| // Copyright 2015-2023 Brian Smith. |
| // |
| // Permission to use, copy, modify, and/or distribute this software for any |
| // purpose with or without fee is hereby granted, provided that the above |
| // copyright notice and this permission notice appear in all copies. |
| // |
| // THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHORS DISCLAIM ALL WARRANTIES |
| // WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF |
| // MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY |
| // SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
| // WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION |
| // OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN |
| // CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. |
| |
| //! Multi-precision integers. |
| //! |
| //! # Modular Arithmetic. |
| //! |
| //! Modular arithmetic is done in finite commutative rings ℤ/mℤ for some |
| //! modulus *m*. We work in finite commutative rings instead of finite fields |
| //! because the RSA public modulus *n* is not prime, which means ℤ/nℤ contains |
| //! nonzero elements that have no multiplicative inverse, so ℤ/nℤ is not a |
| //! finite field. |
| //! |
| //! In some calculations we need to deal with multiple rings at once. For |
| //! example, RSA private key operations operate in the rings ℤ/nℤ, ℤ/pℤ, and |
| //! ℤ/qℤ. Types and functions dealing with such rings are all parameterized |
| //! over a type `M` to ensure that we don't wrongly mix up the math, e.g. by |
| //! multiplying an element of ℤ/pℤ by an element of ℤ/qℤ modulo q. This follows |
| //! the "unit" pattern described in [Static checking of units in Servo]. |
| //! |
| //! `Elem` also uses the static unit checking pattern to statically track the |
| //! Montgomery factors that need to be canceled out in each value using it's |
| //! `E` parameter. |
| //! |
| //! [Static checking of units in Servo]: |
| //! https://blog.mozilla.org/research/2014/06/23/static-checking-of-units-in-servo/ |
| |
| use self::boxed_limbs::BoxedLimbs; |
| pub(crate) use self::{ |
| modulus::{Modulus, PartialModulus, MODULUS_MAX_LIMBS}, |
| private_exponent::PrivateExponent, |
| }; |
| use super::n0::N0; |
| pub(crate) use super::nonnegative::Nonnegative; |
| use crate::{ |
| arithmetic::montgomery::*, |
| bits, c, cpu, error, |
| limb::{self, Limb, LimbMask, LIMB_BITS}, |
| polyfill::u64_from_usize, |
| }; |
| use alloc::vec; |
| use core::{marker::PhantomData, num::NonZeroU64}; |
| |
| mod boxed_limbs; |
| mod modulus; |
| mod private_exponent; |
| |
| /// A prime modulus. |
| /// |
| /// # Safety |
| /// |
| /// Some logic may assume a `Prime` number is non-zero, and thus a non-empty |
| /// array of limbs, or make similar assumptions. TODO: Any such logic should |
| /// be encapsulated here, or this trait should be made non-`unsafe`. TODO: |
| /// non-zero-ness and non-empty-ness should be factored out into a separate |
| /// trait. (In retrospect, this shouldn't have been made an `unsafe` trait |
| /// preemptively.) |
| pub unsafe trait Prime {} |
| |
| struct Width<M> { |
| num_limbs: usize, |
| |
| /// The modulus *m* that the width originated from. |
| m: PhantomData<M>, |
| } |
| |
| /// A modulus *s* that is smaller than another modulus *l* so every element of |
| /// ℤ/sℤ is also an element of ℤ/lℤ. |
| /// |
| /// # Safety |
| /// |
| /// Some logic may assume that the invariant holds when accessing limbs within |
| /// a value, e.g. by assuming the larger modulus has at least as many limbs. |
| /// TODO: Any such logic should be encapsulated here, or this trait should be |
| /// made non-`unsafe`. (In retrospect, this shouldn't have been made an `unsafe` |
| /// trait preemptively.) |
| pub unsafe trait SmallerModulus<L> {} |
| |
| /// A modulus *s* where s < l < 2*s for the given larger modulus *l*. This is |
| /// the precondition for reduction by conditional subtraction, |
| /// `elem_reduce_once()`. |
| /// |
| /// # Safety |
| /// |
| /// Some logic may assume that the invariant holds when accessing limbs within |
| /// a value, e.g. by assuming that the smaller modulus is at most one limb |
| /// smaller than the larger modulus. TODO: Any such logic should be |
| /// encapsulated here, or this trait should be made non-`unsafe`. (In retrospect, |
| /// this shouldn't have been made an `unsafe` trait preemptively.) |
| pub unsafe trait SlightlySmallerModulus<L>: SmallerModulus<L> {} |
| |
| /// A modulus *s* where √l <= s < l for the given larger modulus *l*. This is |
| /// the precondition for the more general Montgomery reduction from ℤ/lℤ to |
| /// ℤ/sℤ. |
| /// |
| /// # Safety |
| /// |
| /// Some logic may assume that the invariant holds when accessing limbs within |
| /// a value. TODO: Any such logic should be encapsulated here, or this trait |
| /// should be made non-`unsafe`. (In retrospect, this shouldn't have been made |
| /// an `unsafe` trait preemptively.) |
| pub unsafe trait NotMuchSmallerModulus<L>: SmallerModulus<L> {} |
| |
| pub trait PublicModulus {} |
| |
| /// Elements of ℤ/mℤ for some modulus *m*. |
| // |
| // Defaulting `E` to `Unencoded` is a convenience for callers from outside this |
| // submodule. However, for maximum clarity, we always explicitly use |
| // `Unencoded` within the `bigint` submodule. |
| pub struct Elem<M, E = Unencoded> { |
| limbs: BoxedLimbs<M>, |
| |
| /// The number of Montgomery factors that need to be canceled out from |
| /// `value` to get the actual value. |
| encoding: PhantomData<E>, |
| } |
| |
| // TODO: `derive(Clone)` after https://github.com/rust-lang/rust/issues/26925 |
| // is resolved or restrict `M: Clone` and `E: Clone`. |
| impl<M, E> Clone for Elem<M, E> { |
| fn clone(&self) -> Self { |
| Self { |
| limbs: self.limbs.clone(), |
| encoding: self.encoding, |
| } |
| } |
| } |
| |
| impl<M, E> Elem<M, E> { |
| #[inline] |
| pub fn is_zero(&self) -> bool { |
| self.limbs.is_zero() |
| } |
| } |
| |
| /// Does a Montgomery reduction on `limbs` assuming they are Montgomery-encoded ('R') and assuming |
| /// they are the same size as `m`, but perhaps not reduced mod `m`. The result will be |
| /// fully reduced mod `m`. |
| fn from_montgomery_amm<M>(limbs: BoxedLimbs<M>, m: &Modulus<M>) -> Elem<M, Unencoded> { |
| debug_assert_eq!(limbs.len(), m.limbs().len()); |
| |
| let mut limbs = limbs; |
| let num_limbs = m.width().num_limbs; |
| let mut one = [0; MODULUS_MAX_LIMBS]; |
| one[0] = 1; |
| let one = &one[..num_limbs]; // assert!(num_limbs <= MODULUS_MAX_LIMBS); |
| limbs_mont_mul(&mut limbs, one, m.limbs(), m.n0(), m.cpu_features()); |
| Elem { |
| limbs, |
| encoding: PhantomData, |
| } |
| } |
| |
| impl<M> Elem<M, R> { |
| #[inline] |
| pub fn into_unencoded(self, m: &Modulus<M>) -> Elem<M, Unencoded> { |
| from_montgomery_amm(self.limbs, m) |
| } |
| } |
| |
| impl<M> Elem<M, Unencoded> { |
| pub fn from_be_bytes_padded( |
| input: untrusted::Input, |
| m: &Modulus<M>, |
| ) -> Result<Self, error::Unspecified> { |
| Ok(Self { |
| limbs: BoxedLimbs::from_be_bytes_padded_less_than(input, m)?, |
| encoding: PhantomData, |
| }) |
| } |
| |
| #[inline] |
| pub fn fill_be_bytes(&self, out: &mut [u8]) { |
| // See Falko Strenzke, "Manger's Attack revisited", ICICS 2010. |
| limb::big_endian_from_limbs(&self.limbs, out) |
| } |
| |
| fn is_one(&self) -> bool { |
| limb::limbs_equal_limb_constant_time(&self.limbs, 1) == LimbMask::True |
| } |
| } |
| |
| pub fn elem_mul<M, AF, BF>( |
| a: &Elem<M, AF>, |
| b: Elem<M, BF>, |
| m: &Modulus<M>, |
| ) -> Elem<M, <(AF, BF) as ProductEncoding>::Output> |
| where |
| (AF, BF): ProductEncoding, |
| { |
| elem_mul_(a, b, &m.as_partial()) |
| } |
| |
| fn elem_mul_<M, AF, BF>( |
| a: &Elem<M, AF>, |
| mut b: Elem<M, BF>, |
| m: &PartialModulus<M>, |
| ) -> Elem<M, <(AF, BF) as ProductEncoding>::Output> |
| where |
| (AF, BF): ProductEncoding, |
| { |
| limbs_mont_mul(&mut b.limbs, &a.limbs, m.limbs(), m.n0(), m.cpu_features()); |
| Elem { |
| limbs: b.limbs, |
| encoding: PhantomData, |
| } |
| } |
| |
| fn elem_mul_by_2<M, AF>(a: &mut Elem<M, AF>, m: &PartialModulus<M>) { |
| prefixed_extern! { |
| fn LIMBS_shl_mod(r: *mut Limb, a: *const Limb, m: *const Limb, num_limbs: c::size_t); |
| } |
| unsafe { |
| LIMBS_shl_mod( |
| a.limbs.as_mut_ptr(), |
| a.limbs.as_ptr(), |
| m.limbs().as_ptr(), |
| m.limbs().len(), |
| ); |
| } |
| } |
| |
| pub fn elem_reduced_once<Larger, Smaller: SlightlySmallerModulus<Larger>>( |
| a: &Elem<Larger, Unencoded>, |
| m: &Modulus<Smaller>, |
| ) -> Elem<Smaller, Unencoded> { |
| let mut r = a.limbs.clone(); |
| assert!(r.len() <= m.limbs().len()); |
| limb::limbs_reduce_once_constant_time(&mut r, m.limbs()); |
| Elem { |
| limbs: BoxedLimbs::new_unchecked(r.into_limbs()), |
| encoding: PhantomData, |
| } |
| } |
| |
| #[inline] |
| pub fn elem_reduced<Larger, Smaller: NotMuchSmallerModulus<Larger>>( |
| a: &Elem<Larger, Unencoded>, |
| m: &Modulus<Smaller>, |
| ) -> Elem<Smaller, RInverse> { |
| let mut tmp = [0; MODULUS_MAX_LIMBS]; |
| let tmp = &mut tmp[..a.limbs.len()]; |
| tmp.copy_from_slice(&a.limbs); |
| |
| let mut r = m.zero(); |
| limbs_from_mont_in_place(&mut r.limbs, tmp, m.limbs(), m.n0()); |
| r |
| } |
| |
| fn elem_squared<M, E>( |
| mut a: Elem<M, E>, |
| m: &PartialModulus<M>, |
| ) -> Elem<M, <(E, E) as ProductEncoding>::Output> |
| where |
| (E, E): ProductEncoding, |
| { |
| limbs_mont_square(&mut a.limbs, m.limbs(), m.n0(), m.cpu_features()); |
| Elem { |
| limbs: a.limbs, |
| encoding: PhantomData, |
| } |
| } |
| |
| pub fn elem_widen<Larger, Smaller: SmallerModulus<Larger>>( |
| a: Elem<Smaller, Unencoded>, |
| m: &Modulus<Larger>, |
| ) -> Elem<Larger, Unencoded> { |
| let mut r = m.zero(); |
| r.limbs[..a.limbs.len()].copy_from_slice(&a.limbs); |
| r |
| } |
| |
| // TODO: Document why this works for all Montgomery factors. |
| pub fn elem_add<M, E>(mut a: Elem<M, E>, b: Elem<M, E>, m: &Modulus<M>) -> Elem<M, E> { |
| limb::limbs_add_assign_mod(&mut a.limbs, &b.limbs, m.limbs()); |
| a |
| } |
| |
| // TODO: Document why this works for all Montgomery factors. |
| pub fn elem_sub<M, E>(mut a: Elem<M, E>, b: &Elem<M, E>, m: &Modulus<M>) -> Elem<M, E> { |
| prefixed_extern! { |
| // `r` and `a` may alias. |
| fn LIMBS_sub_mod( |
| r: *mut Limb, |
| a: *const Limb, |
| b: *const Limb, |
| m: *const Limb, |
| num_limbs: c::size_t, |
| ); |
| } |
| unsafe { |
| LIMBS_sub_mod( |
| a.limbs.as_mut_ptr(), |
| a.limbs.as_ptr(), |
| b.limbs.as_ptr(), |
| m.limbs().as_ptr(), |
| m.limbs().len(), |
| ); |
| } |
| a |
| } |
| |
| // The value 1, Montgomery-encoded some number of times. |
| pub struct One<M, E>(Elem<M, E>); |
| |
| impl<M> One<M, RR> { |
| // Returns RR = = R**2 (mod n) where R = 2**r is the smallest power of |
| // 2**LIMB_BITS such that R > m. |
| // |
| // Even though the assembly on some 32-bit platforms works with 64-bit |
| // values, using `LIMB_BITS` here, rather than `N0::LIMBS_USED * LIMB_BITS`, |
| // is correct because R**2 will still be a multiple of the latter as |
| // `N0::LIMBS_USED` is either one or two. |
| fn newRR(m: &PartialModulus<M>, m_bits: bits::BitLength) -> Self { |
| let m_bits = m_bits.as_usize_bits(); |
| let r = (m_bits + (LIMB_BITS - 1)) / LIMB_BITS * LIMB_BITS; |
| |
| // base = 2**(lg m - 1). |
| let bit = m_bits - 1; |
| let mut base = m.zero(); |
| base.limbs[bit / LIMB_BITS] = 1 << (bit % LIMB_BITS); |
| |
| // Double `base` so that base == R == 2**r (mod m). For normal moduli |
| // that have the high bit of the highest limb set, this requires one |
| // doubling. Unusual moduli require more doublings but we are less |
| // concerned about the performance of those. |
| // |
| // Then double `base` again so that base == 2*R (mod n), i.e. `2` in |
| // Montgomery form (`elem_exp_vartime()` requires the base to be in |
| // Montgomery form). Then compute |
| // RR = R**2 == base**r == R**r == (2**r)**r (mod n). |
| // |
| // Take advantage of the fact that `elem_mul_by_2` is faster than |
| // `elem_squared` by replacing some of the early squarings with shifts. |
| // TODO: Benchmark shift vs. squaring performance to determine the |
| // optimal value of `LG_BASE`. |
| const LG_BASE: usize = 2; // Shifts vs. squaring trade-off. |
| debug_assert_eq!(LG_BASE.count_ones(), 1); // Must be 2**n for n >= 0. |
| let shifts = r - bit + LG_BASE; |
| // `m_bits >= LG_BASE` (for the currently chosen value of `LG_BASE`) |
| // since we require the modulus to have at least `MODULUS_MIN_LIMBS` |
| // limbs. `r >= m_bits` as seen above. So `r >= LG_BASE` and thus |
| // `r / LG_BASE` is non-zero. |
| // |
| // The maximum value of `r` is determined by |
| // `MODULUS_MAX_LIMBS * LIMB_BITS`. Further `r` is a multiple of |
| // `LIMB_BITS` so the maximum Hamming Weight is bounded by |
| // `MODULUS_MAX_LIMBS`. For the common case of {2048, 4096, 8192}-bit |
| // moduli the Hamming weight is 1. For the other common case of 3072 |
| // the Hamming weight is 2. |
| let exponent = NonZeroU64::new(u64_from_usize(r / LG_BASE)).unwrap(); |
| for _ in 0..shifts { |
| elem_mul_by_2(&mut base, m) |
| } |
| let RR = elem_exp_vartime(base, exponent, m); |
| |
| Self(Elem { |
| limbs: RR.limbs, |
| encoding: PhantomData, // PhantomData<RR> |
| }) |
| } |
| } |
| |
| impl<M, E> AsRef<Elem<M, E>> for One<M, E> { |
| fn as_ref(&self) -> &Elem<M, E> { |
| &self.0 |
| } |
| } |
| |
| impl<M: PublicModulus, E> Clone for One<M, E> { |
| fn clone(&self) -> Self { |
| Self(self.0.clone()) |
| } |
| } |
| |
| /// Calculates base**exponent (mod m). |
| /// |
| /// The run time is a function of the number of limbs in `m` and the bit |
| /// length and Hamming Weight of `exponent`. The bounds on `m` are pretty |
| /// obvious but the bounds on `exponent` are less obvious. Callers should |
| /// document the bounds they place on the maximum value and maximum Hamming |
| /// weight of `exponent`. |
| // TODO: The test coverage needs to be expanded, e.g. test with the largest |
| // accepted exponent and with the most common values of 65537 and 3. |
| pub(crate) fn elem_exp_vartime<M>( |
| base: Elem<M, R>, |
| exponent: NonZeroU64, |
| m: &PartialModulus<M>, |
| ) -> Elem<M, R> { |
| // Use what [Knuth] calls the "S-and-X binary method", i.e. variable-time |
| // square-and-multiply that scans the exponent from the most significant |
| // bit to the least significant bit (left-to-right). Left-to-right requires |
| // less storage compared to right-to-left scanning, at the cost of needing |
| // to compute `exponent.leading_zeros()`, which we assume to be cheap. |
| // |
| // As explained in [Knuth], exponentiation by squaring is the most |
| // efficient algorithm when the Hamming weight is 2 or less. It isn't the |
| // most efficient for all other, uncommon, exponent values but any |
| // suboptimality is bounded at least by the small bit length of `exponent` |
| // as enforced by its type. |
| // |
| // This implementation is slightly simplified by taking advantage of the |
| // fact that we require the exponent to be a positive integer. |
| // |
| // [Knuth]: The Art of Computer Programming, Volume 2: Seminumerical |
| // Algorithms (3rd Edition), Section 4.6.3. |
| let exponent = exponent.get(); |
| let mut acc = base.clone(); |
| let mut bit = 1 << (64 - 1 - exponent.leading_zeros()); |
| debug_assert!((exponent & bit) != 0); |
| while bit > 1 { |
| bit >>= 1; |
| acc = elem_squared(acc, m); |
| if (exponent & bit) != 0 { |
| acc = elem_mul_(&base, acc, m); |
| } |
| } |
| acc |
| } |
| |
| /// Uses Fermat's Little Theorem to calculate modular inverse in constant time. |
| pub fn elem_inverse_consttime<M: Prime>( |
| a: Elem<M, R>, |
| m: &Modulus<M>, |
| ) -> Result<Elem<M, Unencoded>, error::Unspecified> { |
| elem_exp_consttime(a, &PrivateExponent::for_flt(m), m) |
| } |
| |
| #[cfg(not(target_arch = "x86_64"))] |
| pub fn elem_exp_consttime<M>( |
| base: Elem<M, R>, |
| exponent: &PrivateExponent, |
| m: &Modulus<M>, |
| ) -> Result<Elem<M, Unencoded>, error::Unspecified> { |
| use crate::{bssl, limb::Window}; |
| |
| const WINDOW_BITS: usize = 5; |
| const TABLE_ENTRIES: usize = 1 << WINDOW_BITS; |
| |
| let num_limbs = m.limbs().len(); |
| |
| let mut table = vec![0; TABLE_ENTRIES * num_limbs]; |
| |
| fn gather<M>(table: &[Limb], i: Window, r: &mut Elem<M, R>) { |
| prefixed_extern! { |
| fn LIMBS_select_512_32( |
| r: *mut Limb, |
| table: *const Limb, |
| num_limbs: c::size_t, |
| i: Window, |
| ) -> bssl::Result; |
| } |
| Result::from(unsafe { |
| LIMBS_select_512_32(r.limbs.as_mut_ptr(), table.as_ptr(), r.limbs.len(), i) |
| }) |
| .unwrap(); |
| } |
| |
| fn power<M>( |
| table: &[Limb], |
| i: Window, |
| mut acc: Elem<M, R>, |
| mut tmp: Elem<M, R>, |
| m: &Modulus<M>, |
| ) -> (Elem<M, R>, Elem<M, R>) { |
| for _ in 0..WINDOW_BITS { |
| acc = elem_squared(acc, &m.as_partial()); |
| } |
| gather(table, i, &mut tmp); |
| let acc = elem_mul(&tmp, acc, m); |
| (acc, tmp) |
| } |
| |
| let tmp = m.one(); |
| let tmp = elem_mul(m.oneRR().as_ref(), tmp, m); |
| |
| fn entry(table: &[Limb], i: usize, num_limbs: usize) -> &[Limb] { |
| &table[(i * num_limbs)..][..num_limbs] |
| } |
| fn entry_mut(table: &mut [Limb], i: usize, num_limbs: usize) -> &mut [Limb] { |
| &mut table[(i * num_limbs)..][..num_limbs] |
| } |
| entry_mut(&mut table, 0, num_limbs).copy_from_slice(&tmp.limbs); |
| entry_mut(&mut table, 1, num_limbs).copy_from_slice(&base.limbs); |
| for i in 2..TABLE_ENTRIES { |
| let (src1, src2) = if i % 2 == 0 { |
| (i / 2, i / 2) |
| } else { |
| (i - 1, 1) |
| }; |
| let (previous, rest) = table.split_at_mut(num_limbs * i); |
| let src1 = entry(previous, src1, num_limbs); |
| let src2 = entry(previous, src2, num_limbs); |
| let dst = entry_mut(rest, 0, num_limbs); |
| limbs_mont_product(dst, src1, src2, m.limbs(), m.n0(), m.cpu_features()); |
| } |
| |
| let (r, _) = limb::fold_5_bit_windows( |
| exponent.limbs(), |
| |initial_window| { |
| let mut r = Elem { |
| limbs: base.limbs, |
| encoding: PhantomData, |
| }; |
| gather(&table, initial_window, &mut r); |
| (r, tmp) |
| }, |
| |(acc, tmp), window| power(&table, window, acc, tmp, m), |
| ); |
| |
| let r = r.into_unencoded(m); |
| |
| Ok(r) |
| } |
| |
| #[cfg(target_arch = "x86_64")] |
| pub fn elem_exp_consttime<M>( |
| base: Elem<M, R>, |
| exponent: &PrivateExponent, |
| m: &Modulus<M>, |
| ) -> Result<Elem<M, Unencoded>, error::Unspecified> { |
| use crate::limb::LIMB_BYTES; |
| |
| // Pretty much all the math here requires CPU feature detection to have |
| // been done. `cpu_features` isn't threaded through all the internal |
| // functions, so just make it clear that it has been done at this point. |
| let cpu_features = m.cpu_features(); |
| |
| // The x86_64 assembly was written under the assumption that the input data |
| // is aligned to `MOD_EXP_CTIME_ALIGN` bytes, which was/is 64 in OpenSSL. |
| // Similarly, OpenSSL uses the x86_64 assembly functions by giving it only |
| // inputs `tmp`, `am`, and `np` that immediately follow the table. All the |
| // awkwardness here stems from trying to use the assembly code like OpenSSL |
| // does. |
| |
| use crate::limb::Window; |
| |
| const WINDOW_BITS: usize = 5; |
| const TABLE_ENTRIES: usize = 1 << WINDOW_BITS; |
| |
| let num_limbs = m.limbs().len(); |
| |
| const ALIGNMENT: usize = 64; |
| assert_eq!(ALIGNMENT % LIMB_BYTES, 0); |
| let mut table = vec![0; ((TABLE_ENTRIES + 3) * num_limbs) + ALIGNMENT]; |
| let (table, state) = { |
| let misalignment = (table.as_ptr() as usize) % ALIGNMENT; |
| let table = &mut table[((ALIGNMENT - misalignment) / LIMB_BYTES)..]; |
| assert_eq!((table.as_ptr() as usize) % ALIGNMENT, 0); |
| table.split_at_mut(TABLE_ENTRIES * num_limbs) |
| }; |
| |
| fn entry(table: &[Limb], i: usize, num_limbs: usize) -> &[Limb] { |
| &table[(i * num_limbs)..][..num_limbs] |
| } |
| fn entry_mut(table: &mut [Limb], i: usize, num_limbs: usize) -> &mut [Limb] { |
| &mut table[(i * num_limbs)..][..num_limbs] |
| } |
| |
| const ACC: usize = 0; // `tmp` in OpenSSL |
| const BASE: usize = ACC + 1; // `am` in OpenSSL |
| const M: usize = BASE + 1; // `np` in OpenSSL |
| |
| entry_mut(state, BASE, num_limbs).copy_from_slice(&base.limbs); |
| entry_mut(state, M, num_limbs).copy_from_slice(m.limbs()); |
| |
| fn scatter(table: &mut [Limb], state: &[Limb], i: Window, num_limbs: usize) { |
| prefixed_extern! { |
| fn bn_scatter5(a: *const Limb, a_len: c::size_t, table: *mut Limb, i: Window); |
| } |
| unsafe { |
| bn_scatter5( |
| entry(state, ACC, num_limbs).as_ptr(), |
| num_limbs, |
| table.as_mut_ptr(), |
| i, |
| ) |
| } |
| } |
| |
| fn gather(table: &[Limb], state: &mut [Limb], i: Window, num_limbs: usize) { |
| prefixed_extern! { |
| fn bn_gather5(r: *mut Limb, a_len: c::size_t, table: *const Limb, i: Window); |
| } |
| unsafe { |
| bn_gather5( |
| entry_mut(state, ACC, num_limbs).as_mut_ptr(), |
| num_limbs, |
| table.as_ptr(), |
| i, |
| ) |
| } |
| } |
| |
| fn gather_square( |
| table: &[Limb], |
| state: &mut [Limb], |
| n0: &N0, |
| i: Window, |
| num_limbs: usize, |
| cpu_features: cpu::Features, |
| ) { |
| gather(table, state, i, num_limbs); |
| assert_eq!(ACC, 0); |
| let (acc, rest) = state.split_at_mut(num_limbs); |
| let m = entry(rest, M - 1, num_limbs); |
| limbs_mont_square(acc, m, n0, cpu_features); |
| } |
| |
| fn gather_mul_base_amm( |
| table: &[Limb], |
| state: &mut [Limb], |
| n0: &N0, |
| i: Window, |
| num_limbs: usize, |
| ) { |
| prefixed_extern! { |
| fn bn_mul_mont_gather5( |
| rp: *mut Limb, |
| ap: *const Limb, |
| table: *const Limb, |
| np: *const Limb, |
| n0: &N0, |
| num: c::size_t, |
| power: Window, |
| ); |
| } |
| unsafe { |
| bn_mul_mont_gather5( |
| entry_mut(state, ACC, num_limbs).as_mut_ptr(), |
| entry(state, BASE, num_limbs).as_ptr(), |
| table.as_ptr(), |
| entry(state, M, num_limbs).as_ptr(), |
| n0, |
| num_limbs, |
| i, |
| ); |
| } |
| } |
| |
| fn power_amm(table: &[Limb], state: &mut [Limb], n0: &N0, i: Window, num_limbs: usize) { |
| prefixed_extern! { |
| fn bn_power5( |
| r: *mut Limb, |
| a: *const Limb, |
| table: *const Limb, |
| n: *const Limb, |
| n0: &N0, |
| num: c::size_t, |
| i: Window, |
| ); |
| } |
| unsafe { |
| bn_power5( |
| entry_mut(state, ACC, num_limbs).as_mut_ptr(), |
| entry_mut(state, ACC, num_limbs).as_mut_ptr(), |
| table.as_ptr(), |
| entry(state, M, num_limbs).as_ptr(), |
| n0, |
| num_limbs, |
| i, |
| ); |
| } |
| } |
| |
| // table[0] = base**0. |
| { |
| let acc = entry_mut(state, ACC, num_limbs); |
| acc[0] = 1; |
| limbs_mont_mul(acc, &m.oneRR().0.limbs, m.limbs(), m.n0(), cpu_features); |
| } |
| scatter(table, state, 0, num_limbs); |
| |
| // table[1] = base**1. |
| entry_mut(state, ACC, num_limbs).copy_from_slice(&base.limbs); |
| scatter(table, state, 1, num_limbs); |
| |
| for i in 2..(TABLE_ENTRIES as Window) { |
| if i % 2 == 0 { |
| // TODO: Optimize this to avoid gathering |
| gather_square(table, state, m.n0(), i / 2, num_limbs, cpu_features); |
| } else { |
| gather_mul_base_amm(table, state, m.n0(), i - 1, num_limbs) |
| }; |
| scatter(table, state, i, num_limbs); |
| } |
| |
| let state = limb::fold_5_bit_windows( |
| exponent.limbs(), |
| |initial_window| { |
| gather(table, state, initial_window, num_limbs); |
| state |
| }, |
| |state, window| { |
| power_amm(table, state, m.n0(), window, num_limbs); |
| state |
| }, |
| ); |
| |
| let mut r_amm = base.limbs; |
| r_amm.copy_from_slice(entry(state, ACC, num_limbs)); |
| |
| Ok(from_montgomery_amm(r_amm, m)) |
| } |
| |
| /// Verified a == b**-1 (mod m), i.e. a**-1 == b (mod m). |
| pub fn verify_inverses_consttime<M>( |
| a: &Elem<M, R>, |
| b: Elem<M, Unencoded>, |
| m: &Modulus<M>, |
| ) -> Result<(), error::Unspecified> { |
| if elem_mul(a, b, m).is_one() { |
| Ok(()) |
| } else { |
| Err(error::Unspecified) |
| } |
| } |
| |
| #[inline] |
| pub fn elem_verify_equal_consttime<M, E>( |
| a: &Elem<M, E>, |
| b: &Elem<M, E>, |
| ) -> Result<(), error::Unspecified> { |
| if limb::limbs_equal_limbs_consttime(&a.limbs, &b.limbs) == LimbMask::True { |
| Ok(()) |
| } else { |
| Err(error::Unspecified) |
| } |
| } |
| |
| // TODO: Move these methods from `Nonnegative` to `Modulus`. |
| impl Nonnegative { |
| pub fn to_elem<M>(&self, m: &Modulus<M>) -> Result<Elem<M, Unencoded>, error::Unspecified> { |
| self.verify_less_than_modulus(m)?; |
| let mut r = m.zero(); |
| r.limbs[0..self.limbs().len()].copy_from_slice(self.limbs()); |
| Ok(r) |
| } |
| |
| pub fn verify_less_than_modulus<M>(&self, m: &Modulus<M>) -> Result<(), error::Unspecified> { |
| if self.limbs().len() > m.limbs().len() { |
| return Err(error::Unspecified); |
| } |
| if self.limbs().len() == m.limbs().len() { |
| if limb::limbs_less_than_limbs_consttime(self.limbs(), m.limbs()) != LimbMask::True { |
| return Err(error::Unspecified); |
| } |
| } |
| Ok(()) |
| } |
| } |
| |
| /// r *= a |
| fn limbs_mont_mul(r: &mut [Limb], a: &[Limb], m: &[Limb], n0: &N0, _cpu_features: cpu::Features) { |
| debug_assert_eq!(r.len(), m.len()); |
| debug_assert_eq!(a.len(), m.len()); |
| unsafe { |
| bn_mul_mont( |
| r.as_mut_ptr(), |
| r.as_ptr(), |
| a.as_ptr(), |
| m.as_ptr(), |
| n0, |
| r.len(), |
| ) |
| } |
| } |
| |
| /// r = a * b |
| #[cfg(not(target_arch = "x86_64"))] |
| fn limbs_mont_product( |
| r: &mut [Limb], |
| a: &[Limb], |
| b: &[Limb], |
| m: &[Limb], |
| n0: &N0, |
| _cpu_features: cpu::Features, |
| ) { |
| debug_assert_eq!(r.len(), m.len()); |
| debug_assert_eq!(a.len(), m.len()); |
| debug_assert_eq!(b.len(), m.len()); |
| |
| unsafe { |
| bn_mul_mont( |
| r.as_mut_ptr(), |
| a.as_ptr(), |
| b.as_ptr(), |
| m.as_ptr(), |
| n0, |
| r.len(), |
| ) |
| } |
| } |
| |
| /// r = r**2 |
| fn limbs_mont_square(r: &mut [Limb], m: &[Limb], n0: &N0, _cpu_features: cpu::Features) { |
| debug_assert_eq!(r.len(), m.len()); |
| unsafe { |
| bn_mul_mont( |
| r.as_mut_ptr(), |
| r.as_ptr(), |
| r.as_ptr(), |
| m.as_ptr(), |
| n0, |
| r.len(), |
| ) |
| } |
| } |
| |
| prefixed_extern! { |
| // `r` and/or 'a' and/or 'b' may alias. |
| fn bn_mul_mont( |
| r: *mut Limb, |
| a: *const Limb, |
| b: *const Limb, |
| n: *const Limb, |
| n0: &N0, |
| num_limbs: c::size_t, |
| ); |
| } |
| |
| #[cfg(test)] |
| mod tests { |
| use super::{modulus::MODULUS_MIN_LIMBS, *}; |
| use crate::{limb::LIMB_BYTES, test}; |
| use alloc::format; |
| |
| // Type-level representation of an arbitrary modulus. |
| struct M {} |
| |
| impl PublicModulus for M {} |
| |
| #[test] |
| fn test_elem_exp_consttime() { |
| let cpu_features = cpu::features(); |
| test::run( |
| test_file!("../../crypto/fipsmodule/bn/test/mod_exp_tests.txt"), |
| |section, test_case| { |
| assert_eq!(section, ""); |
| |
| let m = consume_modulus::<M>(test_case, "M", cpu_features); |
| let expected_result = consume_elem(test_case, "ModExp", &m); |
| let base = consume_elem(test_case, "A", &m); |
| let e = { |
| let bytes = test_case.consume_bytes("E"); |
| PrivateExponent::from_be_bytes_for_test_only(untrusted::Input::from(&bytes), &m) |
| .expect("valid exponent") |
| }; |
| let base = into_encoded(base, &m); |
| let actual_result = elem_exp_consttime(base, &e, &m).unwrap(); |
| assert_elem_eq(&actual_result, &expected_result); |
| |
| Ok(()) |
| }, |
| ) |
| } |
| |
| // TODO: fn test_elem_exp_vartime() using |
| // "src/rsa/bigint_elem_exp_vartime_tests.txt". See that file for details. |
| // In the meantime, the function is tested indirectly via the RSA |
| // verification and signing tests. |
| #[test] |
| fn test_elem_mul() { |
| let cpu_features = cpu::features(); |
| test::run( |
| test_file!("../../crypto/fipsmodule/bn/test/mod_mul_tests.txt"), |
| |section, test_case| { |
| assert_eq!(section, ""); |
| |
| let m = consume_modulus::<M>(test_case, "M", cpu_features); |
| let expected_result = consume_elem(test_case, "ModMul", &m); |
| let a = consume_elem(test_case, "A", &m); |
| let b = consume_elem(test_case, "B", &m); |
| |
| let b = into_encoded(b, &m); |
| let a = into_encoded(a, &m); |
| let actual_result = elem_mul(&a, b, &m); |
| let actual_result = actual_result.into_unencoded(&m); |
| assert_elem_eq(&actual_result, &expected_result); |
| |
| Ok(()) |
| }, |
| ) |
| } |
| |
| #[test] |
| fn test_elem_squared() { |
| let cpu_features = cpu::features(); |
| test::run( |
| test_file!("bigint_elem_squared_tests.txt"), |
| |section, test_case| { |
| assert_eq!(section, ""); |
| |
| let m = consume_modulus::<M>(test_case, "M", cpu_features); |
| let expected_result = consume_elem(test_case, "ModSquare", &m); |
| let a = consume_elem(test_case, "A", &m); |
| |
| let a = into_encoded(a, &m); |
| let actual_result = elem_squared(a, &m.as_partial()); |
| let actual_result = actual_result.into_unencoded(&m); |
| assert_elem_eq(&actual_result, &expected_result); |
| |
| Ok(()) |
| }, |
| ) |
| } |
| |
| #[test] |
| fn test_elem_reduced() { |
| let cpu_features = cpu::features(); |
| test::run( |
| test_file!("bigint_elem_reduced_tests.txt"), |
| |section, test_case| { |
| assert_eq!(section, ""); |
| |
| struct MM {} |
| unsafe impl SmallerModulus<MM> for M {} |
| unsafe impl NotMuchSmallerModulus<MM> for M {} |
| |
| let m = consume_modulus::<M>(test_case, "M", cpu_features); |
| let expected_result = consume_elem(test_case, "R", &m); |
| let a = |
| consume_elem_unchecked::<MM>(test_case, "A", expected_result.limbs.len() * 2); |
| |
| let actual_result = elem_reduced(&a, &m); |
| let oneRR = m.oneRR(); |
| let actual_result = elem_mul(oneRR.as_ref(), actual_result, &m); |
| assert_elem_eq(&actual_result, &expected_result); |
| |
| Ok(()) |
| }, |
| ) |
| } |
| |
| #[test] |
| fn test_elem_reduced_once() { |
| let cpu_features = cpu::features(); |
| test::run( |
| test_file!("bigint_elem_reduced_once_tests.txt"), |
| |section, test_case| { |
| assert_eq!(section, ""); |
| |
| struct N {} |
| struct QQ {} |
| unsafe impl SmallerModulus<N> for QQ {} |
| unsafe impl SlightlySmallerModulus<N> for QQ {} |
| |
| let qq = consume_modulus::<QQ>(test_case, "QQ", cpu_features); |
| let expected_result = consume_elem::<QQ>(test_case, "R", &qq); |
| let n = consume_modulus::<N>(test_case, "N", cpu_features); |
| let a = consume_elem::<N>(test_case, "A", &n); |
| |
| let actual_result = elem_reduced_once(&a, &qq); |
| assert_elem_eq(&actual_result, &expected_result); |
| |
| Ok(()) |
| }, |
| ) |
| } |
| |
| #[test] |
| fn test_modulus_debug() { |
| let (modulus, _) = Modulus::<M>::from_be_bytes_with_bit_length( |
| untrusted::Input::from(&[0xff; LIMB_BYTES * MODULUS_MIN_LIMBS]), |
| cpu::features(), |
| ) |
| .unwrap(); |
| assert_eq!("Modulus", format!("{:?}", modulus)); |
| } |
| |
| fn consume_elem<M>( |
| test_case: &mut test::TestCase, |
| name: &str, |
| m: &Modulus<M>, |
| ) -> Elem<M, Unencoded> { |
| let value = test_case.consume_bytes(name); |
| Elem::from_be_bytes_padded(untrusted::Input::from(&value), m).unwrap() |
| } |
| |
| fn consume_elem_unchecked<M>( |
| test_case: &mut test::TestCase, |
| name: &str, |
| num_limbs: usize, |
| ) -> Elem<M, Unencoded> { |
| let value = consume_nonnegative(test_case, name); |
| let mut limbs = BoxedLimbs::zero(Width { |
| num_limbs, |
| m: PhantomData, |
| }); |
| limbs[0..value.limbs().len()].copy_from_slice(value.limbs()); |
| Elem { |
| limbs, |
| encoding: PhantomData, |
| } |
| } |
| |
| fn consume_modulus<M>( |
| test_case: &mut test::TestCase, |
| name: &str, |
| cpu_features: cpu::Features, |
| ) -> Modulus<M> { |
| let value = test_case.consume_bytes(name); |
| let (value, _) = |
| Modulus::from_be_bytes_with_bit_length(untrusted::Input::from(&value), cpu_features) |
| .unwrap(); |
| value |
| } |
| |
| fn consume_nonnegative(test_case: &mut test::TestCase, name: &str) -> Nonnegative { |
| let bytes = test_case.consume_bytes(name); |
| let (r, _r_bits) = |
| Nonnegative::from_be_bytes_with_bit_length(untrusted::Input::from(&bytes)).unwrap(); |
| r |
| } |
| |
| fn assert_elem_eq<M, E>(a: &Elem<M, E>, b: &Elem<M, E>) { |
| if elem_verify_equal_consttime(a, b).is_err() { |
| panic!("{:x?} != {:x?}", &*a.limbs, &*b.limbs); |
| } |
| } |
| |
| fn into_encoded<M>(a: Elem<M, Unencoded>, m: &Modulus<M>) -> Elem<M, R> { |
| elem_mul(m.oneRR().as_ref(), a, m) |
| } |
| } |