| //! A higher level Clang API built on top of the generated bindings in the |
| //! `clang_sys` module. |
| |
| #![allow(non_upper_case_globals, dead_code)] |
| #![deny(clippy::missing_docs_in_private_items)] |
| |
| use crate::ir::context::BindgenContext; |
| use clang_sys::*; |
| use std::cmp; |
| |
| use std::ffi::{CStr, CString}; |
| use std::fmt; |
| use std::hash::Hash; |
| use std::hash::Hasher; |
| use std::os::raw::{c_char, c_int, c_longlong, c_uint, c_ulong, c_ulonglong}; |
| use std::{mem, ptr, slice}; |
| |
| /// Type representing a clang attribute. |
| /// |
| /// Values of this type can be used to check for different attributes using the `has_attrs` |
| /// function. |
| pub(crate) struct Attribute { |
| name: &'static [u8], |
| kind: Option<CXCursorKind>, |
| token_kind: CXTokenKind, |
| } |
| |
| impl Attribute { |
| /// A `warn_unused_result` attribute. |
| pub(crate) const MUST_USE: Self = Self { |
| name: b"warn_unused_result", |
| // FIXME(emilio): clang-sys doesn't expose `CXCursor_WarnUnusedResultAttr` (from clang 9). |
| kind: Some(440), |
| token_kind: CXToken_Identifier, |
| }; |
| |
| /// A `_Noreturn` attribute. |
| pub(crate) const NO_RETURN: Self = Self { |
| name: b"_Noreturn", |
| kind: None, |
| token_kind: CXToken_Keyword, |
| }; |
| |
| /// A `[[noreturn]]` attribute. |
| pub(crate) const NO_RETURN_CPP: Self = Self { |
| name: b"noreturn", |
| kind: None, |
| token_kind: CXToken_Identifier, |
| }; |
| } |
| |
| /// A cursor into the Clang AST, pointing to an AST node. |
| /// |
| /// We call the AST node pointed to by the cursor the cursor's "referent". |
| #[derive(Copy, Clone)] |
| pub(crate) struct Cursor { |
| x: CXCursor, |
| } |
| |
| impl fmt::Debug for Cursor { |
| fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result { |
| write!( |
| fmt, |
| "Cursor({} kind: {}, loc: {}, usr: {:?})", |
| self.spelling(), |
| kind_to_str(self.kind()), |
| self.location(), |
| self.usr() |
| ) |
| } |
| } |
| |
| impl Cursor { |
| /// Get the Unified Symbol Resolution for this cursor's referent, if |
| /// available. |
| /// |
| /// The USR can be used to compare entities across translation units. |
| pub(crate) fn usr(&self) -> Option<String> { |
| let s = unsafe { cxstring_into_string(clang_getCursorUSR(self.x)) }; |
| if s.is_empty() { |
| None |
| } else { |
| Some(s) |
| } |
| } |
| |
| /// Is this cursor's referent a declaration? |
| pub(crate) fn is_declaration(&self) -> bool { |
| unsafe { clang_isDeclaration(self.kind()) != 0 } |
| } |
| |
| /// Is this cursor's referent an anonymous record or so? |
| pub(crate) fn is_anonymous(&self) -> bool { |
| unsafe { clang_Cursor_isAnonymous(self.x) != 0 } |
| } |
| |
| /// Get this cursor's referent's spelling. |
| pub(crate) fn spelling(&self) -> String { |
| unsafe { cxstring_into_string(clang_getCursorSpelling(self.x)) } |
| } |
| |
| /// Get this cursor's referent's display name. |
| /// |
| /// This is not necessarily a valid identifier. It includes extra |
| /// information, such as parameters for a function, etc. |
| pub(crate) fn display_name(&self) -> String { |
| unsafe { cxstring_into_string(clang_getCursorDisplayName(self.x)) } |
| } |
| |
| /// Get the mangled name of this cursor's referent. |
| pub(crate) fn mangling(&self) -> String { |
| unsafe { cxstring_into_string(clang_Cursor_getMangling(self.x)) } |
| } |
| |
| /// Gets the C++ manglings for this cursor, or an error if the manglings |
| /// are not available. |
| pub(crate) fn cxx_manglings(&self) -> Result<Vec<String>, ()> { |
| use clang_sys::*; |
| unsafe { |
| let manglings = clang_Cursor_getCXXManglings(self.x); |
| if manglings.is_null() { |
| return Err(()); |
| } |
| let count = (*manglings).Count as usize; |
| |
| let mut result = Vec::with_capacity(count); |
| for i in 0..count { |
| let string_ptr = (*manglings).Strings.add(i); |
| result.push(cxstring_to_string_leaky(*string_ptr)); |
| } |
| clang_disposeStringSet(manglings); |
| Ok(result) |
| } |
| } |
| |
| /// Returns whether the cursor refers to a built-in definition. |
| pub(crate) fn is_builtin(&self) -> bool { |
| let (file, _, _, _) = self.location().location(); |
| file.name().is_none() |
| } |
| |
| /// Get the `Cursor` for this cursor's referent's lexical parent. |
| /// |
| /// The lexical parent is the parent of the definition. The semantic parent |
| /// is the parent of the declaration. Generally, the lexical parent doesn't |
| /// have any effect on semantics, while the semantic parent does. |
| /// |
| /// In the following snippet, the `Foo` class would be the semantic parent |
| /// of the out-of-line `method` definition, while the lexical parent is the |
| /// translation unit. |
| /// |
| /// ```c++ |
| /// class Foo { |
| /// void method(); |
| /// }; |
| /// |
| /// void Foo::method() { /* ... */ } |
| /// ``` |
| pub(crate) fn lexical_parent(&self) -> Cursor { |
| unsafe { |
| Cursor { |
| x: clang_getCursorLexicalParent(self.x), |
| } |
| } |
| } |
| |
| /// Get the referent's semantic parent, if one is available. |
| /// |
| /// See documentation for `lexical_parent` for details on semantic vs |
| /// lexical parents. |
| pub(crate) fn fallible_semantic_parent(&self) -> Option<Cursor> { |
| let sp = unsafe { |
| Cursor { |
| x: clang_getCursorSemanticParent(self.x), |
| } |
| }; |
| if sp == *self || !sp.is_valid() { |
| return None; |
| } |
| Some(sp) |
| } |
| |
| /// Get the referent's semantic parent. |
| /// |
| /// See documentation for `lexical_parent` for details on semantic vs |
| /// lexical parents. |
| pub(crate) fn semantic_parent(&self) -> Cursor { |
| self.fallible_semantic_parent().unwrap() |
| } |
| |
| /// Return the number of template arguments used by this cursor's referent, |
| /// if the referent is either a template instantiation. Returns `None` |
| /// otherwise. |
| /// |
| /// NOTE: This may not return `Some` for partial template specializations, |
| /// see #193 and #194. |
| pub(crate) fn num_template_args(&self) -> Option<u32> { |
| // XXX: `clang_Type_getNumTemplateArguments` is sort of reliable, while |
| // `clang_Cursor_getNumTemplateArguments` is totally unreliable. |
| // Therefore, try former first, and only fallback to the latter if we |
| // have to. |
| self.cur_type() |
| .num_template_args() |
| .or_else(|| { |
| let n: c_int = |
| unsafe { clang_Cursor_getNumTemplateArguments(self.x) }; |
| |
| if n >= 0 { |
| Some(n as u32) |
| } else { |
| debug_assert_eq!(n, -1); |
| None |
| } |
| }) |
| .or_else(|| { |
| let canonical = self.canonical(); |
| if canonical != *self { |
| canonical.num_template_args() |
| } else { |
| None |
| } |
| }) |
| } |
| |
| /// Get a cursor pointing to this referent's containing translation unit. |
| /// |
| /// Note that we shouldn't create a `TranslationUnit` struct here, because |
| /// bindgen assumes there will only be one of them alive at a time, and |
| /// disposes it on drop. That can change if this would be required, but I |
| /// think we can survive fine without it. |
| pub(crate) fn translation_unit(&self) -> Cursor { |
| assert!(self.is_valid()); |
| unsafe { |
| let tu = clang_Cursor_getTranslationUnit(self.x); |
| let cursor = Cursor { |
| x: clang_getTranslationUnitCursor(tu), |
| }; |
| assert!(cursor.is_valid()); |
| cursor |
| } |
| } |
| |
| /// Is the referent a top level construct? |
| pub(crate) fn is_toplevel(&self) -> bool { |
| let mut semantic_parent = self.fallible_semantic_parent(); |
| |
| while semantic_parent.is_some() && |
| (semantic_parent.unwrap().kind() == CXCursor_Namespace || |
| semantic_parent.unwrap().kind() == |
| CXCursor_NamespaceAlias || |
| semantic_parent.unwrap().kind() == CXCursor_NamespaceRef) |
| { |
| semantic_parent = |
| semantic_parent.unwrap().fallible_semantic_parent(); |
| } |
| |
| let tu = self.translation_unit(); |
| // Yes, this can happen with, e.g., macro definitions. |
| semantic_parent == tu.fallible_semantic_parent() |
| } |
| |
| /// There are a few kinds of types that we need to treat specially, mainly |
| /// not tracking the type declaration but the location of the cursor, given |
| /// clang doesn't expose a proper declaration for these types. |
| pub(crate) fn is_template_like(&self) -> bool { |
| matches!( |
| self.kind(), |
| CXCursor_ClassTemplate | |
| CXCursor_ClassTemplatePartialSpecialization | |
| CXCursor_TypeAliasTemplateDecl |
| ) |
| } |
| |
| /// Is this Cursor pointing to a function-like macro definition? |
| pub(crate) fn is_macro_function_like(&self) -> bool { |
| unsafe { clang_Cursor_isMacroFunctionLike(self.x) != 0 } |
| } |
| |
| /// Get the kind of referent this cursor is pointing to. |
| pub(crate) fn kind(&self) -> CXCursorKind { |
| self.x.kind |
| } |
| |
| /// Returns true if the cursor is a definition |
| pub(crate) fn is_definition(&self) -> bool { |
| unsafe { clang_isCursorDefinition(self.x) != 0 } |
| } |
| |
| /// Is the referent a template specialization? |
| pub(crate) fn is_template_specialization(&self) -> bool { |
| self.specialized().is_some() |
| } |
| |
| /// Is the referent a fully specialized template specialization without any |
| /// remaining free template arguments? |
| pub(crate) fn is_fully_specialized_template(&self) -> bool { |
| self.is_template_specialization() && |
| self.kind() != CXCursor_ClassTemplatePartialSpecialization && |
| self.num_template_args().unwrap_or(0) > 0 |
| } |
| |
| /// Is the referent a template specialization that still has remaining free |
| /// template arguments? |
| pub(crate) fn is_in_non_fully_specialized_template(&self) -> bool { |
| if self.is_toplevel() { |
| return false; |
| } |
| |
| let parent = self.semantic_parent(); |
| if parent.is_fully_specialized_template() { |
| return false; |
| } |
| |
| if !parent.is_template_like() { |
| return parent.is_in_non_fully_specialized_template(); |
| } |
| |
| true |
| } |
| |
| /// Is the referent any kind of template parameter? |
| pub(crate) fn is_template_parameter(&self) -> bool { |
| matches!( |
| self.kind(), |
| CXCursor_TemplateTemplateParameter | |
| CXCursor_TemplateTypeParameter | |
| CXCursor_NonTypeTemplateParameter |
| ) |
| } |
| |
| /// Does the referent's type or value depend on a template parameter? |
| pub(crate) fn is_dependent_on_template_parameter(&self) -> bool { |
| fn visitor( |
| found_template_parameter: &mut bool, |
| cur: Cursor, |
| ) -> CXChildVisitResult { |
| // If we found a template parameter, it is dependent. |
| if cur.is_template_parameter() { |
| *found_template_parameter = true; |
| return CXChildVisit_Break; |
| } |
| |
| // Get the referent and traverse it as well. |
| if let Some(referenced) = cur.referenced() { |
| if referenced.is_template_parameter() { |
| *found_template_parameter = true; |
| return CXChildVisit_Break; |
| } |
| |
| referenced |
| .visit(|next| visitor(found_template_parameter, next)); |
| if *found_template_parameter { |
| return CXChildVisit_Break; |
| } |
| } |
| |
| // Continue traversing the AST at the original cursor. |
| CXChildVisit_Recurse |
| } |
| |
| if self.is_template_parameter() { |
| return true; |
| } |
| |
| let mut found_template_parameter = false; |
| self.visit(|next| visitor(&mut found_template_parameter, next)); |
| |
| found_template_parameter |
| } |
| |
| /// Is this cursor pointing a valid referent? |
| pub(crate) fn is_valid(&self) -> bool { |
| unsafe { clang_isInvalid(self.kind()) == 0 } |
| } |
| |
| /// Get the source location for the referent. |
| pub(crate) fn location(&self) -> SourceLocation { |
| unsafe { |
| SourceLocation { |
| x: clang_getCursorLocation(self.x), |
| } |
| } |
| } |
| |
| /// Get the source location range for the referent. |
| pub(crate) fn extent(&self) -> CXSourceRange { |
| unsafe { clang_getCursorExtent(self.x) } |
| } |
| |
| /// Get the raw declaration comment for this referent, if one exists. |
| pub(crate) fn raw_comment(&self) -> Option<String> { |
| let s = unsafe { |
| cxstring_into_string(clang_Cursor_getRawCommentText(self.x)) |
| }; |
| if s.is_empty() { |
| None |
| } else { |
| Some(s) |
| } |
| } |
| |
| /// Get the referent's parsed comment. |
| pub(crate) fn comment(&self) -> Comment { |
| unsafe { |
| Comment { |
| x: clang_Cursor_getParsedComment(self.x), |
| } |
| } |
| } |
| |
| /// Get the referent's type. |
| pub(crate) fn cur_type(&self) -> Type { |
| unsafe { |
| Type { |
| x: clang_getCursorType(self.x), |
| } |
| } |
| } |
| |
| /// Given that this cursor's referent is a reference to another type, or is |
| /// a declaration, get the cursor pointing to the referenced type or type of |
| /// the declared thing. |
| pub(crate) fn definition(&self) -> Option<Cursor> { |
| unsafe { |
| let ret = Cursor { |
| x: clang_getCursorDefinition(self.x), |
| }; |
| |
| if ret.is_valid() && ret.kind() != CXCursor_NoDeclFound { |
| Some(ret) |
| } else { |
| None |
| } |
| } |
| } |
| |
| /// Given that this cursor's referent is reference type, get the cursor |
| /// pointing to the referenced type. |
| pub(crate) fn referenced(&self) -> Option<Cursor> { |
| unsafe { |
| let ret = Cursor { |
| x: clang_getCursorReferenced(self.x), |
| }; |
| |
| if ret.is_valid() { |
| Some(ret) |
| } else { |
| None |
| } |
| } |
| } |
| |
| /// Get the canonical cursor for this referent. |
| /// |
| /// Many types can be declared multiple times before finally being properly |
| /// defined. This method allows us to get the canonical cursor for the |
| /// referent type. |
| pub(crate) fn canonical(&self) -> Cursor { |
| unsafe { |
| Cursor { |
| x: clang_getCanonicalCursor(self.x), |
| } |
| } |
| } |
| |
| /// Given that this cursor points to either a template specialization or a |
| /// template instantiation, get a cursor pointing to the template definition |
| /// that is being specialized. |
| pub(crate) fn specialized(&self) -> Option<Cursor> { |
| unsafe { |
| let ret = Cursor { |
| x: clang_getSpecializedCursorTemplate(self.x), |
| }; |
| if ret.is_valid() { |
| Some(ret) |
| } else { |
| None |
| } |
| } |
| } |
| |
| /// Assuming that this cursor's referent is a template declaration, get the |
| /// kind of cursor that would be generated for its specializations. |
| pub(crate) fn template_kind(&self) -> CXCursorKind { |
| unsafe { clang_getTemplateCursorKind(self.x) } |
| } |
| |
| /// Traverse this cursor's referent and its children. |
| /// |
| /// Call the given function on each AST node traversed. |
| pub(crate) fn visit<Visitor>(&self, mut visitor: Visitor) |
| where |
| Visitor: FnMut(Cursor) -> CXChildVisitResult, |
| { |
| let data = &mut visitor as *mut Visitor; |
| unsafe { |
| clang_visitChildren(self.x, visit_children::<Visitor>, data.cast()); |
| } |
| } |
| |
| /// Traverse all of this cursor's children, sorted by where they appear in source code. |
| /// |
| /// Call the given function on each AST node traversed. |
| pub(crate) fn visit_sorted<Visitor>( |
| &self, |
| ctx: &mut BindgenContext, |
| mut visitor: Visitor, |
| ) where |
| Visitor: FnMut(&mut BindgenContext, Cursor), |
| { |
| // FIXME(#2556): The current source order stuff doesn't account well for different levels |
| // of includes, or includes that show up at the same byte offset because they are passed in |
| // via CLI. |
| const SOURCE_ORDER_ENABLED: bool = false; |
| if !SOURCE_ORDER_ENABLED { |
| return self.visit(|c| { |
| visitor(ctx, c); |
| CXChildVisit_Continue |
| }); |
| } |
| |
| let mut children = self.collect_children(); |
| for child in &children { |
| if child.kind() == CXCursor_InclusionDirective { |
| if let Some(included_file) = child.get_included_file_name() { |
| let location = child.location(); |
| let (source_file, _, _, offset) = location.location(); |
| |
| if let Some(source_file) = source_file.name() { |
| ctx.add_include(source_file, included_file, offset); |
| } |
| } |
| } |
| } |
| children |
| .sort_by(|child1, child2| child1.cmp_by_source_order(child2, ctx)); |
| for child in children { |
| visitor(ctx, child); |
| } |
| } |
| |
| /// Compare source order of two cursors, considering `#include` directives. |
| /// |
| /// Built-in items provided by the compiler (which don't have a source file), |
| /// are sorted first. Remaining files are sorted by their position in the source file. |
| /// If the items' source files differ, they are sorted by the position of the first |
| /// `#include` for their source file. If no source files are included, `None` is returned. |
| fn cmp_by_source_order( |
| &self, |
| other: &Self, |
| ctx: &BindgenContext, |
| ) -> cmp::Ordering { |
| let (file, _, _, offset) = self.location().location(); |
| let (other_file, _, _, other_offset) = other.location().location(); |
| |
| let (file, other_file) = match (file.name(), other_file.name()) { |
| (Some(file), Some(other_file)) => (file, other_file), |
| // Built-in definitions should come first. |
| (Some(_), None) => return cmp::Ordering::Greater, |
| (None, Some(_)) => return cmp::Ordering::Less, |
| (None, None) => return cmp::Ordering::Equal, |
| }; |
| |
| if file == other_file { |
| // Both items are in the same source file, compare by byte offset. |
| return offset.cmp(&other_offset); |
| } |
| |
| let include_location = ctx.included_file_location(&file); |
| let other_include_location = ctx.included_file_location(&other_file); |
| match (include_location, other_include_location) { |
| (Some((file2, offset2)), _) if file2 == other_file => { |
| offset2.cmp(&other_offset) |
| } |
| (Some(_), None) => cmp::Ordering::Greater, |
| (_, Some((other_file2, other_offset2))) if file == other_file2 => { |
| offset.cmp(&other_offset2) |
| } |
| (None, Some(_)) => cmp::Ordering::Less, |
| (Some((file2, offset2)), Some((other_file2, other_offset2))) => { |
| if file2 == other_file2 { |
| offset2.cmp(&other_offset2) |
| } else { |
| cmp::Ordering::Equal |
| } |
| } |
| (None, None) => cmp::Ordering::Equal, |
| } |
| } |
| |
| /// Collect all of this cursor's children into a vec and return them. |
| pub(crate) fn collect_children(&self) -> Vec<Cursor> { |
| let mut children = vec![]; |
| self.visit(|c| { |
| children.push(c); |
| CXChildVisit_Continue |
| }); |
| children |
| } |
| |
| /// Does this cursor have any children? |
| pub(crate) fn has_children(&self) -> bool { |
| let mut has_children = false; |
| self.visit(|_| { |
| has_children = true; |
| CXChildVisit_Break |
| }); |
| has_children |
| } |
| |
| /// Does this cursor have at least `n` children? |
| pub(crate) fn has_at_least_num_children(&self, n: usize) -> bool { |
| assert!(n > 0); |
| let mut num_left = n; |
| self.visit(|_| { |
| num_left -= 1; |
| if num_left == 0 { |
| CXChildVisit_Break |
| } else { |
| CXChildVisit_Continue |
| } |
| }); |
| num_left == 0 |
| } |
| |
| /// Returns whether the given location contains a cursor with the given |
| /// kind in the first level of nesting underneath (doesn't look |
| /// recursively). |
| pub(crate) fn contains_cursor(&self, kind: CXCursorKind) -> bool { |
| let mut found = false; |
| |
| self.visit(|c| { |
| if c.kind() == kind { |
| found = true; |
| CXChildVisit_Break |
| } else { |
| CXChildVisit_Continue |
| } |
| }); |
| |
| found |
| } |
| |
| /// Is the referent an inlined function? |
| pub(crate) fn is_inlined_function(&self) -> bool { |
| unsafe { clang_Cursor_isFunctionInlined(self.x) != 0 } |
| } |
| |
| /// Is the referent a defaulted function? |
| pub(crate) fn is_defaulted_function(&self) -> bool { |
| unsafe { clang_CXXMethod_isDefaulted(self.x) != 0 } |
| } |
| |
| /// Is the referent a deleted function? |
| pub(crate) fn is_deleted_function(&self) -> bool { |
| // Unfortunately, libclang doesn't yet have an API for checking if a |
| // member function is deleted, but the following should be a good |
| // enough approximation. |
| // Deleted functions are implicitly inline according to paragraph 4 of |
| // [dcl.fct.def.delete] in the C++ standard. Normal inline functions |
| // have a definition in the same translation unit, so if this is an |
| // inline function without a definition, and it's not a defaulted |
| // function, we can reasonably safely conclude that it's a deleted |
| // function. |
| self.is_inlined_function() && |
| self.definition().is_none() && |
| !self.is_defaulted_function() |
| } |
| |
| /// Is the referent a bit field declaration? |
| pub(crate) fn is_bit_field(&self) -> bool { |
| unsafe { clang_Cursor_isBitField(self.x) != 0 } |
| } |
| |
| /// Get a cursor to the bit field's width expression, or `None` if it's not |
| /// a bit field. |
| pub(crate) fn bit_width_expr(&self) -> Option<Cursor> { |
| if !self.is_bit_field() { |
| return None; |
| } |
| |
| let mut result = None; |
| self.visit(|cur| { |
| // The first child may or may not be a TypeRef, depending on whether |
| // the field's type is builtin. Skip it. |
| if cur.kind() == CXCursor_TypeRef { |
| return CXChildVisit_Continue; |
| } |
| |
| // The next expression or literal is the bit width. |
| result = Some(cur); |
| |
| CXChildVisit_Break |
| }); |
| |
| result |
| } |
| |
| /// Get the width of this cursor's referent bit field, or `None` if the |
| /// referent is not a bit field or if the width could not be evaluated. |
| pub(crate) fn bit_width(&self) -> Option<u32> { |
| // It is not safe to check the bit width without ensuring it doesn't |
| // depend on a template parameter. See |
| // https://github.com/rust-lang/rust-bindgen/issues/2239 |
| if self.bit_width_expr()?.is_dependent_on_template_parameter() { |
| return None; |
| } |
| |
| unsafe { |
| let w = clang_getFieldDeclBitWidth(self.x); |
| if w == -1 { |
| None |
| } else { |
| Some(w as u32) |
| } |
| } |
| } |
| |
| /// Get the integer representation type used to hold this cursor's referent |
| /// enum type. |
| pub(crate) fn enum_type(&self) -> Option<Type> { |
| unsafe { |
| let t = Type { |
| x: clang_getEnumDeclIntegerType(self.x), |
| }; |
| if t.is_valid() { |
| Some(t) |
| } else { |
| None |
| } |
| } |
| } |
| |
| /// Get the boolean constant value for this cursor's enum variant referent. |
| /// |
| /// Returns None if the cursor's referent is not an enum variant. |
| pub(crate) fn enum_val_boolean(&self) -> Option<bool> { |
| unsafe { |
| if self.kind() == CXCursor_EnumConstantDecl { |
| Some(clang_getEnumConstantDeclValue(self.x) != 0) |
| } else { |
| None |
| } |
| } |
| } |
| |
| /// Get the signed constant value for this cursor's enum variant referent. |
| /// |
| /// Returns None if the cursor's referent is not an enum variant. |
| pub(crate) fn enum_val_signed(&self) -> Option<i64> { |
| unsafe { |
| if self.kind() == CXCursor_EnumConstantDecl { |
| #[allow(clippy::unnecessary_cast)] |
| Some(clang_getEnumConstantDeclValue(self.x) as i64) |
| } else { |
| None |
| } |
| } |
| } |
| |
| /// Get the unsigned constant value for this cursor's enum variant referent. |
| /// |
| /// Returns None if the cursor's referent is not an enum variant. |
| pub(crate) fn enum_val_unsigned(&self) -> Option<u64> { |
| unsafe { |
| if self.kind() == CXCursor_EnumConstantDecl { |
| #[allow(clippy::unnecessary_cast)] |
| Some(clang_getEnumConstantDeclUnsignedValue(self.x) as u64) |
| } else { |
| None |
| } |
| } |
| } |
| |
| /// Does this cursor have the given attributes? |
| pub(crate) fn has_attrs<const N: usize>( |
| &self, |
| attrs: &[Attribute; N], |
| ) -> [bool; N] { |
| let mut found_attrs = [false; N]; |
| let mut found_count = 0; |
| |
| self.visit(|cur| { |
| let kind = cur.kind(); |
| for (idx, attr) in attrs.iter().enumerate() { |
| let found_attr = &mut found_attrs[idx]; |
| if !*found_attr { |
| // `attr.name` and` attr.token_kind` are checked against unexposed attributes only. |
| if attr.kind.map_or(false, |k| k == kind) || |
| (kind == CXCursor_UnexposedAttr && |
| cur.tokens().iter().any(|t| { |
| t.kind == attr.token_kind && |
| t.spelling() == attr.name |
| })) |
| { |
| *found_attr = true; |
| found_count += 1; |
| |
| if found_count == N { |
| return CXChildVisit_Break; |
| } |
| } |
| } |
| } |
| |
| CXChildVisit_Continue |
| }); |
| |
| found_attrs |
| } |
| |
| /// Given that this cursor's referent is a `typedef`, get the `Type` that is |
| /// being aliased. |
| pub(crate) fn typedef_type(&self) -> Option<Type> { |
| let inner = Type { |
| x: unsafe { clang_getTypedefDeclUnderlyingType(self.x) }, |
| }; |
| |
| if inner.is_valid() { |
| Some(inner) |
| } else { |
| None |
| } |
| } |
| |
| /// Get the linkage kind for this cursor's referent. |
| /// |
| /// This only applies to functions and variables. |
| pub(crate) fn linkage(&self) -> CXLinkageKind { |
| unsafe { clang_getCursorLinkage(self.x) } |
| } |
| |
| /// Get the visibility of this cursor's referent. |
| pub(crate) fn visibility(&self) -> CXVisibilityKind { |
| unsafe { clang_getCursorVisibility(self.x) } |
| } |
| |
| /// Given that this cursor's referent is a function, return cursors to its |
| /// parameters. |
| /// |
| /// Returns None if the cursor's referent is not a function/method call or |
| /// declaration. |
| pub(crate) fn args(&self) -> Option<Vec<Cursor>> { |
| // match self.kind() { |
| // CXCursor_FunctionDecl | |
| // CXCursor_CXXMethod => { |
| self.num_args().ok().map(|num| { |
| (0..num) |
| .map(|i| Cursor { |
| x: unsafe { clang_Cursor_getArgument(self.x, i as c_uint) }, |
| }) |
| .collect() |
| }) |
| } |
| |
| /// Given that this cursor's referent is a function/method call or |
| /// declaration, return the number of arguments it takes. |
| /// |
| /// Returns Err if the cursor's referent is not a function/method call or |
| /// declaration. |
| pub(crate) fn num_args(&self) -> Result<u32, ()> { |
| unsafe { |
| let w = clang_Cursor_getNumArguments(self.x); |
| if w == -1 { |
| Err(()) |
| } else { |
| Ok(w as u32) |
| } |
| } |
| } |
| |
| /// Get the access specifier for this cursor's referent. |
| pub(crate) fn access_specifier(&self) -> CX_CXXAccessSpecifier { |
| unsafe { clang_getCXXAccessSpecifier(self.x) } |
| } |
| |
| /// Is the cursor's referrent publically accessible in C++? |
| /// |
| /// Returns true if self.access_specifier() is `CX_CXXPublic` or |
| /// `CX_CXXInvalidAccessSpecifier`. |
| pub(crate) fn public_accessible(&self) -> bool { |
| let access = self.access_specifier(); |
| access == CX_CXXPublic || access == CX_CXXInvalidAccessSpecifier |
| } |
| |
| /// Is this cursor's referent a field declaration that is marked as |
| /// `mutable`? |
| pub(crate) fn is_mutable_field(&self) -> bool { |
| unsafe { clang_CXXField_isMutable(self.x) != 0 } |
| } |
| |
| /// Get the offset of the field represented by the Cursor. |
| pub(crate) fn offset_of_field(&self) -> Result<usize, LayoutError> { |
| let offset = unsafe { clang_Cursor_getOffsetOfField(self.x) }; |
| |
| if offset < 0 { |
| Err(LayoutError::from(offset as i32)) |
| } else { |
| Ok(offset as usize) |
| } |
| } |
| |
| /// Is this cursor's referent a member function that is declared `static`? |
| pub(crate) fn method_is_static(&self) -> bool { |
| unsafe { clang_CXXMethod_isStatic(self.x) != 0 } |
| } |
| |
| /// Is this cursor's referent a member function that is declared `const`? |
| pub(crate) fn method_is_const(&self) -> bool { |
| unsafe { clang_CXXMethod_isConst(self.x) != 0 } |
| } |
| |
| /// Is this cursor's referent a member function that is virtual? |
| pub(crate) fn method_is_virtual(&self) -> bool { |
| unsafe { clang_CXXMethod_isVirtual(self.x) != 0 } |
| } |
| |
| /// Is this cursor's referent a member function that is pure virtual? |
| pub(crate) fn method_is_pure_virtual(&self) -> bool { |
| unsafe { clang_CXXMethod_isPureVirtual(self.x) != 0 } |
| } |
| |
| /// Is this cursor's referent a struct or class with virtual members? |
| pub(crate) fn is_virtual_base(&self) -> bool { |
| unsafe { clang_isVirtualBase(self.x) != 0 } |
| } |
| |
| /// Try to evaluate this cursor. |
| pub(crate) fn evaluate(&self) -> Option<EvalResult> { |
| EvalResult::new(*self) |
| } |
| |
| /// Return the result type for this cursor |
| pub(crate) fn ret_type(&self) -> Option<Type> { |
| let rt = Type { |
| x: unsafe { clang_getCursorResultType(self.x) }, |
| }; |
| if rt.is_valid() { |
| Some(rt) |
| } else { |
| None |
| } |
| } |
| |
| /// Gets the tokens that correspond to that cursor. |
| pub(crate) fn tokens(&self) -> RawTokens { |
| RawTokens::new(self) |
| } |
| |
| /// Gets the tokens that correspond to that cursor as `cexpr` tokens. |
| pub(crate) fn cexpr_tokens(self) -> Vec<cexpr::token::Token> { |
| self.tokens() |
| .iter() |
| .filter_map(|token| token.as_cexpr_token()) |
| .collect() |
| } |
| |
| /// Obtain the real path name of a cursor of InclusionDirective kind. |
| /// |
| /// Returns None if the cursor does not include a file, otherwise the file's full name |
| pub(crate) fn get_included_file_name(&self) -> Option<String> { |
| let file = unsafe { clang_sys::clang_getIncludedFile(self.x) }; |
| if file.is_null() { |
| None |
| } else { |
| Some(unsafe { |
| cxstring_into_string(clang_sys::clang_getFileName(file)) |
| }) |
| } |
| } |
| } |
| |
| /// A struct that owns the tokenizer result from a given cursor. |
| pub(crate) struct RawTokens<'a> { |
| cursor: &'a Cursor, |
| tu: CXTranslationUnit, |
| tokens: *mut CXToken, |
| token_count: c_uint, |
| } |
| |
| impl<'a> RawTokens<'a> { |
| fn new(cursor: &'a Cursor) -> Self { |
| let mut tokens = ptr::null_mut(); |
| let mut token_count = 0; |
| let range = cursor.extent(); |
| let tu = unsafe { clang_Cursor_getTranslationUnit(cursor.x) }; |
| unsafe { clang_tokenize(tu, range, &mut tokens, &mut token_count) }; |
| Self { |
| cursor, |
| tu, |
| tokens, |
| token_count, |
| } |
| } |
| |
| fn as_slice(&self) -> &[CXToken] { |
| if self.tokens.is_null() { |
| return &[]; |
| } |
| unsafe { slice::from_raw_parts(self.tokens, self.token_count as usize) } |
| } |
| |
| /// Get an iterator over these tokens. |
| pub(crate) fn iter(&self) -> ClangTokenIterator { |
| ClangTokenIterator { |
| tu: self.tu, |
| raw: self.as_slice().iter(), |
| } |
| } |
| } |
| |
| impl<'a> Drop for RawTokens<'a> { |
| fn drop(&mut self) { |
| if !self.tokens.is_null() { |
| unsafe { |
| clang_disposeTokens( |
| self.tu, |
| self.tokens, |
| self.token_count as c_uint, |
| ); |
| } |
| } |
| } |
| } |
| |
| /// A raw clang token, that exposes only kind, spelling, and extent. This is a |
| /// slightly more convenient version of `CXToken` which owns the spelling |
| /// string and extent. |
| #[derive(Debug)] |
| pub(crate) struct ClangToken { |
| spelling: CXString, |
| /// The extent of the token. This is the same as the relevant member from |
| /// `CXToken`. |
| pub(crate) extent: CXSourceRange, |
| /// The kind of the token. This is the same as the relevant member from |
| /// `CXToken`. |
| pub(crate) kind: CXTokenKind, |
| } |
| |
| impl ClangToken { |
| /// Get the token spelling, without being converted to utf-8. |
| pub(crate) fn spelling(&self) -> &[u8] { |
| let c_str = unsafe { |
| CStr::from_ptr(clang_getCString(self.spelling) as *const _) |
| }; |
| c_str.to_bytes() |
| } |
| |
| /// Converts a ClangToken to a `cexpr` token if possible. |
| pub(crate) fn as_cexpr_token(&self) -> Option<cexpr::token::Token> { |
| use cexpr::token; |
| |
| let kind = match self.kind { |
| CXToken_Punctuation => token::Kind::Punctuation, |
| CXToken_Literal => token::Kind::Literal, |
| CXToken_Identifier => token::Kind::Identifier, |
| CXToken_Keyword => token::Kind::Keyword, |
| // NB: cexpr is not too happy about comments inside |
| // expressions, so we strip them down here. |
| CXToken_Comment => return None, |
| _ => { |
| warn!("Found unexpected token kind: {:?}", self); |
| return None; |
| } |
| }; |
| |
| Some(token::Token { |
| kind, |
| raw: self.spelling().to_vec().into_boxed_slice(), |
| }) |
| } |
| } |
| |
| impl Drop for ClangToken { |
| fn drop(&mut self) { |
| unsafe { clang_disposeString(self.spelling) } |
| } |
| } |
| |
| /// An iterator over a set of Tokens. |
| pub(crate) struct ClangTokenIterator<'a> { |
| tu: CXTranslationUnit, |
| raw: slice::Iter<'a, CXToken>, |
| } |
| |
| impl<'a> Iterator for ClangTokenIterator<'a> { |
| type Item = ClangToken; |
| |
| fn next(&mut self) -> Option<Self::Item> { |
| let raw = self.raw.next()?; |
| unsafe { |
| let kind = clang_getTokenKind(*raw); |
| let spelling = clang_getTokenSpelling(self.tu, *raw); |
| let extent = clang_getTokenExtent(self.tu, *raw); |
| Some(ClangToken { |
| kind, |
| extent, |
| spelling, |
| }) |
| } |
| } |
| } |
| |
| /// Checks whether the name looks like an identifier, i.e. is alphanumeric |
| /// (including '_') and does not start with a digit. |
| pub(crate) fn is_valid_identifier(name: &str) -> bool { |
| let mut chars = name.chars(); |
| let first_valid = chars |
| .next() |
| .map(|c| c.is_alphabetic() || c == '_') |
| .unwrap_or(false); |
| |
| first_valid && chars.all(|c| c.is_alphanumeric() || c == '_') |
| } |
| |
| extern "C" fn visit_children<Visitor>( |
| cur: CXCursor, |
| _parent: CXCursor, |
| data: CXClientData, |
| ) -> CXChildVisitResult |
| where |
| Visitor: FnMut(Cursor) -> CXChildVisitResult, |
| { |
| let func: &mut Visitor = unsafe { &mut *(data as *mut Visitor) }; |
| let child = Cursor { x: cur }; |
| |
| (*func)(child) |
| } |
| |
| impl PartialEq for Cursor { |
| fn eq(&self, other: &Cursor) -> bool { |
| unsafe { clang_equalCursors(self.x, other.x) == 1 } |
| } |
| } |
| |
| impl Eq for Cursor {} |
| |
| impl Hash for Cursor { |
| fn hash<H: Hasher>(&self, state: &mut H) { |
| unsafe { clang_hashCursor(self.x) }.hash(state) |
| } |
| } |
| |
| /// The type of a node in clang's AST. |
| #[derive(Clone, Copy)] |
| pub(crate) struct Type { |
| x: CXType, |
| } |
| |
| impl PartialEq for Type { |
| fn eq(&self, other: &Self) -> bool { |
| unsafe { clang_equalTypes(self.x, other.x) != 0 } |
| } |
| } |
| |
| impl Eq for Type {} |
| |
| impl fmt::Debug for Type { |
| fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result { |
| write!( |
| fmt, |
| "Type({}, kind: {}, cconv: {}, decl: {:?}, canon: {:?})", |
| self.spelling(), |
| type_to_str(self.kind()), |
| self.call_conv(), |
| self.declaration(), |
| self.declaration().canonical() |
| ) |
| } |
| } |
| |
| /// An error about the layout of a struct, class, or type. |
| #[derive(Debug, Copy, Clone, Eq, PartialEq, Hash)] |
| pub(crate) enum LayoutError { |
| /// Asked for the layout of an invalid type. |
| Invalid, |
| /// Asked for the layout of an incomplete type. |
| Incomplete, |
| /// Asked for the layout of a dependent type. |
| Dependent, |
| /// Asked for the layout of a type that does not have constant size. |
| NotConstantSize, |
| /// Asked for the layout of a field in a type that does not have such a |
| /// field. |
| InvalidFieldName, |
| /// An unknown layout error. |
| Unknown, |
| } |
| |
| impl ::std::convert::From<i32> for LayoutError { |
| fn from(val: i32) -> Self { |
| use self::LayoutError::*; |
| |
| match val { |
| CXTypeLayoutError_Invalid => Invalid, |
| CXTypeLayoutError_Incomplete => Incomplete, |
| CXTypeLayoutError_Dependent => Dependent, |
| CXTypeLayoutError_NotConstantSize => NotConstantSize, |
| CXTypeLayoutError_InvalidFieldName => InvalidFieldName, |
| _ => Unknown, |
| } |
| } |
| } |
| |
| impl Type { |
| /// Get this type's kind. |
| pub(crate) fn kind(&self) -> CXTypeKind { |
| self.x.kind |
| } |
| |
| /// Get a cursor pointing to this type's declaration. |
| pub(crate) fn declaration(&self) -> Cursor { |
| unsafe { |
| Cursor { |
| x: clang_getTypeDeclaration(self.x), |
| } |
| } |
| } |
| |
| /// Get the canonical declaration of this type, if it is available. |
| pub(crate) fn canonical_declaration( |
| &self, |
| location: Option<&Cursor>, |
| ) -> Option<CanonicalTypeDeclaration> { |
| let mut declaration = self.declaration(); |
| if !declaration.is_valid() { |
| if let Some(location) = location { |
| let mut location = *location; |
| if let Some(referenced) = location.referenced() { |
| location = referenced; |
| } |
| if location.is_template_like() { |
| declaration = location; |
| } |
| } |
| } |
| |
| let canonical = declaration.canonical(); |
| if canonical.is_valid() && canonical.kind() != CXCursor_NoDeclFound { |
| Some(CanonicalTypeDeclaration(*self, canonical)) |
| } else { |
| None |
| } |
| } |
| |
| /// Get a raw display name for this type. |
| pub(crate) fn spelling(&self) -> String { |
| let s = unsafe { cxstring_into_string(clang_getTypeSpelling(self.x)) }; |
| // Clang 5.0 introduced changes in the spelling API so it returned the |
| // full qualified name. Let's undo that here. |
| if s.split("::").all(is_valid_identifier) { |
| if let Some(s) = s.split("::").last() { |
| return s.to_owned(); |
| } |
| } |
| |
| s |
| } |
| |
| /// Is this type const qualified? |
| pub(crate) fn is_const(&self) -> bool { |
| unsafe { clang_isConstQualifiedType(self.x) != 0 } |
| } |
| |
| #[inline] |
| fn is_non_deductible_auto_type(&self) -> bool { |
| debug_assert_eq!(self.kind(), CXType_Auto); |
| self.canonical_type() == *self |
| } |
| |
| #[inline] |
| fn clang_size_of(&self, ctx: &BindgenContext) -> c_longlong { |
| match self.kind() { |
| // Work-around https://bugs.llvm.org/show_bug.cgi?id=40975 |
| CXType_RValueReference | CXType_LValueReference => { |
| ctx.target_pointer_size() as c_longlong |
| } |
| // Work-around https://bugs.llvm.org/show_bug.cgi?id=40813 |
| CXType_Auto if self.is_non_deductible_auto_type() => -6, |
| _ => unsafe { clang_Type_getSizeOf(self.x) }, |
| } |
| } |
| |
| #[inline] |
| fn clang_align_of(&self, ctx: &BindgenContext) -> c_longlong { |
| match self.kind() { |
| // Work-around https://bugs.llvm.org/show_bug.cgi?id=40975 |
| CXType_RValueReference | CXType_LValueReference => { |
| ctx.target_pointer_size() as c_longlong |
| } |
| // Work-around https://bugs.llvm.org/show_bug.cgi?id=40813 |
| CXType_Auto if self.is_non_deductible_auto_type() => -6, |
| _ => unsafe { clang_Type_getAlignOf(self.x) }, |
| } |
| } |
| |
| /// What is the size of this type? Paper over invalid types by returning `0` |
| /// for them. |
| pub(crate) fn size(&self, ctx: &BindgenContext) -> usize { |
| let val = self.clang_size_of(ctx); |
| if val < 0 { |
| 0 |
| } else { |
| val as usize |
| } |
| } |
| |
| /// What is the size of this type? |
| pub(crate) fn fallible_size( |
| &self, |
| ctx: &BindgenContext, |
| ) -> Result<usize, LayoutError> { |
| let val = self.clang_size_of(ctx); |
| if val < 0 { |
| Err(LayoutError::from(val as i32)) |
| } else { |
| Ok(val as usize) |
| } |
| } |
| |
| /// What is the alignment of this type? Paper over invalid types by |
| /// returning `0`. |
| pub(crate) fn align(&self, ctx: &BindgenContext) -> usize { |
| let val = self.clang_align_of(ctx); |
| if val < 0 { |
| 0 |
| } else { |
| val as usize |
| } |
| } |
| |
| /// What is the alignment of this type? |
| pub(crate) fn fallible_align( |
| &self, |
| ctx: &BindgenContext, |
| ) -> Result<usize, LayoutError> { |
| let val = self.clang_align_of(ctx); |
| if val < 0 { |
| Err(LayoutError::from(val as i32)) |
| } else { |
| Ok(val as usize) |
| } |
| } |
| |
| /// Get the layout for this type, or an error describing why it does not |
| /// have a valid layout. |
| pub(crate) fn fallible_layout( |
| &self, |
| ctx: &BindgenContext, |
| ) -> Result<crate::ir::layout::Layout, LayoutError> { |
| use crate::ir::layout::Layout; |
| let size = self.fallible_size(ctx)?; |
| let align = self.fallible_align(ctx)?; |
| Ok(Layout::new(size, align)) |
| } |
| |
| /// Get the number of template arguments this type has, or `None` if it is |
| /// not some kind of template. |
| pub(crate) fn num_template_args(&self) -> Option<u32> { |
| let n = unsafe { clang_Type_getNumTemplateArguments(self.x) }; |
| if n >= 0 { |
| Some(n as u32) |
| } else { |
| debug_assert_eq!(n, -1); |
| None |
| } |
| } |
| |
| /// If this type is a class template specialization, return its |
| /// template arguments. Otherwise, return None. |
| pub(crate) fn template_args(&self) -> Option<TypeTemplateArgIterator> { |
| self.num_template_args().map(|n| TypeTemplateArgIterator { |
| x: self.x, |
| length: n, |
| index: 0, |
| }) |
| } |
| |
| /// Given that this type is a function prototype, return the types of its parameters. |
| /// |
| /// Returns None if the type is not a function prototype. |
| pub(crate) fn args(&self) -> Option<Vec<Type>> { |
| self.num_args().ok().map(|num| { |
| (0..num) |
| .map(|i| Type { |
| x: unsafe { clang_getArgType(self.x, i as c_uint) }, |
| }) |
| .collect() |
| }) |
| } |
| |
| /// Given that this type is a function prototype, return the number of arguments it takes. |
| /// |
| /// Returns Err if the type is not a function prototype. |
| pub(crate) fn num_args(&self) -> Result<u32, ()> { |
| unsafe { |
| let w = clang_getNumArgTypes(self.x); |
| if w == -1 { |
| Err(()) |
| } else { |
| Ok(w as u32) |
| } |
| } |
| } |
| |
| /// Given that this type is a pointer type, return the type that it points |
| /// to. |
| pub(crate) fn pointee_type(&self) -> Option<Type> { |
| match self.kind() { |
| CXType_Pointer | |
| CXType_RValueReference | |
| CXType_LValueReference | |
| CXType_MemberPointer | |
| CXType_BlockPointer | |
| CXType_ObjCObjectPointer => { |
| let ret = Type { |
| x: unsafe { clang_getPointeeType(self.x) }, |
| }; |
| debug_assert!(ret.is_valid()); |
| Some(ret) |
| } |
| _ => None, |
| } |
| } |
| |
| /// Given that this type is an array, vector, or complex type, return the |
| /// type of its elements. |
| pub(crate) fn elem_type(&self) -> Option<Type> { |
| let current_type = Type { |
| x: unsafe { clang_getElementType(self.x) }, |
| }; |
| if current_type.is_valid() { |
| Some(current_type) |
| } else { |
| None |
| } |
| } |
| |
| /// Given that this type is an array or vector type, return its number of |
| /// elements. |
| pub(crate) fn num_elements(&self) -> Option<usize> { |
| let num_elements_returned = unsafe { clang_getNumElements(self.x) }; |
| if num_elements_returned != -1 { |
| Some(num_elements_returned as usize) |
| } else { |
| None |
| } |
| } |
| |
| /// Get the canonical version of this type. This sees through `typedef`s and |
| /// aliases to get the underlying, canonical type. |
| pub(crate) fn canonical_type(&self) -> Type { |
| unsafe { |
| Type { |
| x: clang_getCanonicalType(self.x), |
| } |
| } |
| } |
| |
| /// Is this type a variadic function type? |
| pub(crate) fn is_variadic(&self) -> bool { |
| unsafe { clang_isFunctionTypeVariadic(self.x) != 0 } |
| } |
| |
| /// Given that this type is a function type, get the type of its return |
| /// value. |
| pub(crate) fn ret_type(&self) -> Option<Type> { |
| let rt = Type { |
| x: unsafe { clang_getResultType(self.x) }, |
| }; |
| if rt.is_valid() { |
| Some(rt) |
| } else { |
| None |
| } |
| } |
| |
| /// Given that this type is a function type, get its calling convention. If |
| /// this is not a function type, `CXCallingConv_Invalid` is returned. |
| pub(crate) fn call_conv(&self) -> CXCallingConv { |
| unsafe { clang_getFunctionTypeCallingConv(self.x) } |
| } |
| |
| /// For elaborated types (types which use `class`, `struct`, or `union` to |
| /// disambiguate types from local bindings), get the underlying type. |
| pub(crate) fn named(&self) -> Type { |
| unsafe { |
| Type { |
| x: clang_Type_getNamedType(self.x), |
| } |
| } |
| } |
| |
| /// Is this a valid type? |
| pub(crate) fn is_valid(&self) -> bool { |
| self.kind() != CXType_Invalid |
| } |
| |
| /// Is this a valid and exposed type? |
| pub(crate) fn is_valid_and_exposed(&self) -> bool { |
| self.is_valid() && self.kind() != CXType_Unexposed |
| } |
| |
| /// Is this type a fully instantiated template? |
| pub(crate) fn is_fully_instantiated_template(&self) -> bool { |
| // Yep, the spelling of this containing type-parameter is extremely |
| // nasty... But can happen in <type_traits>. Unfortunately I couldn't |
| // reduce it enough :( |
| self.template_args().map_or(false, |args| args.len() > 0) && |
| !matches!( |
| self.declaration().kind(), |
| CXCursor_ClassTemplatePartialSpecialization | |
| CXCursor_TypeAliasTemplateDecl | |
| CXCursor_TemplateTemplateParameter |
| ) |
| } |
| |
| /// Is this type an associated template type? Eg `T::Associated` in |
| /// this example: |
| /// |
| /// ```c++ |
| /// template <typename T> |
| /// class Foo { |
| /// typename T::Associated member; |
| /// }; |
| /// ``` |
| pub(crate) fn is_associated_type(&self) -> bool { |
| // This is terrible :( |
| fn hacky_parse_associated_type<S: AsRef<str>>(spelling: S) -> bool { |
| lazy_static! { |
| static ref ASSOC_TYPE_RE: regex::Regex = regex::Regex::new( |
| r"typename type\-parameter\-\d+\-\d+::.+" |
| ) |
| .unwrap(); |
| } |
| ASSOC_TYPE_RE.is_match(spelling.as_ref()) |
| } |
| |
| self.kind() == CXType_Unexposed && |
| (hacky_parse_associated_type(self.spelling()) || |
| hacky_parse_associated_type( |
| self.canonical_type().spelling(), |
| )) |
| } |
| } |
| |
| /// The `CanonicalTypeDeclaration` type exists as proof-by-construction that its |
| /// cursor is the canonical declaration for its type. If you have a |
| /// `CanonicalTypeDeclaration` instance, you know for sure that the type and |
| /// cursor match up in a canonical declaration relationship, and it simply |
| /// cannot be otherwise. |
| #[derive(Debug, Clone, Copy, PartialEq, Eq)] |
| pub(crate) struct CanonicalTypeDeclaration(Type, Cursor); |
| |
| impl CanonicalTypeDeclaration { |
| /// Get the type. |
| pub(crate) fn ty(&self) -> &Type { |
| &self.0 |
| } |
| |
| /// Get the type's canonical declaration cursor. |
| pub(crate) fn cursor(&self) -> &Cursor { |
| &self.1 |
| } |
| } |
| |
| /// An iterator for a type's template arguments. |
| pub(crate) struct TypeTemplateArgIterator { |
| x: CXType, |
| length: u32, |
| index: u32, |
| } |
| |
| impl Iterator for TypeTemplateArgIterator { |
| type Item = Type; |
| fn next(&mut self) -> Option<Type> { |
| if self.index < self.length { |
| let idx = self.index as c_uint; |
| self.index += 1; |
| Some(Type { |
| x: unsafe { clang_Type_getTemplateArgumentAsType(self.x, idx) }, |
| }) |
| } else { |
| None |
| } |
| } |
| } |
| |
| impl ExactSizeIterator for TypeTemplateArgIterator { |
| fn len(&self) -> usize { |
| assert!(self.index <= self.length); |
| (self.length - self.index) as usize |
| } |
| } |
| |
| /// A `SourceLocation` is a file, line, column, and byte offset location for |
| /// some source text. |
| pub(crate) struct SourceLocation { |
| x: CXSourceLocation, |
| } |
| |
| impl SourceLocation { |
| /// Get the (file, line, column, byte offset) tuple for this source |
| /// location. |
| pub(crate) fn location(&self) -> (File, usize, usize, usize) { |
| unsafe { |
| let mut file = mem::zeroed(); |
| let mut line = 0; |
| let mut col = 0; |
| let mut off = 0; |
| clang_getFileLocation( |
| self.x, &mut file, &mut line, &mut col, &mut off, |
| ); |
| (File { x: file }, line as usize, col as usize, off as usize) |
| } |
| } |
| } |
| |
| impl fmt::Display for SourceLocation { |
| fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { |
| let (file, line, col, _) = self.location(); |
| if let Some(name) = file.name() { |
| write!(f, "{}:{}:{}", name, line, col) |
| } else { |
| "builtin definitions".fmt(f) |
| } |
| } |
| } |
| |
| impl fmt::Debug for SourceLocation { |
| fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { |
| write!(f, "{}", self) |
| } |
| } |
| |
| /// A comment in the source text. |
| /// |
| /// Comments are sort of parsed by Clang, and have a tree structure. |
| pub(crate) struct Comment { |
| x: CXComment, |
| } |
| |
| impl Comment { |
| /// What kind of comment is this? |
| pub(crate) fn kind(&self) -> CXCommentKind { |
| unsafe { clang_Comment_getKind(self.x) } |
| } |
| |
| /// Get this comment's children comment |
| pub(crate) fn get_children(&self) -> CommentChildrenIterator { |
| CommentChildrenIterator { |
| parent: self.x, |
| length: unsafe { clang_Comment_getNumChildren(self.x) }, |
| index: 0, |
| } |
| } |
| |
| /// Given that this comment is the start or end of an HTML tag, get its tag |
| /// name. |
| pub(crate) fn get_tag_name(&self) -> String { |
| unsafe { cxstring_into_string(clang_HTMLTagComment_getTagName(self.x)) } |
| } |
| |
| /// Given that this comment is an HTML start tag, get its attributes. |
| pub(crate) fn get_tag_attrs(&self) -> CommentAttributesIterator { |
| CommentAttributesIterator { |
| x: self.x, |
| length: unsafe { clang_HTMLStartTag_getNumAttrs(self.x) }, |
| index: 0, |
| } |
| } |
| } |
| |
| /// An iterator for a comment's children |
| pub(crate) struct CommentChildrenIterator { |
| parent: CXComment, |
| length: c_uint, |
| index: c_uint, |
| } |
| |
| impl Iterator for CommentChildrenIterator { |
| type Item = Comment; |
| fn next(&mut self) -> Option<Comment> { |
| if self.index < self.length { |
| let idx = self.index; |
| self.index += 1; |
| Some(Comment { |
| x: unsafe { clang_Comment_getChild(self.parent, idx) }, |
| }) |
| } else { |
| None |
| } |
| } |
| } |
| |
| /// An HTML start tag comment attribute |
| pub(crate) struct CommentAttribute { |
| /// HTML start tag attribute name |
| pub(crate) name: String, |
| /// HTML start tag attribute value |
| pub(crate) value: String, |
| } |
| |
| /// An iterator for a comment's attributes |
| pub(crate) struct CommentAttributesIterator { |
| x: CXComment, |
| length: c_uint, |
| index: c_uint, |
| } |
| |
| impl Iterator for CommentAttributesIterator { |
| type Item = CommentAttribute; |
| fn next(&mut self) -> Option<CommentAttribute> { |
| if self.index < self.length { |
| let idx = self.index; |
| self.index += 1; |
| Some(CommentAttribute { |
| name: unsafe { |
| cxstring_into_string(clang_HTMLStartTag_getAttrName( |
| self.x, idx, |
| )) |
| }, |
| value: unsafe { |
| cxstring_into_string(clang_HTMLStartTag_getAttrValue( |
| self.x, idx, |
| )) |
| }, |
| }) |
| } else { |
| None |
| } |
| } |
| } |
| |
| /// A source file. |
| pub(crate) struct File { |
| x: CXFile, |
| } |
| |
| impl File { |
| /// Get the name of this source file. |
| pub(crate) fn name(&self) -> Option<String> { |
| if self.x.is_null() { |
| return None; |
| } |
| Some(unsafe { cxstring_into_string(clang_getFileName(self.x)) }) |
| } |
| } |
| |
| fn cxstring_to_string_leaky(s: CXString) -> String { |
| if s.data.is_null() { |
| return "".to_owned(); |
| } |
| let c_str = unsafe { CStr::from_ptr(clang_getCString(s) as *const _) }; |
| c_str.to_string_lossy().into_owned() |
| } |
| |
| fn cxstring_into_string(s: CXString) -> String { |
| let ret = cxstring_to_string_leaky(s); |
| unsafe { clang_disposeString(s) }; |
| ret |
| } |
| |
| /// An `Index` is an environment for a set of translation units that will |
| /// typically end up linked together in one final binary. |
| pub(crate) struct Index { |
| x: CXIndex, |
| } |
| |
| impl Index { |
| /// Construct a new `Index`. |
| /// |
| /// The `pch` parameter controls whether declarations in pre-compiled |
| /// headers are included when enumerating a translation unit's "locals". |
| /// |
| /// The `diag` parameter controls whether debugging diagnostics are enabled. |
| pub(crate) fn new(pch: bool, diag: bool) -> Index { |
| unsafe { |
| Index { |
| x: clang_createIndex(pch as c_int, diag as c_int), |
| } |
| } |
| } |
| } |
| |
| impl fmt::Debug for Index { |
| fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result { |
| write!(fmt, "Index {{ }}") |
| } |
| } |
| |
| impl Drop for Index { |
| fn drop(&mut self) { |
| unsafe { |
| clang_disposeIndex(self.x); |
| } |
| } |
| } |
| |
| /// A translation unit (or "compilation unit"). |
| pub(crate) struct TranslationUnit { |
| x: CXTranslationUnit, |
| } |
| |
| impl fmt::Debug for TranslationUnit { |
| fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result { |
| write!(fmt, "TranslationUnit {{ }}") |
| } |
| } |
| |
| impl TranslationUnit { |
| /// Parse a source file into a translation unit. |
| pub(crate) fn parse( |
| ix: &Index, |
| file: &str, |
| cmd_args: &[Box<str>], |
| unsaved: &[UnsavedFile], |
| opts: CXTranslationUnit_Flags, |
| ) -> Option<TranslationUnit> { |
| let fname = CString::new(file).unwrap(); |
| let _c_args: Vec<CString> = cmd_args |
| .iter() |
| .map(|s| CString::new(s.as_bytes()).unwrap()) |
| .collect(); |
| let c_args: Vec<*const c_char> = |
| _c_args.iter().map(|s| s.as_ptr()).collect(); |
| let mut c_unsaved: Vec<CXUnsavedFile> = |
| unsaved.iter().map(|f| f.x).collect(); |
| let tu = unsafe { |
| clang_parseTranslationUnit( |
| ix.x, |
| fname.as_ptr(), |
| c_args.as_ptr(), |
| c_args.len() as c_int, |
| c_unsaved.as_mut_ptr(), |
| c_unsaved.len() as c_uint, |
| opts, |
| ) |
| }; |
| if tu.is_null() { |
| None |
| } else { |
| Some(TranslationUnit { x: tu }) |
| } |
| } |
| |
| /// Get the Clang diagnostic information associated with this translation |
| /// unit. |
| pub(crate) fn diags(&self) -> Vec<Diagnostic> { |
| unsafe { |
| let num = clang_getNumDiagnostics(self.x) as usize; |
| let mut diags = vec![]; |
| for i in 0..num { |
| diags.push(Diagnostic { |
| x: clang_getDiagnostic(self.x, i as c_uint), |
| }); |
| } |
| diags |
| } |
| } |
| |
| /// Get a cursor pointing to the root of this translation unit's AST. |
| pub(crate) fn cursor(&self) -> Cursor { |
| unsafe { |
| Cursor { |
| x: clang_getTranslationUnitCursor(self.x), |
| } |
| } |
| } |
| |
| /// Is this the null translation unit? |
| pub(crate) fn is_null(&self) -> bool { |
| self.x.is_null() |
| } |
| } |
| |
| impl Drop for TranslationUnit { |
| fn drop(&mut self) { |
| unsafe { |
| clang_disposeTranslationUnit(self.x); |
| } |
| } |
| } |
| |
| /// A diagnostic message generated while parsing a translation unit. |
| pub(crate) struct Diagnostic { |
| x: CXDiagnostic, |
| } |
| |
| impl Diagnostic { |
| /// Format this diagnostic message as a string, using the given option bit |
| /// flags. |
| pub(crate) fn format(&self) -> String { |
| unsafe { |
| let opts = clang_defaultDiagnosticDisplayOptions(); |
| cxstring_into_string(clang_formatDiagnostic(self.x, opts)) |
| } |
| } |
| |
| /// What is the severity of this diagnostic message? |
| pub(crate) fn severity(&self) -> CXDiagnosticSeverity { |
| unsafe { clang_getDiagnosticSeverity(self.x) } |
| } |
| } |
| |
| impl Drop for Diagnostic { |
| /// Destroy this diagnostic message. |
| fn drop(&mut self) { |
| unsafe { |
| clang_disposeDiagnostic(self.x); |
| } |
| } |
| } |
| |
| /// A file which has not been saved to disk. |
| pub(crate) struct UnsavedFile { |
| x: CXUnsavedFile, |
| /// The name of the unsaved file. Kept here to avoid leaving dangling pointers in |
| /// `CXUnsavedFile`. |
| pub(crate) name: CString, |
| contents: CString, |
| } |
| |
| impl UnsavedFile { |
| /// Construct a new unsaved file with the given `name` and `contents`. |
| pub(crate) fn new(name: &str, contents: &str) -> UnsavedFile { |
| let name = CString::new(name.as_bytes()).unwrap(); |
| let contents = CString::new(contents.as_bytes()).unwrap(); |
| let x = CXUnsavedFile { |
| Filename: name.as_ptr(), |
| Contents: contents.as_ptr(), |
| Length: contents.as_bytes().len() as c_ulong, |
| }; |
| UnsavedFile { x, name, contents } |
| } |
| } |
| |
| impl fmt::Debug for UnsavedFile { |
| fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result { |
| write!( |
| fmt, |
| "UnsavedFile(name: {:?}, contents: {:?})", |
| self.name, self.contents |
| ) |
| } |
| } |
| |
| /// Convert a cursor kind into a static string. |
| pub(crate) fn kind_to_str(x: CXCursorKind) -> String { |
| unsafe { cxstring_into_string(clang_getCursorKindSpelling(x)) } |
| } |
| |
| /// Convert a type kind to a static string. |
| pub(crate) fn type_to_str(x: CXTypeKind) -> String { |
| unsafe { cxstring_into_string(clang_getTypeKindSpelling(x)) } |
| } |
| |
| /// Dump the Clang AST to stdout for debugging purposes. |
| pub(crate) fn ast_dump(c: &Cursor, depth: isize) -> CXChildVisitResult { |
| fn print_indent<S: AsRef<str>>(depth: isize, s: S) { |
| for _ in 0..depth { |
| print!(" "); |
| } |
| println!("{}", s.as_ref()); |
| } |
| |
| fn print_cursor<S: AsRef<str>>(depth: isize, prefix: S, c: &Cursor) { |
| let prefix = prefix.as_ref(); |
| print_indent( |
| depth, |
| format!(" {}kind = {}", prefix, kind_to_str(c.kind())), |
| ); |
| print_indent( |
| depth, |
| format!(" {}spelling = \"{}\"", prefix, c.spelling()), |
| ); |
| print_indent(depth, format!(" {}location = {}", prefix, c.location())); |
| print_indent( |
| depth, |
| format!(" {}is-definition? {}", prefix, c.is_definition()), |
| ); |
| print_indent( |
| depth, |
| format!(" {}is-declaration? {}", prefix, c.is_declaration()), |
| ); |
| print_indent( |
| depth, |
| format!( |
| " {}is-inlined-function? {}", |
| prefix, |
| c.is_inlined_function() |
| ), |
| ); |
| |
| let templ_kind = c.template_kind(); |
| if templ_kind != CXCursor_NoDeclFound { |
| print_indent( |
| depth, |
| format!( |
| " {}template-kind = {}", |
| prefix, |
| kind_to_str(templ_kind) |
| ), |
| ); |
| } |
| if let Some(usr) = c.usr() { |
| print_indent(depth, format!(" {}usr = \"{}\"", prefix, usr)); |
| } |
| if let Ok(num) = c.num_args() { |
| print_indent(depth, format!(" {}number-of-args = {}", prefix, num)); |
| } |
| if let Some(num) = c.num_template_args() { |
| print_indent( |
| depth, |
| format!(" {}number-of-template-args = {}", prefix, num), |
| ); |
| } |
| |
| if c.is_bit_field() { |
| let width = match c.bit_width() { |
| Some(w) => w.to_string(), |
| None => "<unevaluable>".to_string(), |
| }; |
| print_indent(depth, format!(" {}bit-width = {}", prefix, width)); |
| } |
| |
| if let Some(ty) = c.enum_type() { |
| print_indent( |
| depth, |
| format!(" {}enum-type = {}", prefix, type_to_str(ty.kind())), |
| ); |
| } |
| if let Some(val) = c.enum_val_signed() { |
| print_indent(depth, format!(" {}enum-val = {}", prefix, val)); |
| } |
| if let Some(ty) = c.typedef_type() { |
| print_indent( |
| depth, |
| format!(" {}typedef-type = {}", prefix, type_to_str(ty.kind())), |
| ); |
| } |
| if let Some(ty) = c.ret_type() { |
| print_indent( |
| depth, |
| format!(" {}ret-type = {}", prefix, type_to_str(ty.kind())), |
| ); |
| } |
| |
| if let Some(refd) = c.referenced() { |
| if refd != *c { |
| println!(); |
| print_cursor( |
| depth, |
| String::from(prefix) + "referenced.", |
| &refd, |
| ); |
| } |
| } |
| |
| let canonical = c.canonical(); |
| if canonical != *c { |
| println!(); |
| print_cursor( |
| depth, |
| String::from(prefix) + "canonical.", |
| &canonical, |
| ); |
| } |
| |
| if let Some(specialized) = c.specialized() { |
| if specialized != *c { |
| println!(); |
| print_cursor( |
| depth, |
| String::from(prefix) + "specialized.", |
| &specialized, |
| ); |
| } |
| } |
| |
| if let Some(parent) = c.fallible_semantic_parent() { |
| println!(); |
| print_cursor( |
| depth, |
| String::from(prefix) + "semantic-parent.", |
| &parent, |
| ); |
| } |
| } |
| |
| fn print_type<S: AsRef<str>>(depth: isize, prefix: S, ty: &Type) { |
| let prefix = prefix.as_ref(); |
| |
| let kind = ty.kind(); |
| print_indent(depth, format!(" {}kind = {}", prefix, type_to_str(kind))); |
| if kind == CXType_Invalid { |
| return; |
| } |
| |
| print_indent(depth, format!(" {}cconv = {}", prefix, ty.call_conv())); |
| |
| print_indent( |
| depth, |
| format!(" {}spelling = \"{}\"", prefix, ty.spelling()), |
| ); |
| let num_template_args = |
| unsafe { clang_Type_getNumTemplateArguments(ty.x) }; |
| if num_template_args >= 0 { |
| print_indent( |
| depth, |
| format!( |
| " {}number-of-template-args = {}", |
| prefix, num_template_args |
| ), |
| ); |
| } |
| if let Some(num) = ty.num_elements() { |
| print_indent( |
| depth, |
| format!(" {}number-of-elements = {}", prefix, num), |
| ); |
| } |
| print_indent( |
| depth, |
| format!(" {}is-variadic? {}", prefix, ty.is_variadic()), |
| ); |
| |
| let canonical = ty.canonical_type(); |
| if canonical != *ty { |
| println!(); |
| print_type(depth, String::from(prefix) + "canonical.", &canonical); |
| } |
| |
| if let Some(pointee) = ty.pointee_type() { |
| if pointee != *ty { |
| println!(); |
| print_type(depth, String::from(prefix) + "pointee.", &pointee); |
| } |
| } |
| |
| if let Some(elem) = ty.elem_type() { |
| if elem != *ty { |
| println!(); |
| print_type(depth, String::from(prefix) + "elements.", &elem); |
| } |
| } |
| |
| if let Some(ret) = ty.ret_type() { |
| if ret != *ty { |
| println!(); |
| print_type(depth, String::from(prefix) + "return.", &ret); |
| } |
| } |
| |
| let named = ty.named(); |
| if named != *ty && named.is_valid() { |
| println!(); |
| print_type(depth, String::from(prefix) + "named.", &named); |
| } |
| } |
| |
| print_indent(depth, "("); |
| print_cursor(depth, "", c); |
| |
| println!(); |
| let ty = c.cur_type(); |
| print_type(depth, "type.", &ty); |
| |
| let declaration = ty.declaration(); |
| if declaration != *c && declaration.kind() != CXCursor_NoDeclFound { |
| println!(); |
| print_cursor(depth, "type.declaration.", &declaration); |
| } |
| |
| // Recurse. |
| let mut found_children = false; |
| c.visit(|s| { |
| if !found_children { |
| println!(); |
| found_children = true; |
| } |
| ast_dump(&s, depth + 1) |
| }); |
| |
| print_indent(depth, ")"); |
| |
| CXChildVisit_Continue |
| } |
| |
| /// Try to extract the clang version to a string |
| pub(crate) fn extract_clang_version() -> String { |
| unsafe { cxstring_into_string(clang_getClangVersion()) } |
| } |
| |
| /// A wrapper for the result of evaluating an expression. |
| #[derive(Debug)] |
| pub(crate) struct EvalResult { |
| x: CXEvalResult, |
| ty: Type, |
| } |
| |
| impl EvalResult { |
| /// Evaluate `cursor` and return the result. |
| pub(crate) fn new(cursor: Cursor) -> Option<Self> { |
| // Work around https://bugs.llvm.org/show_bug.cgi?id=42532, see: |
| // * https://github.com/rust-lang/rust-bindgen/issues/283 |
| // * https://github.com/rust-lang/rust-bindgen/issues/1590 |
| { |
| let mut found_cant_eval = false; |
| cursor.visit(|c| { |
| if c.kind() == CXCursor_TypeRef && |
| c.cur_type().canonical_type().kind() == CXType_Unexposed |
| { |
| found_cant_eval = true; |
| return CXChildVisit_Break; |
| } |
| |
| CXChildVisit_Recurse |
| }); |
| |
| if found_cant_eval { |
| return None; |
| } |
| } |
| Some(EvalResult { |
| x: unsafe { clang_Cursor_Evaluate(cursor.x) }, |
| ty: cursor.cur_type().canonical_type(), |
| }) |
| } |
| |
| fn kind(&self) -> CXEvalResultKind { |
| unsafe { clang_EvalResult_getKind(self.x) } |
| } |
| |
| /// Try to get back the result as a double. |
| pub(crate) fn as_double(&self) -> Option<f64> { |
| match self.kind() { |
| CXEval_Float => { |
| Some(unsafe { clang_EvalResult_getAsDouble(self.x) }) |
| } |
| _ => None, |
| } |
| } |
| |
| /// Try to get back the result as an integer. |
| pub(crate) fn as_int(&self) -> Option<i64> { |
| if self.kind() != CXEval_Int { |
| return None; |
| } |
| |
| if unsafe { clang_EvalResult_isUnsignedInt(self.x) } != 0 { |
| let value = unsafe { clang_EvalResult_getAsUnsigned(self.x) }; |
| if value > i64::max_value() as c_ulonglong { |
| return None; |
| } |
| |
| return Some(value as i64); |
| } |
| |
| let value = unsafe { clang_EvalResult_getAsLongLong(self.x) }; |
| if value > i64::max_value() as c_longlong { |
| return None; |
| } |
| if value < i64::min_value() as c_longlong { |
| return None; |
| } |
| #[allow(clippy::unnecessary_cast)] |
| Some(value as i64) |
| } |
| |
| /// Evaluates the expression as a literal string, that may or may not be |
| /// valid utf-8. |
| pub(crate) fn as_literal_string(&self) -> Option<Vec<u8>> { |
| if self.kind() != CXEval_StrLiteral { |
| return None; |
| } |
| |
| let char_ty = self.ty.pointee_type().or_else(|| self.ty.elem_type())?; |
| match char_ty.kind() { |
| CXType_Char_S | CXType_SChar | CXType_Char_U | CXType_UChar => { |
| let ret = unsafe { |
| CStr::from_ptr(clang_EvalResult_getAsStr(self.x)) |
| }; |
| Some(ret.to_bytes().to_vec()) |
| } |
| // FIXME: Support generating these. |
| CXType_Char16 => None, |
| CXType_Char32 => None, |
| CXType_WChar => None, |
| _ => None, |
| } |
| } |
| } |
| |
| impl Drop for EvalResult { |
| fn drop(&mut self) { |
| unsafe { clang_EvalResult_dispose(self.x) }; |
| } |
| } |
| /// ABI kinds as defined in |
| /// <https://github.com/llvm/llvm-project/blob/ddf1de20a3f7db3bca1ef6ba7e6cbb90aac5fd2d/clang/include/clang/Basic/TargetCXXABI.def> |
| #[derive(Debug, Eq, PartialEq, Copy, Clone)] |
| pub(crate) enum ABIKind { |
| /// All the regular targets like Linux, Mac, WASM, etc. implement the Itanium ABI |
| GenericItanium, |
| /// The ABI used when compiling for the MSVC target |
| Microsoft, |
| } |
| |
| /// Target information obtained from libclang. |
| #[derive(Debug)] |
| pub(crate) struct TargetInfo { |
| /// The target triple. |
| pub(crate) triple: String, |
| /// The width of the pointer _in bits_. |
| pub(crate) pointer_width: usize, |
| /// The ABI of the target |
| pub(crate) abi: ABIKind, |
| } |
| |
| impl TargetInfo { |
| /// Tries to obtain target information from libclang. |
| pub(crate) fn new(tu: &TranslationUnit) -> Self { |
| let triple; |
| let pointer_width; |
| unsafe { |
| let ti = clang_getTranslationUnitTargetInfo(tu.x); |
| triple = cxstring_into_string(clang_TargetInfo_getTriple(ti)); |
| pointer_width = clang_TargetInfo_getPointerWidth(ti); |
| clang_TargetInfo_dispose(ti); |
| } |
| assert!(pointer_width > 0); |
| assert_eq!(pointer_width % 8, 0); |
| |
| let abi = if triple.contains("msvc") { |
| ABIKind::Microsoft |
| } else { |
| ABIKind::GenericItanium |
| }; |
| |
| TargetInfo { |
| triple, |
| pointer_width: pointer_width as usize, |
| abi, |
| } |
| } |
| } |