |
| |
| let replacement_item_id: ItemId = replacement_id.into(); |
| self.items[replacement_item_id.0] |
| .as_mut() |
| .unwrap() |
| .set_parent_for_replacement(new_parent); |
| |
| // Second, make sure that it is in the correct module's children |
| // set. |
| |
| let old_module = { |
| let immut_self = &*self; |
| old_parent |
| .ancestors(immut_self) |
| .chain(Some(immut_self.root_module.into())) |
| .find(|id| { |
| let item = immut_self.resolve_item(*id); |
| item.as_module().map_or(false, |m| { |
| m.children().contains(&replacement_id.into()) |
| }) |
| }) |
| }; |
| let old_module = old_module |
| .expect("Every replacement item should be in a module"); |
| |
| let new_module = { |
| let immut_self = &*self; |
| new_parent |
| .ancestors(immut_self) |
| .find(|id| immut_self.resolve_item(*id).is_module()) |
| }; |
| let new_module = |
| new_module.unwrap_or_else(|| self.root_module.into()); |
| |
| if new_module == old_module { |
| // Already in the correct module. |
| continue; |
| } |
| |
| self.items[old_module.0] |
| .as_mut() |
| .unwrap() |
| .as_module_mut() |
| .unwrap() |
| .children_mut() |
| .remove(&replacement_id.into()); |
| |
| self.items[new_module.0] |
| .as_mut() |
| .unwrap() |
| .as_module_mut() |
| .unwrap() |
| .children_mut() |
| .insert(replacement_id.into()); |
| } |
| } |
| |
| /// Enter the code generation phase, invoke the given callback `cb`, and |
| /// leave the code generation phase. |
| pub(crate) fn gen<F, Out>( |
| mut self, |
| cb: F, |
| ) -> Result<(Out, BindgenOptions), CodegenError> |
| where |
| F: FnOnce(&Self) -> Result<Out, CodegenError>, |
| { |
| self.in_codegen = true; |
| |
| self.resolve_typerefs(); |
| self.compute_bitfield_units(); |
| self.process_replacements(); |
| |
| self.deanonymize_fields(); |
| |
| self.assert_no_dangling_references(); |
| |
| // Compute the allowlisted set after processing replacements and |
| // resolving type refs, as those are the final mutations of the IR |
| // graph, and their completion means that the IR graph is now frozen. |
| self.compute_allowlisted_and_codegen_items(); |
| |
| // Make sure to do this after processing replacements, since that messes |
| // with the parentage and module children, and we want to assert that it |
| // messes with them correctly. |
| self.assert_every_item_in_a_module(); |
| |
| self.compute_has_vtable(); |
| self.compute_sizedness(); |
| self.compute_has_destructor(); |
| self.find_used_template_parameters(); |
| self.compute_enum_typedef_combos(); |
| self.compute_cannot_derive_debug(); |
| self.compute_cannot_derive_default(); |
| self.compute_cannot_derive_copy(); |
| self.compute_has_type_param_in_array(); |
| self.compute_has_float(); |
| self.compute_cannot_derive_hash(); |
| self.compute_cannot_derive_partialord_partialeq_or_eq(); |
| |
| let ret = cb(&self)?; |
| Ok((ret, self.options)) |
| } |
| |
| /// When the `__testing_only_extra_assertions` feature is enabled, this |
| /// function walks the IR graph and asserts that we do not have any edges |
| /// referencing an ItemId for which we do not have an associated IR item. |
| fn assert_no_dangling_references(&self) { |
| if cfg!(feature = "__testing_only_extra_assertions") { |
| for _ in self.assert_no_dangling_item_traversal() { |
| // The iterator's next method does the asserting for us. |
| } |
| } |
| } |
| |
| fn assert_no_dangling_item_traversal( |
| &self, |
| ) -> traversal::AssertNoDanglingItemsTraversal { |
| assert!(self.in_codegen_phase()); |
| assert!(self.current_module == self.root_module); |
| |
| let roots = self.items().map(|(id, _)| id); |
| traversal::AssertNoDanglingItemsTraversal::new( |
| self, |
| roots, |
| traversal::all_edges, |
| ) |
| } |
| |
| /// When the `__testing_only_extra_assertions` feature is enabled, walk over |
| /// every item and ensure that it is in the children set of one of its |
| /// module ancestors. |
| fn assert_every_item_in_a_module(&self) { |
| if cfg!(feature = "__testing_only_extra_assertions") { |
| assert!(self.in_codegen_phase()); |
| assert!(self.current_module == self.root_module); |
| |
| for (id, _item) in self.items() { |
| if id == self.root_module { |
| continue; |
| } |
| |
| assert!( |
| { |
| let id = id |
| .into_resolver() |
| .through_type_refs() |
| .through_type_aliases() |
| .resolve(self) |
| .id(); |
| id.ancestors(self) |
| .chain(Some(self.root_module.into())) |
| .any(|ancestor| { |
| debug!( |
| "Checking if {:?} is a child of {:?}", |
| id, ancestor |
| ); |
| self.resolve_item(ancestor) |
| .as_module() |
| .map_or(false, |m| { |
| m.children().contains(&id) |
| }) |
| }) |
| }, |
| "{:?} should be in some ancestor module's children set", |
| id |
| ); |
| } |
| } |
| } |
| |
| /// Compute for every type whether it is sized or not, and whether it is |
| /// sized or not as a base class. |
| fn compute_sizedness(&mut self) { |
| let _t = self.timer("compute_sizedness"); |
| assert!(self.sizedness.is_none()); |
| self.sizedness = Some(analyze::<SizednessAnalysis>(self)); |
| } |
| |
| /// Look up whether the type with the given ID is sized or not. |
| pub(crate) fn lookup_sizedness(&self, id: TypeId) -> SizednessResult { |
| assert!( |
| self.in_codegen_phase(), |
| "We only compute sizedness after we've entered codegen" |
| ); |
| |
| self.sizedness |
| .as_ref() |
| .unwrap() |
| .get(&id) |
| .cloned() |
| .unwrap_or(SizednessResult::ZeroSized) |
| } |
| |
| /// Compute whether the type has vtable. |
| fn compute_has_vtable(&mut self) { |
| let _t = self.timer("compute_has_vtable"); |
| assert!(self.have_vtable.is_none()); |
| self.have_vtable = Some(analyze::<HasVtableAnalysis>(self)); |
| } |
| |
| /// Look up whether the item with `id` has vtable or not. |
| pub(crate) fn lookup_has_vtable(&self, id: TypeId) -> HasVtableResult { |
| assert!( |
| self.in_codegen_phase(), |
| "We only compute vtables when we enter codegen" |
| ); |
| |
| // Look up the computed value for whether the item with `id` has a |
| // vtable or not. |
| self.have_vtable |
| .as_ref() |
| .unwrap() |
| .get(&id.into()) |
| .cloned() |
| .unwrap_or(HasVtableResult::No) |
| } |
| |
| /// Compute whether the type has a destructor. |
| fn compute_has_destructor(&mut self) { |
| let _t = self.timer("compute_has_destructor"); |
| assert!(self.have_destructor.is_none()); |
| self.have_destructor = Some(analyze::<HasDestructorAnalysis>(self)); |
| } |
| |
| /// Look up whether the item with `id` has a destructor. |
| pub(crate) fn lookup_has_destructor(&self, id: TypeId) -> bool { |
| assert!( |
| self.in_codegen_phase(), |
| "We only compute destructors when we enter codegen" |
| ); |
| |
| self.have_destructor.as_ref().unwrap().contains(&id.into()) |
| } |
| |
| fn find_used_template_parameters(&mut self) { |
| let _t = self.timer("find_used_template_parameters"); |
| if self.options.allowlist_recursively { |
| let used_params = analyze::<UsedTemplateParameters>(self); |
| self.used_template_parameters = Some(used_params); |
| } else { |
| // If you aren't recursively allowlisting, then we can't really make |
| // any sense of template parameter usage, and you're on your own. |
| let mut used_params = HashMap::default(); |
| for &id in self.allowlisted_items() { |
| used_params.entry(id).or_insert_with(|| { |
| id.self_template_params(self) |
| .into_iter() |
| .map(|p| p.into()) |
| .collect() |
| }); |
| } |
| self.used_template_parameters = Some(used_params); |
| } |
| } |
| |
| /// Return `true` if `item` uses the given `template_param`, `false` |
| /// otherwise. |
| /// |
| /// This method may only be called during the codegen phase, because the |
| /// template usage information is only computed as we enter the codegen |
| /// phase. |
| /// |
| /// If the item is blocklisted, then we say that it always uses the template |
| /// parameter. This is a little subtle. The template parameter usage |
| /// analysis only considers allowlisted items, and if any blocklisted item |
| /// shows up in the generated bindings, it is the user's responsibility to |
| /// manually provide a definition for them. To give them the most |
| /// flexibility when doing that, we assume that they use every template |
| /// parameter and always pass template arguments through in instantiations. |
| pub(crate) fn uses_template_parameter( |
| &self, |
| item: ItemId, |
| template_param: TypeId, |
| ) -> bool { |
| assert!( |
| self.in_codegen_phase(), |
| "We only compute template parameter usage as we enter codegen" |
| ); |
| |
| if self.resolve_item(item).is_blocklisted(self) { |
| return true; |
| } |
| |
| let template_param = template_param |
| .into_resolver() |
| .through_type_refs() |
| .through_type_aliases() |
| .resolve(self) |
| .id(); |
| |
| self.used_template_parameters |
| .as_ref() |
| .expect("should have found template parameter usage if we're in codegen") |
| .get(&item) |
| .map_or(false, |items_used_params| items_used_params.contains(&template_param)) |
| } |
| |
| /// Return `true` if `item` uses any unbound, generic template parameters, |
| /// `false` otherwise. |
| /// |
| /// Has the same restrictions that `uses_template_parameter` has. |
| pub(crate) fn uses_any_template_parameters(&self, item: ItemId) -> bool { |
| assert!( |
| self.in_codegen_phase(), |
| "We only compute template parameter usage as we enter codegen" |
| ); |
| |
| self.used_template_parameters |
| .as_ref() |
| .expect( |
| "should have template parameter usage info in codegen phase", |
| ) |
| .get(&item) |
| .map_or(false, |used| !used.is_empty()) |
| } |
| |
| // This deserves a comment. Builtin types don't get a valid declaration, so |
| // we can't add it to the cursor->type map. |
| // |
| // That being said, they're not generated anyway, and are few, so the |
| // duplication and special-casing is fine. |
| // |
| // If at some point we care about the memory here, probably a map TypeKind |
| // -> builtin type ItemId would be the best to improve that. |
| fn add_builtin_item(&mut self, item: Item) { |
| debug!("add_builtin_item: item = {:?}", item); |
| debug_assert!(item.kind().is_type()); |
| self.add_item_to_module(&item); |
| let id = item.id(); |
| let old_item = mem::replace(&mut self.items[id.0], Some(item)); |
| assert!(old_item.is_none(), "Inserted type twice?"); |
| } |
| |
| fn build_root_module(id: ItemId) -> Item { |
| let module = Module::new(Some("root".into()), ModuleKind::Normal); |
| Item::new(id, None, None, id, ItemKind::Module(module), None) |
| } |
| |
| /// Get the root module. |
| pub(crate) fn root_module(&self) -> ModuleId { |
| self.root_module |
| } |
| |
| /// Resolve a type with the given ID. |
| /// |
| /// Panics if there is no item for the given `TypeId` or if the resolved |
| /// item is not a `Type`. |
| pub(crate) fn resolve_type(&self, type_id: TypeId) -> &Type { |
| self.resolve_item(type_id).kind().expect_type() |
| } |
| |
| /// Resolve a function with the given ID. |
| /// |
| /// Panics if there is no item for the given `FunctionId` or if the resolved |
| /// item is not a `Function`. |
| pub(crate) fn resolve_func(&self, func_id: FunctionId) -> &Function { |
| self.resolve_item(func_id).kind().expect_function() |
| } |
| |
| /// Resolve the given `ItemId` as a type, or `None` if there is no item with |
| /// the given ID. |
| /// |
| /// Panics if the ID resolves to an item that is not a type. |
| pub(crate) fn safe_resolve_type(&self, type_id: TypeId) -> Option<&Type> { |
| self.resolve_item_fallible(type_id) |
| .map(|t| t.kind().expect_type()) |
| } |
| |
| /// Resolve the given `ItemId` into an `Item`, or `None` if no such item |
| /// exists. |
| pub(crate) fn resolve_item_fallible<Id: Into<ItemId>>( |
| &self, |
| id: Id, |
| ) -> Option<&Item> { |
| self.items.get(id.into().0)?.as_ref() |
| } |
| |
| /// Resolve the given `ItemId` into an `Item`. |
| /// |
| /// Panics if the given ID does not resolve to any item. |
| pub(crate) fn resolve_item<Id: Into<ItemId>>(&self, item_id: Id) -> &Item { |
| let item_id = item_id.into(); |
| match self.resolve_item_fallible(item_id) { |
| Some(item) => item, |
| None => panic!("Not an item: {:?}", item_id), |
| } |
| } |
| |
| /// Get the current module. |
| pub(crate) fn current_module(&self) -> ModuleId { |
| self.current_module |
| } |
| |
| /// Add a semantic parent for a given type definition. |
| /// |
| /// We do this from the type declaration, in order to be able to find the |
| /// correct type definition afterwards. |
| /// |
| /// TODO(emilio): We could consider doing this only when |
| /// declaration.lexical_parent() != definition.lexical_parent(), but it's |
| /// not sure it's worth it. |
| pub(crate) fn add_semantic_parent( |
| &mut self, |
| definition: clang::Cursor, |
| parent_id: ItemId, |
| ) { |
| self.semantic_parents.insert(definition, parent_id); |
| } |
| |
| /// Returns a known semantic parent for a given definition. |
| pub(crate) fn known_semantic_parent( |
| &self, |
| definition: clang::Cursor, |
| ) -> Option<ItemId> { |
| self.semantic_parents.get(&definition).cloned() |
| } |
| |
| /// Given a cursor pointing to the location of a template instantiation, |
| /// return a tuple of the form `(declaration_cursor, declaration_id, |
| /// num_expected_template_args)`. |
| /// |
| /// Note that `declaration_id` is not guaranteed to be in the context's item |
| /// set! It is possible that it is a partial type that we are still in the |
| /// middle of parsing. |
| fn get_declaration_info_for_template_instantiation( |
| &self, |
| instantiation: &Cursor, |
| ) -> Option<(Cursor, ItemId, usize)> { |
| instantiation |
| .cur_type() |
| .canonical_declaration(Some(instantiation)) |
| .and_then(|canon_decl| { |
| self.get_resolved_type(&canon_decl).and_then( |
| |template_decl_id| { |
| let num_params = |
| template_decl_id.num_self_template_params(self); |
| if num_params == 0 { |
| None |
| } else { |
| Some(( |
| *canon_decl.cursor(), |
| template_decl_id.into(), |
| num_params, |
| )) |
| } |
| }, |
| ) |
| }) |
| .or_else(|| { |
| // If we haven't already parsed the declaration of |
| // the template being instantiated, then it *must* |
| // be on the stack of types we are currently |
| // parsing. If it wasn't then clang would have |
| // already errored out before we started |
| // constructing our IR because you can't instantiate |
| // a template until it is fully defined. |
| instantiation |
| .referenced() |
| .and_then(|referenced| { |
| self.currently_parsed_types() |
| .iter() |
| .find(|partial_ty| *partial_ty.decl() == referenced) |
| .cloned() |
| }) |
| .and_then(|template_decl| { |
| let num_template_params = |
| template_decl.num_self_template_params(self); |
| if num_template_params == 0 { |
| None |
| } else { |
| Some(( |
| *template_decl.decl(), |
| template_decl.id(), |
| num_template_params, |
| )) |
| } |
| }) |
| }) |
| } |
| |
| /// Parse a template instantiation, eg `Foo<int>`. |
| /// |
| /// This is surprisingly difficult to do with libclang, due to the fact that |
| /// it doesn't provide explicit template argument information, except for |
| /// function template declarations(!?!??!). |
| /// |
| /// The only way to do this is manually inspecting the AST and looking for |
| /// TypeRefs and TemplateRefs inside. This, unfortunately, doesn't work for |
| /// more complex cases, see the comment on the assertion below. |
| /// |
| /// To add insult to injury, the AST itself has structure that doesn't make |
| /// sense. Sometimes `Foo<Bar<int>>` has an AST with nesting like you might |
| /// expect: `(Foo (Bar (int)))`. Other times, the AST we get is completely |
| /// flat: `(Foo Bar int)`. |
| /// |
| /// To see an example of what this method handles: |
| /// |
| /// ```c++ |
| /// template<typename T> |
| /// class Incomplete { |
| /// T p; |
| /// }; |
| /// |
| /// template<typename U> |
| /// class Foo { |
| /// Incomplete<U> bar; |
| /// }; |
| /// ``` |
| /// |
| /// Finally, template instantiations are always children of the current |
| /// module. They use their template's definition for their name, so the |
| /// parent is only useful for ensuring that their layout tests get |
| /// codegen'd. |
| fn instantiate_template( |
| &mut self, |
| with_id: ItemId, |
| template: TypeId, |
| ty: &clang::Type, |
| location: clang::Cursor, |
| ) -> Option<TypeId> { |
| let num_expected_args = |
| self.resolve_type(template).num_self_template_params(self); |
| if num_expected_args == 0 { |
| warn!( |
| "Tried to instantiate a template for which we could not \ |
| determine any template parameters" |
| ); |
| return None; |
| } |
| |
| let mut args = vec![]; |
| let mut found_const_arg = false; |
| let mut children = location.collect_children(); |
| |
| if children.iter().all(|c| !c.has_children()) { |
| // This is insanity... If clang isn't giving us a properly nested |
| // AST for which template arguments belong to which template we are |
| // instantiating, we'll need to construct it ourselves. However, |
| // there is an extra `NamespaceRef, NamespaceRef, ..., TemplateRef` |
| // representing a reference to the outermost template declaration |
| // that we need to filter out of the children. We need to do this |
| // filtering because we already know which template declaration is |
| // being specialized via the `location`'s type, and if we do not |
| // filter it out, we'll add an extra layer of template instantiation |
| // on accident. |
| let idx = children |
| .iter() |
| .position(|c| c.kind() == clang_sys::CXCursor_TemplateRef); |
| if let Some(idx) = idx { |
| if children |
| .iter() |
| .take(idx) |
| .all(|c| c.kind() == clang_sys::CXCursor_NamespaceRef) |
| { |
| children = children.into_iter().skip(idx + 1).collect(); |
| } |
| } |
| } |
| |
| for child in children.iter().rev() { |
| match child.kind() { |
| clang_sys::CXCursor_TypeRef | |
| clang_sys::CXCursor_TypedefDecl | |
| clang_sys::CXCursor_TypeAliasDecl => { |
| // The `with_id` ID will potentially end up unused if we give up |
| // on this type (for example, because it has const value |
| // template args), so if we pass `with_id` as the parent, it is |
| // potentially a dangling reference. Instead, use the canonical |
| // template declaration as the parent. It is already parsed and |
| // has a known-resolvable `ItemId`. |
| let ty = Item::from_ty_or_ref( |
| child.cur_type(), |
| *child, |
| Some(template.into()), |
| self, |
| ); |
| args.push(ty); |
| } |
| clang_sys::CXCursor_TemplateRef => { |
| let ( |
| template_decl_cursor, |
| template_decl_id, |
| num_expected_template_args, |
| ) = self.get_declaration_info_for_template_instantiation( |
| child, |
| )?; |
| |
| if num_expected_template_args == 0 || |
| child.has_at_least_num_children( |
| num_expected_template_args, |
| ) |
| { |
| // Do a happy little parse. See comment in the TypeRef |
| // match arm about parent IDs. |
| let ty = Item::from_ty_or_ref( |
| child.cur_type(), |
| *child, |
| Some(template.into()), |
| self, |
| ); |
| args.push(ty); |
| } else { |
| // This is the case mentioned in the doc comment where |
| // clang gives us a flattened AST and we have to |
| // reconstruct which template arguments go to which |
| // instantiation :( |
| let args_len = args.len(); |
| if args_len < num_expected_template_args { |
| warn!( |
| "Found a template instantiation without \ |
| enough template arguments" |
| ); |
| return None; |
| } |
| |
| let mut sub_args: Vec<_> = args |
| .drain(args_len - num_expected_template_args..) |
| .collect(); |
| sub_args.reverse(); |
| |
| let sub_name = Some(template_decl_cursor.spelling()); |
| let sub_inst = TemplateInstantiation::new( |
| // This isn't guaranteed to be a type that we've |
| // already finished parsing yet. |
| template_decl_id.as_type_id_unchecked(), |
| sub_args, |
| ); |
| let sub_kind = |
| TypeKind::TemplateInstantiation(sub_inst); |
| let sub_ty = Type::new( |
| sub_name, |
| template_decl_cursor |
| .cur_type() |
| .fallible_layout(self) |
| .ok(), |
| sub_kind, |
| false, |
| ); |
| let sub_id = self.next_item_id(); |
| let sub_item = Item::new( |
| sub_id, |
| None, |
| None, |
| self.current_module.into(), |
| ItemKind::Type(sub_ty), |
| Some(child.location()), |
| ); |
| |
| // Bypass all the validations in add_item explicitly. |
| debug!( |
| "instantiate_template: inserting nested \ |
| instantiation item: {:?}", |
| sub_item |
| ); |
| self.add_item_to_module(&sub_item); |
| debug_assert_eq!(sub_id, sub_item.id()); |
| self.items[sub_id.0] = Some(sub_item); |
| args.push(sub_id.as_type_id_unchecked()); |
| } |
| } |
| _ => { |
| warn!( |
| "Found template arg cursor we can't handle: {:?}", |
| child |
| ); |
| found_const_arg = true; |
| } |
| } |
| } |
| |
| if found_const_arg { |
| // This is a dependently typed template instantiation. That is, an |
| // instantiation of a template with one or more const values as |
| // template arguments, rather than only types as template |
| // arguments. For example, `Foo<true, 5>` versus `Bar<bool, int>`. |
| // We can't handle these instantiations, so just punt in this |
| // situation... |
| warn!( |
| "Found template instantiated with a const value; \ |
| bindgen can't handle this kind of template instantiation!" |
| ); |
| return None; |
| } |
| |
| if args.len() != num_expected_args { |
| warn!( |
| "Found a template with an unexpected number of template \ |
| arguments" |
| ); |
| return None; |
| } |
| |
| args.reverse(); |
| let type_kind = TypeKind::TemplateInstantiation( |
| TemplateInstantiation::new(template, args), |
| ); |
| let name = ty.spelling(); |
| let name = if name.is_empty() { None } else { Some(name) }; |
| let ty = Type::new( |
| name, |
| ty.fallible_layout(self).ok(), |
| type_kind, |
| ty.is_const(), |
| ); |
| let item = Item::new( |
| with_id, |
| None, |
| None, |
| self.current_module.into(), |
| ItemKind::Type(ty), |
| Some(location.location()), |
| ); |
| |
| // Bypass all the validations in add_item explicitly. |
| debug!("instantiate_template: inserting item: {:?}", item); |
| self.add_item_to_module(&item); |
| debug_assert_eq!(with_id, item.id()); |
| self.items[with_id.0] = Some(item); |
| Some(with_id.as_type_id_unchecked()) |
| } |
| |
| /// If we have already resolved the type for the given type declaration, |
| /// return its `ItemId`. Otherwise, return `None`. |
| pub(crate) fn get_resolved_type( |
| &self, |
| decl: &clang::CanonicalTypeDeclaration, |
| ) -> Option<TypeId> { |
| self.types |
| .get(&TypeKey::Declaration(*decl.cursor())) |
| .or_else(|| { |
| decl.cursor() |
| .usr() |
| .and_then(|usr| self.types.get(&TypeKey::Usr(usr))) |
| }) |
| .cloned() |
| } |
| |
| /// Looks up for an already resolved type, either because it's builtin, or |
| /// because we already have it in the map. |
| pub(crate) fn builtin_or_resolved_ty( |
| &mut self, |
| with_id: ItemId, |
| parent_id: Option<ItemId>, |
| ty: &clang::Type, |
| location: Option<clang::Cursor>, |
| ) -> Option<TypeId> { |
| use clang_sys::{CXCursor_TypeAliasTemplateDecl, CXCursor_TypeRef}; |
| debug!( |
| "builtin_or_resolved_ty: {:?}, {:?}, {:?}, {:?}", |
| ty, location, with_id, parent_id |
| ); |
| |
| if let Some(decl) = ty.canonical_declaration(location.as_ref()) { |
| if let Some(id) = self.get_resolved_type(&decl) { |
| debug!( |
| "Already resolved ty {:?}, {:?}, {:?} {:?}", |
| id, decl, ty, location |
| ); |
| // If the declaration already exists, then either: |
| // |
| // * the declaration is a template declaration of some sort, |
| // and we are looking at an instantiation or specialization |
| // of it, or |
| // * we have already parsed and resolved this type, and |
| // there's nothing left to do. |
| if let Some(location) = location { |
| if decl.cursor().is_template_like() && |
| *ty != decl.cursor().cur_type() |
| { |
| // For specialized type aliases, there's no way to get the |
| // template parameters as of this writing (for a struct |
| // specialization we wouldn't be in this branch anyway). |
| // |
| // Explicitly return `None` if there aren't any |
| // unspecialized parameters (contains any `TypeRef`) so we |
| // resolve the canonical type if there is one and it's |
| // exposed. |
| // |
| // This is _tricky_, I know :( |
| if decl.cursor().kind() == |
| CXCursor_TypeAliasTemplateDecl && |
| !location.contains_cursor(CXCursor_TypeRef) && |
| ty.canonical_type().is_valid_and_exposed() |
| { |
| return None; |
| } |
| |
| return self |
| .instantiate_template(with_id, id, ty, location) |
| .or(Some(id)); |
| } |
| } |
| |
| return Some(self.build_ty_wrapper(with_id, id, parent_id, ty)); |
| } |
| } |
| |
| debug!("Not resolved, maybe builtin?"); |
| self.build_builtin_ty(ty) |
| } |
| |
| /// Make a new item that is a resolved type reference to the `wrapped_id`. |
| /// |
| /// This is unfortunately a lot of bloat, but is needed to properly track |
| /// constness et al. |
| /// |
| /// We should probably make the constness tracking separate, so it doesn't |
| /// bloat that much, but hey, we already bloat the heck out of builtin |
| /// types. |
| pub(crate) fn build_ty_wrapper( |
| &mut self, |
| with_id: ItemId, |
| wrapped_id: TypeId, |
| parent_id: Option<ItemId>, |
| ty: &clang::Type, |
| ) -> TypeId { |
| self.build_wrapper(with_id, wrapped_id, parent_id, ty, ty.is_const()) |
| } |
| |
| /// A wrapper over a type that adds a const qualifier explicitly. |
| /// |
| /// Needed to handle const methods in C++, wrapping the type . |
| pub(crate) fn build_const_wrapper( |
| &mut self, |
| with_id: ItemId, |
| wrapped_id: TypeId, |
| parent_id: Option<ItemId>, |
| ty: &clang::Type, |
| ) -> TypeId { |
| self.build_wrapper( |
| with_id, wrapped_id, parent_id, ty, /* is_const = */ true, |
| ) |
| } |
| |
| fn build_wrapper( |
| &mut self, |
| with_id: ItemId, |
| wrapped_id: TypeId, |
| parent_id: Option<ItemId>, |
| ty: &clang::Type, |
| is_const: bool, |
| ) -> TypeId { |
| let spelling = ty.spelling(); |
| let layout = ty.fallible_layout(self).ok(); |
| let location = ty.declaration().location(); |
| let type_kind = TypeKind::ResolvedTypeRef(wrapped_id); |
| let ty = Type::new(Some(spelling), layout, type_kind, is_const); |
| let item = Item::new( |
| with_id, |
| None, |
| None, |
| parent_id.unwrap_or_else(|| self.current_module.into()), |
| ItemKind::Type(ty), |
| Some(location), |
| ); |
| self.add_builtin_item(item); |
| with_id.as_type_id_unchecked() |
| } |
| |
| /// Returns the next item ID to be used for an item. |
| pub(crate) fn next_item_id(&mut self) -> ItemId { |
| let ret = ItemId(self.items.len()); |
| self.items.push(None); |
| ret |
| } |
| |
| fn build_builtin_ty(&mut self, ty: &clang::Type) -> Option<TypeId> { |
| use clang_sys::*; |
| let type_kind = match ty.kind() { |
| CXType_NullPtr => TypeKind::NullPtr, |
| CXType_Void => TypeKind::Void, |
| CXType_Bool => TypeKind::Int(IntKind::Bool), |
| CXType_Int => TypeKind::Int(IntKind::Int), |
| CXType_UInt => TypeKind::Int(IntKind::UInt), |
| CXType_Char_S => TypeKind::Int(IntKind::Char { is_signed: true }), |
| CXType_Char_U => TypeKind::Int(IntKind::Char { is_signed: false }), |
| CXType_SChar => TypeKind::Int(IntKind::SChar), |
| CXType_UChar => TypeKind::Int(IntKind::UChar), |
| CXType_Short => TypeKind::Int(IntKind::Short), |
| CXType_UShort => TypeKind::Int(IntKind::UShort), |
| CXType_WChar => TypeKind::Int(IntKind::WChar), |
| CXType_Char16 => TypeKind::Int(IntKind::U16), |
| CXType_Char32 => TypeKind::Int(IntKind::U32), |
| CXType_Long => TypeKind::Int(IntKind::Long), |
| CXType_ULong => TypeKind::Int(IntKind::ULong), |
| CXType_LongLong => TypeKind::Int(IntKind::LongLong), |
| CXType_ULongLong => TypeKind::Int(IntKind::ULongLong), |
| CXType_Int128 => TypeKind::Int(IntKind::I128), |
| CXType_UInt128 => TypeKind::Int(IntKind::U128), |
| CXType_Float16 | CXType_Half => TypeKind::Float(FloatKind::Float16), |
| CXType_Float => TypeKind::Float(FloatKind::Float), |
| CXType_Double => TypeKind::Float(FloatKind::Double), |
| CXType_LongDouble => TypeKind::Float(FloatKind::LongDouble), |
| CXType_Float128 => TypeKind::Float(FloatKind::Float128), |
| CXType_Complex => { |
| let float_type = |
| ty.elem_type().expect("Not able to resolve complex type?"); |
| let float_kind = match float_type.kind() { |
| CXType_Float16 | CXType_Half => FloatKind::Float16, |
| CXType_Float => FloatKind::Float, |
| CXType_Double => FloatKind::Double, |
| CXType_LongDouble => FloatKind::LongDouble, |
| CXType_Float128 => FloatKind::Float128, |
| _ => panic!( |
| "Non floating-type complex? {:?}, {:?}", |
| ty, float_type, |
| ), |
| }; |
| TypeKind::Complex(float_kind) |
| } |
| _ => return None, |
| }; |
| |
| let spelling = ty.spelling(); |
| let is_const = ty.is_const(); |
| let layout = ty.fallible_layout(self).ok(); |
| let location = ty.declaration().location(); |
| let ty = Type::new(Some(spelling), layout, type_kind, is_const); |
| let id = self.next_item_id(); |
| let item = Item::new( |
| id, |
| None, |
| None, |
| self.root_module.into(), |
| ItemKind::Type(ty), |
| Some(location), |
| ); |
| self.add_builtin_item(item); |
| Some(id.as_type_id_unchecked()) |
| } |
| |
| /// Get the current Clang translation unit that is being processed. |
| pub(crate) fn translation_unit(&self) -> &clang::TranslationUnit { |
| &self.translation_unit |
| } |
| |
| /// Have we parsed the macro named `macro_name` already? |
| pub(crate) fn parsed_macro(&self, macro_name: &[u8]) -> bool { |
| self.parsed_macros.contains_key(macro_name) |
| } |
| |
| /// Get the currently parsed macros. |
| pub(crate) fn parsed_macros( |
| &self, |
| ) -> &StdHashMap<Vec<u8>, cexpr::expr::EvalResult> { |
| debug_assert!(!self.in_codegen_phase()); |
| &self.parsed_macros |
| } |
| |
| /// Mark the macro named `macro_name` as parsed. |
| pub(crate) fn note_parsed_macro( |
| &mut self, |
| id: Vec<u8>, |
| value: cexpr::expr::EvalResult, |
| ) { |
| self.parsed_macros.insert(id, value); |
| } |
| |
| /// Are we in the codegen phase? |
| pub(crate) fn in_codegen_phase(&self) -> bool { |
| self.in_codegen |
| } |
| |
| /// Mark the type with the given `name` as replaced by the type with ID |
| /// `potential_ty`. |
| /// |
| /// Replacement types are declared using the `replaces="xxx"` annotation, |
| /// and implies that the original type is hidden. |
| pub(crate) fn replace(&mut self, name: &[String], potential_ty: ItemId) { |
| match self.replacements.entry(name.into()) { |
| Entry::Vacant(entry) => { |
| debug!( |
| "Defining replacement for {:?} as {:?}", |
| name, potential_ty |
| ); |
| entry.insert(potential_ty); |
| } |
| Entry::Occupied(occupied) => { |
| warn!( |
| "Replacement for {:?} already defined as {:?}; \ |
| ignoring duplicate replacement definition as {:?}", |
| name, |
| occupied.get(), |
| potential_ty |
| ); |
| } |
| } |
| } |
| |
| /// Has the item with the given `name` and `id` been replaced by another |
| /// type? |
| pub(crate) fn is_replaced_type<Id: Into<ItemId>>( |
| &self, |
| path: &[String], |
| id: Id, |
| ) -> bool { |
| let id = id.into(); |
| matches!(self.replacements.get(path), Some(replaced_by) if *replaced_by != id) |
| } |
| |
| /// Is the type with the given `name` marked as opaque? |
| pub(crate) fn opaque_by_name(&self, path: &[String]) -> bool { |
| debug_assert!( |
| self.in_codegen_phase(), |
| "You're not supposed to call this yet" |
| ); |
| self.options.opaque_types.matches(path[1..].join("::")) |
| } |
| |
| /// Get the options used to configure this bindgen context. |
| pub(crate) fn options(&self) -> &BindgenOptions { |
| &self.options |
| } |
| |
| /// Tokenizes a namespace cursor in order to get the name and kind of the |
| /// namespace. |
| fn tokenize_namespace( |
| &self, |
| cursor: &clang::Cursor, |
| ) -> (Option<String>, ModuleKind) { |
| assert_eq!( |
| cursor.kind(), |
| ::clang_sys::CXCursor_Namespace, |
| "Be a nice person" |
| ); |
| |
| let mut module_name = None; |
| let spelling = cursor.spelling(); |
| if !spelling.is_empty() { |
| module_name = Some(spelling) |
| } |
| |
| let mut kind = ModuleKind::Normal; |
| let mut looking_for_name = false; |
| for token in cursor.tokens().iter() { |
| match token.spelling() { |
| b"inline" => { |
| debug_assert!( |
| kind != ModuleKind::Inline, |
| "Multiple inline keywords?" |
| ); |
| kind = ModuleKind::Inline; |
| // When hitting a nested inline namespace we get a spelling |
| // that looks like ["inline", "foo"]. Deal with it properly. |
| looking_for_name = true; |
| } |
| // The double colon allows us to handle nested namespaces like |
| // namespace foo::bar { } |
| // |
| // libclang still gives us two namespace cursors, which is cool, |
| // but the tokenization of the second begins with the double |
| // colon. That's ok, so we only need to handle the weird |
| // tokenization here. |
| b"namespace" | b"::" => { |
| looking_for_name = true; |
| } |
| b"{" => { |
| // This should be an anonymous namespace. |
| assert!(looking_for_name); |
| break; |
| } |
| name => { |
| if looking_for_name { |
| if module_name.is_none() { |
| module_name = Some( |
| String::from_utf8_lossy(name).into_owned(), |
| ); |
| } |
| break; |
| } else { |
| // This is _likely_, but not certainly, a macro that's |
| // been placed just before the namespace keyword. |
| // Unfortunately, clang tokens don't let us easily see |
| // through the ifdef tokens, so we don't know what this |
| // token should really be. Instead of panicking though, |
| // we warn the user that we assumed the token was blank, |
| // and then move on. |
| // |
| // See also https://github.com/rust-lang/rust-bindgen/issues/1676. |
| warn!( |
| "Ignored unknown namespace prefix '{}' at {:?} in {:?}", |
| String::from_utf8_lossy(name), |
| token, |
| cursor |
| ); |
| } |
| } |
| } |
| } |
| |
| (module_name, kind) |
| } |
| |
| /// Given a CXCursor_Namespace cursor, return the item ID of the |
| /// corresponding module, or create one on the fly. |
| pub(crate) fn module(&mut self, cursor: clang::Cursor) -> ModuleId { |
| use clang_sys::*; |
| assert_eq!(cursor.kind(), CXCursor_Namespace, "Be a nice person"); |
| let cursor = cursor.canonical(); |
| if let Some(id) = self.modules.get(&cursor) { |
| return *id; |
| } |
| |
| let (module_name, kind) = self.tokenize_namespace(&cursor); |
| |
| let module_id = self.next_item_id(); |
| let module = Module::new(module_name, kind); |
| let module = Item::new( |
| module_id, |
| None, |
| None, |
| self.current_module.into(), |
| ItemKind::Module(module), |
| Some(cursor.location()), |
| ); |
| |
| let module_id = module.id().as_module_id_unchecked(); |
| self.modules.insert(cursor, module_id); |
| |
| self.add_item(module, None, None); |
| |
| module_id |
| } |
| |
| /// Start traversing the module with the given `module_id`, invoke the |
| /// callback `cb`, and then return to traversing the original module. |
| pub(crate) fn with_module<F>(&mut self, module_id: ModuleId, cb: F) |
| where |
| F: FnOnce(&mut Self), |
| { |
| debug_assert!(self.resolve_item(module_id).kind().is_module(), "Wat"); |
| |
| let previous_id = self.current_module; |
| self.current_module = module_id; |
| |
| cb(self); |
| |
| self.current_module = previous_id; |
| } |
| |
| /// Iterate over all (explicitly or transitively) allowlisted items. |
| /// |
| /// If no items are explicitly allowlisted, then all items are considered |
| /// allowlisted. |
| pub(crate) fn allowlisted_items(&self) -> &ItemSet { |
| assert!(self.in_codegen_phase()); |
| assert!(self.current_module == self.root_module); |
| |
| self.allowlisted.as_ref().unwrap() |
| } |
| |
| /// Check whether a particular blocklisted type implements a trait or not. |
| /// Results may be cached. |
| pub(crate) fn blocklisted_type_implements_trait( |
| &self, |
| item: &Item, |
| derive_trait: DeriveTrait, |
| ) -> CanDerive { |
| assert!(self.in_codegen_phase()); |
| assert!(self.current_module == self.root_module); |
| |
| *self |
| .blocklisted_types_implement_traits |
| .borrow_mut() |
| .entry(derive_trait) |
| .or_default() |
| .entry(item.id()) |
| .or_insert_with(|| { |
| item.expect_type() |
| .name() |
| .and_then(|name| { |
| if self.options.parse_callbacks.is_empty() { |
| // Sized integer types from <stdint.h> get mapped to Rust primitive |
| // types regardless of whether they are blocklisted, so ensure that |
| // standard traits are considered derivable for them too. |
| if self.is_stdint_type(name) { |
| Some(CanDerive::Yes) |
| } else { |
| Some(CanDerive::No) |
| } |
| } else { |
| self.options.last_callback(|cb| { |
| cb.blocklisted_type_implements_trait( |
| name, |
| derive_trait, |
| ) |
| }) |
| } |
| }) |
| .unwrap_or(CanDerive::No) |
| }) |
| } |
| |
| /// Is the given type a type from <stdint.h> that corresponds to a Rust primitive type? |
| pub(crate) fn is_stdint_type(&self, name: &str) -> bool { |
| match name { |
| "int8_t" | "uint8_t" | "int16_t" | "uint16_t" | "int32_t" | |
| "uint32_t" | "int64_t" | "uint64_t" | "uintptr_t" | |
| "intptr_t" | "ptrdiff_t" => true, |
| "size_t" | "ssize_t" => self.options.size_t_is_usize, |
| _ => false, |
| } |
| } |
| |
| /// Get a reference to the set of items we should generate. |
| pub(crate) fn codegen_items(&self) -> &ItemSet { |
| assert!(self.in_codegen_phase()); |
| assert!(self.current_module == self.root_module); |
| self.codegen_items.as_ref().unwrap() |
| } |
| |
| /// Compute the allowlisted items set and populate `self.allowlisted`. |
| fn compute_allowlisted_and_codegen_items(&mut self) { |
| assert!(self.in_codegen_phase()); |
| assert!(self.current_module == self.root_module); |
| assert!(self.allowlisted.is_none()); |
| let _t = self.timer("compute_allowlisted_and_codegen_items"); |
| |
| let roots = { |
| let mut roots = self |
| .items() |
| // Only consider roots that are enabled for codegen. |
| .filter(|&(_, item)| item.is_enabled_for_codegen(self)) |
| .filter(|&(_, item)| { |
| // If nothing is explicitly allowlisted, then everything is fair |
| // game. |
| if self.options().allowlisted_types.is_empty() && |
| self.options().allowlisted_functions.is_empty() && |
| self.options().allowlisted_vars.is_empty() && |
| self.options().allowlisted_files.is_empty() && |
| self.options().allowlisted_items.is_empty() |
| { |
| return true; |
| } |
| |
| // If this is a type that explicitly replaces another, we assume |
| // you know what you're doing. |
| if item.annotations().use_instead_of().is_some() { |
| return true; |
| } |
| |
| // Items with a source location in an explicitly allowlisted file |
| // are always included. |
| if !self.options().allowlisted_files.is_empty() { |
| if let Some(location) = item.location() { |
| let (file, _, _, _) = location.location(); |
| if let Some(filename) = file.name() { |
| if self |
| .options() |
| .allowlisted_files |
| .matches(filename) |
| { |
| return true; |
| } |
| } |
| } |
| } |
| |
| let name = item.path_for_allowlisting(self)[1..].join("::"); |
| debug!("allowlisted_items: testing {:?}", name); |
| |
| if self.options().allowlisted_items.matches(&name) { |
| return true; |
| } |
| |
| match *item.kind() { |
| ItemKind::Module(..) => true, |
| ItemKind::Function(_) => { |
| self.options().allowlisted_functions.matches(&name) |
| } |
| ItemKind::Var(_) => { |
| self.options().allowlisted_vars.matches(&name) |
| } |
| ItemKind::Type(ref ty) => { |
| if self.options().allowlisted_types.matches(&name) { |
| return true; |
| } |
| |
| // Auto-allowlist types that don't need code |
| // generation if not allowlisting recursively, to |
| // make the #[derive] analysis not be lame. |
| if !self.options().allowlist_recursively { |
| match *ty.kind() { |
| TypeKind::Void | |
| TypeKind::NullPtr | |
| TypeKind::Int(..) | |
| TypeKind::Float(..) | |
| TypeKind::Complex(..) | |
| TypeKind::Array(..) | |
| TypeKind::Vector(..) | |
| TypeKind::Pointer(..) | |
| TypeKind::Reference(..) | |
| TypeKind::Function(..) | |
| TypeKind::ResolvedTypeRef(..) | |
| TypeKind::Opaque | |
| TypeKind::TypeParam => return true, |
| _ => {} |
| } |
| if self.is_stdint_type(&name) { |
| return true; |
| } |
| } |
| |
| // Unnamed top-level enums are special and we |
| // allowlist them via the `allowlisted_vars` filter, |
| // since they're effectively top-level constants, |
| // and there's no way for them to be referenced |
| // consistently. |
| let parent = self.resolve_item(item.parent_id()); |
| if !parent.is_module() { |
| return false; |
| } |
| |
| let enum_ = match *ty.kind() { |
| TypeKind::Enum(ref e) => e, |
| _ => return false, |
| }; |
| |
| if ty.name().is_some() { |
| return false; |
| } |
| |
| let mut prefix_path = |
| parent.path_for_allowlisting(self).clone(); |
| enum_.variants().iter().any(|variant| { |
| prefix_path.push( |
| variant.name_for_allowlisting().into(), |
| ); |
| let name = prefix_path[1..].join("::"); |
| prefix_path.pop().unwrap(); |
| self.options().allowlisted_vars.matches(name) |
| }) |
| } |
| } |
| }) |
| .map(|(id, _)| id) |
| .collect::<Vec<_>>(); |
| |
| // The reversal preserves the expected ordering of traversal, |
| // resulting in more stable-ish bindgen-generated names for |
| // anonymous types (like unions). |
| roots.reverse(); |
| roots |
| }; |
| |
| let allowlisted_items_predicate = |
| if self.options().allowlist_recursively { |
| traversal::all_edges |
| } else { |
| // Only follow InnerType edges from the allowlisted roots. |
| // Such inner types (e.g. anonymous structs/unions) are |
| // always emitted by codegen, and they need to be allowlisted |
| // to make sure they are processed by e.g. the derive analysis. |
| traversal::only_inner_type_edges |
| }; |
| |
| let allowlisted = AllowlistedItemsTraversal::new( |
| self, |
| roots.clone(), |
| allowlisted_items_predicate, |
| ) |
| .collect::<ItemSet>(); |
| |
| let codegen_items = if self.options().allowlist_recursively { |
| AllowlistedItemsTraversal::new( |
| self, |
| roots, |
| traversal::codegen_edges, |
| ) |
| .collect::<ItemSet>() |
| } else { |
| allowlisted.clone() |
| }; |
| |
| self.allowlisted = Some(allowlisted); |
| self.codegen_items = Some(codegen_items); |
| |
| for item in self.options().allowlisted_functions.unmatched_items() { |
| unused_regex_diagnostic(item, "--allowlist-function", self); |
| } |
| |
| for item in self.options().allowlisted_vars.unmatched_items() { |
| unused_regex_diagnostic(item, "--allowlist-var", self); |
| } |
| |
| for item in self.options().allowlisted_types.unmatched_items() { |
| unused_regex_diagnostic(item, "--allowlist-type", self); |
| } |
| |
| for item in self.options().allowlisted_items.unmatched_items() { |
| unused_regex_diagnostic(item, "--allowlist-items", self); |
| } |
| } |
| |
| /// Convenient method for getting the prefix to use for most traits in |
| /// codegen depending on the `use_core` option. |
| pub(crate) fn trait_prefix(&self) -> Ident { |
| if self.options().use_core { |
| self.rust_ident_raw("core") |
| } else { |
| self.rust_ident_raw("std") |
| } |
| } |
| |
| /// Call if a bindgen complex is generated |
| pub(crate) fn generated_bindgen_complex(&self) { |
| self.generated_bindgen_complex.set(true) |
| } |
| |
| /// Whether we need to generate the bindgen complex type |
| pub(crate) fn need_bindgen_complex_type(&self) -> bool { |
| self.generated_bindgen_complex.get() |
| } |
| |
| /// Call if a bindgen float16 is generated |
| pub(crate) fn generated_bindgen_float16(&self) { |
| self.generated_bindgen_float16.set(true) |
| } |
| |
| /// Whether we need to generate the bindgen float16 type |
| pub(crate) fn need_bindgen_float16_type(&self) -> bool { |
| self.generated_bindgen_float16.get() |
| } |
| |
| /// Compute which `enum`s have an associated `typedef` definition. |
| fn compute_enum_typedef_combos(&mut self) { |
| let _t = self.timer("compute_enum_typedef_combos"); |
| assert!(self.enum_typedef_combos.is_none()); |
| |
| let mut enum_typedef_combos = HashSet::default(); |
| for item in &self.items { |
| if let Some(ItemKind::Module(module)) = |
| item.as_ref().map(Item::kind) |
| { |
| // Find typedefs in this module, and build set of their names. |
| let mut names_of_typedefs = HashSet::default(); |
| for child_id in module.children() { |
| if let Some(ItemKind::Type(ty)) = |
| self.items[child_id.0].as_ref().map(Item::kind) |
| { |
| if let (Some(name), TypeKind::Alias(type_id)) = |
| (ty.name(), ty.kind()) |
| { |
| // We disregard aliases that refer to the enum |
| // itself, such as in `typedef enum { ... } Enum;`. |
| if type_id |
| .into_resolver() |
| .through_type_refs() |
| .through_type_aliases() |
| .resolve(self) |
| .expect_type() |
| .is_int() |
| { |
| names_of_typedefs.insert(name); |
| } |
| } |
| } |
| } |
| |
| // Find enums in this module, and record the ID of each one that |
| // has a typedef. |
| for child_id in module.children() { |
| if let Some(ItemKind::Type(ty)) = |
| self.items[child_id.0].as_ref().map(Item::kind) |
| { |
| if let (Some(name), true) = (ty.name(), ty.is_enum()) { |
| if names_of_typedefs.contains(name) { |
| enum_typedef_combos.insert(*child_id); |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| self.enum_typedef_combos = Some(enum_typedef_combos); |
| } |
| |
| /// Look up whether `id` refers to an `enum` whose underlying type is |
| /// defined by a `typedef`. |
| pub(crate) fn is_enum_typedef_combo(&self, id: ItemId) -> bool { |
| assert!( |
| self.in_codegen_phase(), |
| "We only compute enum_typedef_combos when we enter codegen", |
| ); |
| self.enum_typedef_combos.as_ref().unwrap().contains(&id) |
| } |
| |
| /// Compute whether we can derive debug. |
| fn compute_cannot_derive_debug(&mut self) { |
| let _t = self.timer("compute_cannot_derive_debug"); |
| assert!(self.cannot_derive_debug.is_none()); |
| if self.options.derive_debug { |
| self.cannot_derive_debug = |
| Some(as_cannot_derive_set(analyze::<CannotDerive>(( |
| self, |
| DeriveTrait::Debug, |
| )))); |
| } |
| } |
| |
| /// Look up whether the item with `id` can |
| /// derive debug or not. |
| pub(crate) fn lookup_can_derive_debug<Id: Into<ItemId>>( |
| &self, |
| id: Id, |
| ) -> bool { |
| let id = id.into(); |
| assert!( |
| self.in_codegen_phase(), |
| "We only compute can_derive_debug when we enter codegen" |
| ); |
| |
| // Look up the computed value for whether the item with `id` can |
| // derive debug or not. |
| !self.cannot_derive_debug.as_ref().unwrap().contains(&id) |
| } |
| |
| /// Compute whether we can derive default. |
| fn compute_cannot_derive_default(&mut self) { |
| let _t = self.timer("compute_cannot_derive_default"); |
| assert!(self.cannot_derive_default.is_none()); |
| if self.options.derive_default { |
| self.cannot_derive_default = |
| Some(as_cannot_derive_set(analyze::<CannotDerive>(( |
| self, |
| DeriveTrait::Default, |
| )))); |
| } |
| } |
| |
| /// Look up whether the item with `id` can |
| /// derive default or not. |
| pub(crate) fn lookup_can_derive_default<Id: Into<ItemId>>( |
| &self, |
| id: Id, |
| ) -> bool { |
| let id = id.into(); |
| assert!( |
| self.in_codegen_phase(), |
| "We only compute can_derive_default when we enter codegen" |
| ); |
| |
| // Look up the computed value for whether the item with `id` can |
| // derive default or not. |
| !self.cannot_derive_default.as_ref().unwrap().contains(&id) |
| } |
| |
| /// Compute whether we can derive copy. |
| fn compute_cannot_derive_copy(&mut self) { |
| let _t = self.timer("compute_cannot_derive_copy"); |
| assert!(self.cannot_derive_copy.is_none()); |
| self.cannot_derive_copy = |
| Some(as_cannot_derive_set(analyze::<CannotDerive>(( |
| self, |
| DeriveTrait::Copy, |
| )))); |
| } |
| |
| /// Compute whether we can derive hash. |
| fn compute_cannot_derive_hash(&mut self) { |
| let _t = self.timer("compute_cannot_derive_hash"); |
| assert!(self.cannot_derive_hash.is_none()); |
| if self.options.derive_hash { |
| self.cannot_derive_hash = |
| Some(as_cannot_derive_set(analyze::<CannotDerive>(( |
| self, |
| DeriveTrait::Hash, |
| )))); |
| } |
| } |
| |
| /// Look up whether the item with `id` can |
| /// derive hash or not. |
| pub(crate) fn lookup_can_derive_hash<Id: Into<ItemId>>( |
| &self, |
| id: Id, |
| ) -> bool { |
| let id = id.into(); |
| assert!( |
| self.in_codegen_phase(), |
| "We only compute can_derive_debug when we enter codegen" |
| ); |
| |
| // Look up the computed value for whether the item with `id` can |
| // derive hash or not. |
| !self.cannot_derive_hash.as_ref().unwrap().contains(&id) |
| } |
| |
| /// Compute whether we can derive PartialOrd, PartialEq or Eq. |
| fn compute_cannot_derive_partialord_partialeq_or_eq(&mut self) { |
| let _t = self.timer("compute_cannot_derive_partialord_partialeq_or_eq"); |
| assert!(self.cannot_derive_partialeq_or_partialord.is_none()); |
| if self.options.derive_partialord || |
| self.options.derive_partialeq || |
| self.options.derive_eq |
| { |
| self.cannot_derive_partialeq_or_partialord = |
| Some(analyze::<CannotDerive>(( |
| self, |
| DeriveTrait::PartialEqOrPartialOrd, |
| ))); |
| } |
| } |
| |
| /// Look up whether the item with `id` can derive `Partial{Eq,Ord}`. |
| pub(crate) fn lookup_can_derive_partialeq_or_partialord< |
| Id: Into<ItemId>, |
| >( |
| &self, |
| id: Id, |
| ) -> CanDerive { |
| let id = id.into(); |
| assert!( |
| self.in_codegen_phase(), |
| "We only compute can_derive_partialeq_or_partialord when we enter codegen" |
| ); |
| |
| // Look up the computed value for whether the item with `id` can |
| // derive partialeq or not. |
| self.cannot_derive_partialeq_or_partialord |
| .as_ref() |
| .unwrap() |
| .get(&id) |
| .cloned() |
| .unwrap_or(CanDerive::Yes) |
| } |
| |
| /// Look up whether the item with `id` can derive `Copy` or not. |
| pub(crate) fn lookup_can_derive_copy<Id: Into<ItemId>>( |
| &self, |
| id: Id, |
| ) -> bool { |
| assert!( |
| self.in_codegen_phase(), |
| "We only compute can_derive_debug when we enter codegen" |
| ); |
| |
| // Look up the computed value for whether the item with `id` can |
| // derive `Copy` or not. |
| let id = id.into(); |
| |
| !self.lookup_has_type_param_in_array(id) && |
| !self.cannot_derive_copy.as_ref().unwrap().contains(&id) |
| } |
| |
| /// Compute whether the type has type parameter in array. |
| fn compute_has_type_param_in_array(&mut self) { |
| let _t = self.timer("compute_has_type_param_in_array"); |
| assert!(self.has_type_param_in_array.is_none()); |
| self.has_type_param_in_array = |
| Some(analyze::<HasTypeParameterInArray>(self)); |
| } |
| |
| /// Look up whether the item with `id` has type parameter in array or not. |
| pub(crate) fn lookup_has_type_param_in_array<Id: Into<ItemId>>( |
| &self, |
| id: Id, |
| ) -> bool { |
| assert!( |
| self.in_codegen_phase(), |
| "We only compute has array when we enter codegen" |
| ); |
| |
| // Look up the computed value for whether the item with `id` has |
| // type parameter in array or not. |
| self.has_type_param_in_array |
| .as_ref() |
| .unwrap() |
| .contains(&id.into()) |
| } |
| |
| /// Compute whether the type has float. |
| fn compute_has_float(&mut self) { |
| let _t = self.timer("compute_has_float"); |
| assert!(self.has_float.is_none()); |
| if self.options.derive_eq || self.options.derive_ord { |
| self.has_float = Some(analyze::<HasFloat>(self)); |
| } |
| } |
| |
| /// Look up whether the item with `id` has array or not. |
| pub(crate) fn lookup_has_float<Id: Into<ItemId>>(&self, id: Id) -> bool { |
| assert!( |
| self.in_codegen_phase(), |
| "We only compute has float when we enter codegen" |
| ); |
| |
| // Look up the computed value for whether the item with `id` has |
| // float or not. |
| self.has_float.as_ref().unwrap().contains(&id.into()) |
| } |
| |
| /// Check if `--no-partialeq` flag is enabled for this item. |
| pub(crate) fn no_partialeq_by_name(&self, item: &Item) -> bool { |
| let name = item.path_for_allowlisting(self)[1..].join("::"); |
| self.options().no_partialeq_types.matches(name) |
| } |
| |
| /// Check if `--no-copy` flag is enabled for this item. |
| pub(crate) fn no_copy_by_name(&self, item: &Item) -> bool { |
| let name = item.path_for_allowlisting(self)[1..].join("::"); |
| self.options().no_copy_types.matches(name) |
| } |
| |
| /// Check if `--no-debug` flag is enabled for this item. |
| pub(crate) fn no_debug_by_name(&self, item: &Item) -> bool { |
| let name = item.path_for_allowlisting(self)[1..].join("::"); |
| self.options().no_debug_types.matches(name) |
| } |
| |
| /// Check if `--no-default` flag is enabled for this item. |
| pub(crate) fn no_default_by_name(&self, item: &Item) -> bool { |
| let name = item.path_for_allowlisting(self)[1..].join("::"); |
| self.options().no_default_types.matches(name) |
| } |
| |
| /// Check if `--no-hash` flag is enabled for this item. |
| pub(crate) fn no_hash_by_name(&self, item: &Item) -> bool { |
| let name = item.path_for_allowlisting(self)[1..].join("::"); |
| self.options().no_hash_types.matches(name) |
| } |
| |
| /// Check if `--must-use-type` flag is enabled for this item. |
| pub(crate) fn must_use_type_by_name(&self, item: &Item) -> bool { |
| let name = item.path_for_allowlisting(self)[1..].join("::"); |
| self.options().must_use_types.matches(name) |
| } |
| |
| /// Wrap some tokens in an `unsafe` block if the `--wrap-unsafe-ops` option is enabled. |
| pub(crate) fn wrap_unsafe_ops(&self, tokens: impl ToTokens) -> TokenStream { |
| if self.options.wrap_unsafe_ops { |
| quote!(unsafe { #tokens }) |
| } else { |
| tokens.into_token_stream() |
| } |
| } |
| |
| /// Get the suffix to be added to `static` functions if the `--wrap-static-fns` option is |
| /// enabled. |
| pub(crate) fn wrap_static_fns_suffix(&self) -> &str { |
| self.options() |
| .wrap_static_fns_suffix |
| .as_deref() |
| .unwrap_or(crate::DEFAULT_NON_EXTERN_FNS_SUFFIX) |
| } |
| } |
| |
| /// A builder struct for configuring item resolution options. |
| #[derive(Debug, Copy, Clone)] |
| pub(crate) struct ItemResolver { |
| id: ItemId, |
| through_type_refs: bool, |
| through_type_aliases: bool, |
| } |
| |
| impl ItemId { |
| /// Create an `ItemResolver` from this item ID. |
| pub(crate) fn into_resolver(self) -> ItemResolver { |
| self.into() |
| } |
| } |
| |
| impl<T> From<T> for ItemResolver |
| where |
| T: Into<ItemId>, |
| { |
| fn from(id: T) -> ItemResolver { |
| ItemResolver::new(id) |
| } |
| } |
| |
| impl ItemResolver { |
| /// Construct a new `ItemResolver` from the given ID. |
| pub(crate) fn new<Id: Into<ItemId>>(id: Id) -> ItemResolver { |
| let id = id.into(); |
| ItemResolver { |
| id, |
| through_type_refs: false, |
| through_type_aliases: false, |
| } |
| } |
| |
| /// Keep resolving through `Type::TypeRef` items. |
| pub(crate) fn through_type_refs(mut self) -> ItemResolver { |
| self.through_type_refs = true; |
| self |
| } |
| |
| /// Keep resolving through `Type::Alias` items. |
| pub(crate) fn through_type_aliases(mut self) -> ItemResolver { |
| self.through_type_aliases = true; |
| self |
| } |
| |
| /// Finish configuring and perform the actual item resolution. |
| pub(crate) fn resolve(self, ctx: &BindgenContext) -> &Item { |
| assert!(ctx.collected_typerefs()); |
| |
| let mut id = self.id; |
| let mut seen_ids = HashSet::default(); |
| loop { |
| let item = ctx.resolve_item(id); |
| |
| // Detect cycles and bail out. These can happen in certain cases |
| // involving incomplete qualified dependent types (#2085). |
| if !seen_ids.insert(id) { |
| return item; |
| } |
| |
| let ty_kind = item.as_type().map(|t| t.kind()); |
| match ty_kind { |
| Some(&TypeKind::ResolvedTypeRef(next_id)) |
| if self.through_type_refs => |
| { |
| id = next_id.into(); |
| } |
| // We intentionally ignore template aliases here, as they are |
| // more complicated, and don't represent a simple renaming of |
| // some type. |
| Some(&TypeKind::Alias(next_id)) |
| if self.through_type_aliases => |
| { |
| id = next_id.into(); |
| } |
| _ => return item, |
| } |
| } |
| } |
| } |
| |
| /// A type that we are in the middle of parsing. |
| #[derive(Clone, Copy, Debug, PartialEq, Eq)] |
| pub(crate) struct PartialType { |
| decl: Cursor, |
| // Just an ItemId, and not a TypeId, because we haven't finished this type |
| // yet, so there's still time for things to go wrong. |
| id: ItemId, |
| } |
| |
| impl PartialType { |
| /// Construct a new `PartialType`. |
| pub(crate) fn new(decl: Cursor, id: ItemId) -> PartialType { |
| // assert!(decl == decl.canonical()); |
| PartialType { decl, id } |
| } |
| |
| /// The cursor pointing to this partial type's declaration location. |
| pub(crate) fn decl(&self) -> &Cursor { |
| &self.decl |
| } |
| |
| /// The item ID allocated for this type. This is *NOT* a key for an entry in |
| /// the context's item set yet! |
| pub(crate) fn id(&self) -> ItemId { |
| self.id |
| } |
| } |
| |
| impl TemplateParameters for PartialType { |
| fn self_template_params(&self, _ctx: &BindgenContext) -> Vec<TypeId> { |
| // Maybe at some point we will eagerly parse named types, but for now we |
| // don't and this information is unavailable. |
| vec![] |
| } |
| |
| fn num_self_template_params(&self, _ctx: &BindgenContext) -> usize { |
| // Wouldn't it be nice if libclang would reliably give us this |
| // information‽ |
| match self.decl().kind() { |
| clang_sys::CXCursor_ClassTemplate | |
| clang_sys::CXCursor_FunctionTemplate | |
| clang_sys::CXCursor_TypeAliasTemplateDecl => { |
| let mut num_params = 0; |
| self.decl().visit(|c| { |
| match c.kind() { |
| clang_sys::CXCursor_TemplateTypeParameter | |
| clang_sys::CXCursor_TemplateTemplateParameter | |
| clang_sys::CXCursor_NonTypeTemplateParameter => { |
| num_params += 1; |
| } |
| _ => {} |
| }; |
| clang_sys::CXChildVisit_Continue |
| }); |
| num_params |
| } |
| _ => 0, |
| } |
| } |
| } |
| |
| fn unused_regex_diagnostic(item: &str, name: &str, _ctx: &BindgenContext) { |
| warn!("unused option: {} {}", name, item); |
| |
| #[cfg(feature = "experimental")] |
| if _ctx.options().emit_diagnostics { |
| use crate::diagnostics::{Diagnostic, Level}; |
| |
| Diagnostic::default() |
| .with_title( |
| format!("Unused regular expression: `{}`.", item), |
| Level::Warn, |
| ) |
| .add_annotation( |
| format!("This regular expression was passed to `{}`.", name), |
| Level::Note, |
| ) |
| .display(); |
| } |
| } |