| use simd_adler32::Adler32; |
| use std::io::{self, Seek, SeekFrom, Write}; |
| |
| use crate::tables::{ |
| BITMASKS, HUFFMAN_CODES, HUFFMAN_LENGTHS, LENGTH_TO_LEN_EXTRA, LENGTH_TO_SYMBOL, |
| }; |
| |
| /// Compressor that produces fdeflate compressed streams. |
| pub struct Compressor<W: Write> { |
| checksum: Adler32, |
| buffer: u64, |
| nbits: u8, |
| writer: W, |
| } |
| impl<W: Write> Compressor<W> { |
| fn write_bits(&mut self, bits: u64, nbits: u8) -> io::Result<()> { |
| debug_assert!(nbits <= 64); |
| |
| self.buffer |= bits << self.nbits; |
| self.nbits += nbits; |
| |
| if self.nbits >= 64 { |
| self.writer.write_all(&self.buffer.to_le_bytes())?; |
| self.nbits -= 64; |
| self.buffer = bits.checked_shr((nbits - self.nbits) as u32).unwrap_or(0); |
| } |
| debug_assert!(self.nbits < 64); |
| Ok(()) |
| } |
| |
| fn flush(&mut self) -> io::Result<()> { |
| if self.nbits % 8 != 0 { |
| self.write_bits(0, 8 - self.nbits % 8)?; |
| } |
| if self.nbits > 0 { |
| self.writer |
| .write_all(&self.buffer.to_le_bytes()[..self.nbits as usize / 8]) |
| .unwrap(); |
| self.buffer = 0; |
| self.nbits = 0; |
| } |
| Ok(()) |
| } |
| |
| fn write_run(&mut self, mut run: u32) -> io::Result<()> { |
| self.write_bits(HUFFMAN_CODES[0] as u64, HUFFMAN_LENGTHS[0])?; |
| run -= 1; |
| |
| while run >= 258 { |
| self.write_bits(HUFFMAN_CODES[285] as u64, HUFFMAN_LENGTHS[285] + 1)?; |
| run -= 258; |
| } |
| |
| if run > 4 { |
| let sym = LENGTH_TO_SYMBOL[run as usize - 3] as usize; |
| self.write_bits(HUFFMAN_CODES[sym] as u64, HUFFMAN_LENGTHS[sym])?; |
| |
| let len_extra = LENGTH_TO_LEN_EXTRA[run as usize - 3]; |
| let extra = ((run - 3) & BITMASKS[len_extra as usize]) as u64; |
| self.write_bits(extra, len_extra + 1)?; |
| } else { |
| debug_assert_eq!(HUFFMAN_CODES[0], 0); |
| self.write_bits(0, run as u8 * HUFFMAN_LENGTHS[0])?; |
| } |
| |
| Ok(()) |
| } |
| |
| /// Create a new Compressor. |
| pub fn new(writer: W) -> io::Result<Self> { |
| let mut compressor = Self { |
| checksum: Adler32::new(), |
| buffer: 0, |
| nbits: 0, |
| writer, |
| }; |
| compressor.write_headers()?; |
| Ok(compressor) |
| } |
| |
| fn write_headers(&mut self) -> io::Result<()> { |
| const HEADER: [u8; 54] = [ |
| 120, 1, 237, 192, 3, 160, 36, 89, 150, 198, 241, 255, 119, 238, 141, 200, 204, 167, |
| 114, 75, 99, 174, 109, 219, 182, 109, 219, 182, 109, 219, 182, 109, 105, 140, 158, 150, |
| 74, 175, 158, 50, 51, 34, 238, 249, 118, 183, 106, 122, 166, 135, 59, 107, 213, 15, |
| ]; |
| self.writer.write_all(&HEADER[..53]).unwrap(); |
| self.write_bits(HEADER[53] as u64, 5)?; |
| |
| Ok(()) |
| } |
| |
| /// Write data to the compressor. |
| pub fn write_data(&mut self, data: &[u8]) -> io::Result<()> { |
| self.checksum.write(data); |
| |
| let mut run = 0; |
| let mut chunks = data.chunks_exact(8); |
| for chunk in &mut chunks { |
| let ichunk = u64::from_le_bytes(chunk.try_into().unwrap()); |
| |
| if ichunk == 0 { |
| run += 8; |
| continue; |
| } else if run > 0 { |
| let run_extra = ichunk.trailing_zeros() / 8; |
| self.write_run(run + run_extra)?; |
| run = 0; |
| |
| if run_extra > 0 { |
| run = ichunk.leading_zeros() / 8; |
| for &b in &chunk[run_extra as usize..8 - run as usize] { |
| self.write_bits( |
| HUFFMAN_CODES[b as usize] as u64, |
| HUFFMAN_LENGTHS[b as usize], |
| )?; |
| } |
| continue; |
| } |
| } |
| |
| let run_start = ichunk.leading_zeros() / 8; |
| if run_start > 0 { |
| for &b in &chunk[..8 - run_start as usize] { |
| self.write_bits( |
| HUFFMAN_CODES[b as usize] as u64, |
| HUFFMAN_LENGTHS[b as usize], |
| )?; |
| } |
| run = run_start; |
| continue; |
| } |
| |
| let n0 = HUFFMAN_LENGTHS[chunk[0] as usize]; |
| let n1 = HUFFMAN_LENGTHS[chunk[1] as usize]; |
| let n2 = HUFFMAN_LENGTHS[chunk[2] as usize]; |
| let n3 = HUFFMAN_LENGTHS[chunk[3] as usize]; |
| let bits = HUFFMAN_CODES[chunk[0] as usize] as u64 |
| | ((HUFFMAN_CODES[chunk[1] as usize] as u64) << n0) |
| | ((HUFFMAN_CODES[chunk[2] as usize] as u64) << (n0 + n1)) |
| | ((HUFFMAN_CODES[chunk[3] as usize] as u64) << (n0 + n1 + n2)); |
| self.write_bits(bits, n0 + n1 + n2 + n3)?; |
| |
| let n4 = HUFFMAN_LENGTHS[chunk[4] as usize]; |
| let n5 = HUFFMAN_LENGTHS[chunk[5] as usize]; |
| let n6 = HUFFMAN_LENGTHS[chunk[6] as usize]; |
| let n7 = HUFFMAN_LENGTHS[chunk[7] as usize]; |
| let bits2 = HUFFMAN_CODES[chunk[4] as usize] as u64 |
| | ((HUFFMAN_CODES[chunk[5] as usize] as u64) << n4) |
| | ((HUFFMAN_CODES[chunk[6] as usize] as u64) << (n4 + n5)) |
| | ((HUFFMAN_CODES[chunk[7] as usize] as u64) << (n4 + n5 + n6)); |
| self.write_bits(bits2, n4 + n5 + n6 + n7)?; |
| } |
| |
| if run > 0 { |
| self.write_run(run)?; |
| } |
| |
| for &b in chunks.remainder() { |
| self.write_bits( |
| HUFFMAN_CODES[b as usize] as u64, |
| HUFFMAN_LENGTHS[b as usize], |
| )?; |
| } |
| |
| Ok(()) |
| } |
| |
| /// Write the remainder of the stream and return the inner writer. |
| pub fn finish(mut self) -> io::Result<W> { |
| // Write end of block |
| self.write_bits(HUFFMAN_CODES[256] as u64, HUFFMAN_LENGTHS[256])?; |
| self.flush()?; |
| |
| // Write Adler32 checksum |
| let checksum: u32 = self.checksum.finish(); |
| self.writer |
| .write_all(checksum.to_be_bytes().as_ref()) |
| .unwrap(); |
| Ok(self.writer) |
| } |
| } |
| |
| /// Compressor that only writes the stored blocks. |
| /// |
| /// This is useful for writing files that are not compressed, but still need to be wrapped in a |
| /// zlib stream. |
| pub struct StoredOnlyCompressor<W> { |
| writer: W, |
| checksum: Adler32, |
| block_bytes: u16, |
| } |
| impl<W: Write + Seek> StoredOnlyCompressor<W> { |
| /// Creates a new `StoredOnlyCompressor` that writes to the given writer. |
| pub fn new(mut writer: W) -> io::Result<Self> { |
| writer.write_all(&[0x78, 0x01])?; // zlib header |
| writer.write_all(&[0; 5])?; // placeholder stored block header |
| |
| Ok(Self { |
| writer, |
| checksum: Adler32::new(), |
| block_bytes: 0, |
| }) |
| } |
| |
| fn set_block_header(&mut self, size: u16, last: bool) -> io::Result<()> { |
| self.writer.seek(SeekFrom::Current(-(size as i64 + 5)))?; |
| self.writer.write_all(&[ |
| last as u8, |
| (size & 0xFF) as u8, |
| ((size >> 8) & 0xFF) as u8, |
| (!size & 0xFF) as u8, |
| ((!size >> 8) & 0xFF) as u8, |
| ])?; |
| self.writer.seek(SeekFrom::Current(size as i64))?; |
| |
| Ok(()) |
| } |
| |
| /// Writes the given data to the underlying writer. |
| pub fn write_data(&mut self, mut data: &[u8]) -> io::Result<()> { |
| self.checksum.write(data); |
| while !data.is_empty() { |
| if self.block_bytes == u16::MAX { |
| self.set_block_header(u16::MAX, false)?; |
| self.writer.write_all(&[0; 5])?; // placeholder stored block header |
| self.block_bytes = 0; |
| } |
| |
| let prefix_bytes = data.len().min((u16::MAX - self.block_bytes) as usize); |
| self.writer.write_all(&data[..prefix_bytes])?; |
| self.block_bytes += prefix_bytes as u16; |
| data = &data[prefix_bytes..]; |
| } |
| |
| Ok(()) |
| } |
| |
| /// Finish writing the final block and return the underlying writer. |
| pub fn finish(mut self) -> io::Result<W> { |
| self.set_block_header(self.block_bytes, true)?; |
| |
| // Write Adler32 checksum |
| let checksum: u32 = self.checksum.finish(); |
| self.writer |
| .write_all(checksum.to_be_bytes().as_ref()) |
| .unwrap(); |
| |
| Ok(self.writer) |
| } |
| } |
| impl<W> StoredOnlyCompressor<W> { |
| /// Return the number of bytes that will be written to the output stream |
| /// for the given input size. Because this compressor only writes stored blocks, |
| /// the output size is always slightly *larger* than the input size. |
| pub fn compressed_size(raw_size: usize) -> usize { |
| (raw_size.saturating_sub(1) / u16::MAX as usize) * (u16::MAX as usize + 5) |
| + (raw_size % u16::MAX as usize + 5) |
| + 6 |
| } |
| } |
| |
| /// Compresses the given data. |
| pub fn compress_to_vec(input: &[u8]) -> Vec<u8> { |
| let mut compressor = Compressor::new(Vec::with_capacity(input.len() / 4)).unwrap(); |
| compressor.write_data(input).unwrap(); |
| compressor.finish().unwrap() |
| } |
| |
| #[cfg(test)] |
| mod tests { |
| use super::*; |
| use rand::Rng; |
| |
| fn roundtrip(data: &[u8]) { |
| let compressed = compress_to_vec(data); |
| let decompressed = miniz_oxide::inflate::decompress_to_vec_zlib(&compressed).unwrap(); |
| assert_eq!(&decompressed, data); |
| } |
| |
| #[test] |
| fn it_works() { |
| roundtrip(b"Hello world!"); |
| } |
| |
| #[test] |
| fn constant() { |
| roundtrip(&vec![0; 2048]); |
| roundtrip(&vec![5; 2048]); |
| roundtrip(&vec![128; 2048]); |
| roundtrip(&vec![254; 2048]); |
| } |
| |
| #[test] |
| fn random() { |
| let mut rng = rand::thread_rng(); |
| let mut data = vec![0; 2048]; |
| for _ in 0..10 { |
| for byte in &mut data { |
| *byte = rng.gen(); |
| } |
| roundtrip(&data); |
| } |
| } |
| } |