| //! Compound types (unions and structs) in our intermediate representation. |
| |
| use itertools::Itertools; |
| |
| use super::analysis::Sizedness; |
| use super::annotations::Annotations; |
| use super::context::{BindgenContext, FunctionId, ItemId, TypeId, VarId}; |
| use super::dot::DotAttributes; |
| use super::item::{IsOpaque, Item}; |
| use super::layout::Layout; |
| use super::template::TemplateParameters; |
| use super::traversal::{EdgeKind, Trace, Tracer}; |
| use super::ty::RUST_DERIVE_IN_ARRAY_LIMIT; |
| use crate::clang; |
| use crate::codegen::struct_layout::{align_to, bytes_from_bits_pow2}; |
| use crate::ir::derive::CanDeriveCopy; |
| use crate::parse::ParseError; |
| use crate::HashMap; |
| use crate::NonCopyUnionStyle; |
| use std::cmp; |
| use std::io; |
| use std::mem; |
| |
| /// The kind of compound type. |
| #[derive(Debug, Copy, Clone, PartialEq, Eq)] |
| pub(crate) enum CompKind { |
| /// A struct. |
| Struct, |
| /// A union. |
| Union, |
| } |
| |
| /// The kind of C++ method. |
| #[derive(Debug, Copy, Clone, PartialEq, Eq)] |
| pub(crate) enum MethodKind { |
| /// A constructor. We represent it as method for convenience, to avoid code |
| /// duplication. |
| Constructor, |
| /// A destructor. |
| Destructor, |
| /// A virtual destructor. |
| VirtualDestructor { |
| /// Whether it's pure virtual. |
| pure_virtual: bool, |
| }, |
| /// A static method. |
| Static, |
| /// A normal method. |
| Normal, |
| /// A virtual method. |
| Virtual { |
| /// Whether it's pure virtual. |
| pure_virtual: bool, |
| }, |
| } |
| |
| impl MethodKind { |
| /// Is this a destructor method? |
| pub(crate) fn is_destructor(&self) -> bool { |
| matches!( |
| *self, |
| MethodKind::Destructor | MethodKind::VirtualDestructor { .. } |
| ) |
| } |
| |
| /// Is this a pure virtual method? |
| pub(crate) fn is_pure_virtual(&self) -> bool { |
| match *self { |
| MethodKind::Virtual { pure_virtual } | |
| MethodKind::VirtualDestructor { pure_virtual } => pure_virtual, |
| _ => false, |
| } |
| } |
| } |
| |
| /// A struct representing a C++ method, either static, normal, or virtual. |
| #[derive(Debug)] |
| pub(crate) struct Method { |
| kind: MethodKind, |
| /// The signature of the method. Take into account this is not a `Type` |
| /// item, but a `Function` one. |
| /// |
| /// This is tricky and probably this field should be renamed. |
| signature: FunctionId, |
| is_const: bool, |
| } |
| |
| impl Method { |
| /// Construct a new `Method`. |
| pub(crate) fn new( |
| kind: MethodKind, |
| signature: FunctionId, |
| is_const: bool, |
| ) -> Self { |
| Method { |
| kind, |
| signature, |
| is_const, |
| } |
| } |
| |
| /// What kind of method is this? |
| pub(crate) fn kind(&self) -> MethodKind { |
| self.kind |
| } |
| |
| /// Is this a constructor? |
| pub(crate) fn is_constructor(&self) -> bool { |
| self.kind == MethodKind::Constructor |
| } |
| |
| /// Is this a virtual method? |
| pub(crate) fn is_virtual(&self) -> bool { |
| matches!( |
| self.kind, |
| MethodKind::Virtual { .. } | MethodKind::VirtualDestructor { .. } |
| ) |
| } |
| |
| /// Is this a static method? |
| pub(crate) fn is_static(&self) -> bool { |
| self.kind == MethodKind::Static |
| } |
| |
| /// Get the ID for the `Function` signature for this method. |
| pub(crate) fn signature(&self) -> FunctionId { |
| self.signature |
| } |
| |
| /// Is this a const qualified method? |
| pub(crate) fn is_const(&self) -> bool { |
| self.is_const |
| } |
| } |
| |
| /// Methods common to the various field types. |
| pub(crate) trait FieldMethods { |
| /// Get the name of this field. |
| fn name(&self) -> Option<&str>; |
| |
| /// Get the type of this field. |
| fn ty(&self) -> TypeId; |
| |
| /// Get the comment for this field. |
| fn comment(&self) -> Option<&str>; |
| |
| /// If this is a bitfield, how many bits does it need? |
| fn bitfield_width(&self) -> Option<u32>; |
| |
| /// Is this feild declared public? |
| fn is_public(&self) -> bool; |
| |
| /// Get the annotations for this field. |
| fn annotations(&self) -> &Annotations; |
| |
| /// The offset of the field (in bits) |
| fn offset(&self) -> Option<usize>; |
| } |
| |
| /// A contiguous set of logical bitfields that live within the same physical |
| /// allocation unit. See 9.2.4 [class.bit] in the C++ standard and [section |
| /// 2.4.II.1 in the Itanium C++ |
| /// ABI](http://itanium-cxx-abi.github.io/cxx-abi/abi.html#class-types). |
| #[derive(Debug)] |
| pub(crate) struct BitfieldUnit { |
| nth: usize, |
| layout: Layout, |
| bitfields: Vec<Bitfield>, |
| } |
| |
| impl BitfieldUnit { |
| /// Get the 1-based index of this bitfield unit within its containing |
| /// struct. Useful for generating a Rust struct's field name for this unit |
| /// of bitfields. |
| pub(crate) fn nth(&self) -> usize { |
| self.nth |
| } |
| |
| /// Get the layout within which these bitfields reside. |
| pub(crate) fn layout(&self) -> Layout { |
| self.layout |
| } |
| |
| /// Get the bitfields within this unit. |
| pub(crate) fn bitfields(&self) -> &[Bitfield] { |
| &self.bitfields |
| } |
| } |
| |
| /// A struct representing a C++ field. |
| #[derive(Debug)] |
| pub(crate) enum Field { |
| /// A normal data member. |
| DataMember(FieldData), |
| |
| /// A physical allocation unit containing many logical bitfields. |
| Bitfields(BitfieldUnit), |
| } |
| |
| impl Field { |
| /// Get this field's layout. |
| pub(crate) fn layout(&self, ctx: &BindgenContext) -> Option<Layout> { |
| match *self { |
| Field::Bitfields(BitfieldUnit { layout, .. }) => Some(layout), |
| Field::DataMember(ref data) => { |
| ctx.resolve_type(data.ty).layout(ctx) |
| } |
| } |
| } |
| } |
| |
| impl Trace for Field { |
| type Extra = (); |
| |
| fn trace<T>(&self, _: &BindgenContext, tracer: &mut T, _: &()) |
| where |
| T: Tracer, |
| { |
| match *self { |
| Field::DataMember(ref data) => { |
| tracer.visit_kind(data.ty.into(), EdgeKind::Field); |
| } |
| Field::Bitfields(BitfieldUnit { ref bitfields, .. }) => { |
| for bf in bitfields { |
| tracer.visit_kind(bf.ty().into(), EdgeKind::Field); |
| } |
| } |
| } |
| } |
| } |
| |
| impl DotAttributes for Field { |
| fn dot_attributes<W>( |
| &self, |
| ctx: &BindgenContext, |
| out: &mut W, |
| ) -> io::Result<()> |
| where |
| W: io::Write, |
| { |
| match *self { |
| Field::DataMember(ref data) => data.dot_attributes(ctx, out), |
| Field::Bitfields(BitfieldUnit { |
| layout, |
| ref bitfields, |
| .. |
| }) => { |
| writeln!( |
| out, |
| r#"<tr> |
| <td>bitfield unit</td> |
| <td> |
| <table border="0"> |
| <tr> |
| <td>unit.size</td><td>{}</td> |
| </tr> |
| <tr> |
| <td>unit.align</td><td>{}</td> |
| </tr> |
| "#, |
| layout.size, layout.align |
| )?; |
| for bf in bitfields { |
| bf.dot_attributes(ctx, out)?; |
| } |
| writeln!(out, "</table></td></tr>") |
| } |
| } |
| } |
| } |
| |
| impl DotAttributes for FieldData { |
| fn dot_attributes<W>( |
| &self, |
| _ctx: &BindgenContext, |
| out: &mut W, |
| ) -> io::Result<()> |
| where |
| W: io::Write, |
| { |
| writeln!( |
| out, |
| "<tr><td>{}</td><td>{:?}</td></tr>", |
| self.name().unwrap_or("(anonymous)"), |
| self.ty() |
| ) |
| } |
| } |
| |
| impl DotAttributes for Bitfield { |
| fn dot_attributes<W>( |
| &self, |
| _ctx: &BindgenContext, |
| out: &mut W, |
| ) -> io::Result<()> |
| where |
| W: io::Write, |
| { |
| writeln!( |
| out, |
| "<tr><td>{} : {}</td><td>{:?}</td></tr>", |
| self.name().unwrap_or("(anonymous)"), |
| self.width(), |
| self.ty() |
| ) |
| } |
| } |
| |
| /// A logical bitfield within some physical bitfield allocation unit. |
| #[derive(Debug)] |
| pub(crate) struct Bitfield { |
| /// Index of the bit within this bitfield's allocation unit where this |
| /// bitfield's bits begin. |
| offset_into_unit: usize, |
| |
| /// The field data for this bitfield. |
| data: FieldData, |
| |
| /// Name of the generated Rust getter for this bitfield. |
| /// |
| /// Should be assigned before codegen. |
| getter_name: Option<String>, |
| |
| /// Name of the generated Rust setter for this bitfield. |
| /// |
| /// Should be assigned before codegen. |
| setter_name: Option<String>, |
| } |
| |
| impl Bitfield { |
| /// Construct a new bitfield. |
| fn new(offset_into_unit: usize, raw: RawField) -> Bitfield { |
| assert!(raw.bitfield_width().is_some()); |
| |
| Bitfield { |
| offset_into_unit, |
| data: raw.0, |
| getter_name: None, |
| setter_name: None, |
| } |
| } |
| |
| /// Get the index of the bit within this bitfield's allocation unit where |
| /// this bitfield begins. |
| pub(crate) fn offset_into_unit(&self) -> usize { |
| self.offset_into_unit |
| } |
| |
| /// Get the bit width of this bitfield. |
| pub(crate) fn width(&self) -> u32 { |
| self.data.bitfield_width().unwrap() |
| } |
| |
| /// Name of the generated Rust getter for this bitfield. |
| /// |
| /// Panics if called before assigning bitfield accessor names or if |
| /// this bitfield have no name. |
| pub(crate) fn getter_name(&self) -> &str { |
| assert!( |
| self.name().is_some(), |
| "`Bitfield::getter_name` called on anonymous field" |
| ); |
| self.getter_name.as_ref().expect( |
| "`Bitfield::getter_name` should only be called after\ |
| assigning bitfield accessor names", |
| ) |
| } |
| |
| /// Name of the generated Rust setter for this bitfield. |
| /// |
| /// Panics if called before assigning bitfield accessor names or if |
| /// this bitfield have no name. |
| pub(crate) fn setter_name(&self) -> &str { |
| assert!( |
| self.name().is_some(), |
| "`Bitfield::setter_name` called on anonymous field" |
| ); |
| self.setter_name.as_ref().expect( |
| "`Bitfield::setter_name` should only be called\ |
| after assigning bitfield accessor names", |
| ) |
| } |
| } |
| |
| impl FieldMethods for Bitfield { |
| fn name(&self) -> Option<&str> { |
| self.data.name() |
| } |
| |
| fn ty(&self) -> TypeId { |
| self.data.ty() |
| } |
| |
| fn comment(&self) -> Option<&str> { |
| self.data.comment() |
| } |
| |
| fn bitfield_width(&self) -> Option<u32> { |
| self.data.bitfield_width() |
| } |
| |
| fn is_public(&self) -> bool { |
| self.data.is_public() |
| } |
| |
| fn annotations(&self) -> &Annotations { |
| self.data.annotations() |
| } |
| |
| fn offset(&self) -> Option<usize> { |
| self.data.offset() |
| } |
| } |
| |
| /// A raw field might be either of a plain data member or a bitfield within a |
| /// bitfield allocation unit, but we haven't processed it and determined which |
| /// yet (which would involve allocating it into a bitfield unit if it is a |
| /// bitfield). |
| #[derive(Debug)] |
| struct RawField(FieldData); |
| |
| impl RawField { |
| /// Construct a new `RawField`. |
| fn new( |
| name: Option<String>, |
| ty: TypeId, |
| comment: Option<String>, |
| annotations: Option<Annotations>, |
| bitfield_width: Option<u32>, |
| public: bool, |
| offset: Option<usize>, |
| ) -> RawField { |
| RawField(FieldData { |
| name, |
| ty, |
| comment, |
| annotations: annotations.unwrap_or_default(), |
| bitfield_width, |
| public, |
| offset, |
| }) |
| } |
| } |
| |
| impl FieldMethods for RawField { |
| fn name(&self) -> Option<&str> { |
| self.0.name() |
| } |
| |
| fn ty(&self) -> TypeId { |
| self.0.ty() |
| } |
| |
| fn comment(&self) -> Option<&str> { |
| self.0.comment() |
| } |
| |
| fn bitfield_width(&self) -> Option<u32> { |
| self.0.bitfield_width() |
| } |
| |
| fn is_public(&self) -> bool { |
| self.0.is_public() |
| } |
| |
| fn annotations(&self) -> &Annotations { |
| self.0.annotations() |
| } |
| |
| fn offset(&self) -> Option<usize> { |
| self.0.offset() |
| } |
| } |
| |
| /// Convert the given ordered set of raw fields into a list of either plain data |
| /// members, and/or bitfield units containing multiple bitfields. |
| /// |
| /// If we do not have the layout for a bitfield's type, then we can't reliably |
| /// compute its allocation unit. In such cases, we return an error. |
| fn raw_fields_to_fields_and_bitfield_units<I>( |
| ctx: &BindgenContext, |
| raw_fields: I, |
| packed: bool, |
| ) -> Result<(Vec<Field>, bool), ()> |
| where |
| I: IntoIterator<Item = RawField>, |
| { |
| let mut raw_fields = raw_fields.into_iter().fuse().peekable(); |
| let mut fields = vec![]; |
| let mut bitfield_unit_count = 0; |
| |
| loop { |
| // While we have plain old data members, just keep adding them to our |
| // resulting fields. We introduce a scope here so that we can use |
| // `raw_fields` again after the `by_ref` iterator adaptor is dropped. |
| { |
| let non_bitfields = raw_fields |
| .by_ref() |
| .peeking_take_while(|f| f.bitfield_width().is_none()) |
| .map(|f| Field::DataMember(f.0)); |
| fields.extend(non_bitfields); |
| } |
| |
| // Now gather all the consecutive bitfields. Only consecutive bitfields |
| // may potentially share a bitfield allocation unit with each other in |
| // the Itanium C++ ABI. |
| let mut bitfields = raw_fields |
| .by_ref() |
| .peeking_take_while(|f| f.bitfield_width().is_some()) |
| .peekable(); |
| |
| if bitfields.peek().is_none() { |
| break; |
| } |
| |
| bitfields_to_allocation_units( |
| ctx, |
| &mut bitfield_unit_count, |
| &mut fields, |
| bitfields, |
| packed, |
| )?; |
| } |
| |
| assert!( |
| raw_fields.next().is_none(), |
| "The above loop should consume all items in `raw_fields`" |
| ); |
| |
| Ok((fields, bitfield_unit_count != 0)) |
| } |
| |
| /// Given a set of contiguous raw bitfields, group and allocate them into |
| /// (potentially multiple) bitfield units. |
| fn bitfields_to_allocation_units<E, I>( |
| ctx: &BindgenContext, |
| bitfield_unit_count: &mut usize, |
| fields: &mut E, |
| raw_bitfields: I, |
| packed: bool, |
| ) -> Result<(), ()> |
| where |
| E: Extend<Field>, |
| I: IntoIterator<Item = RawField>, |
| { |
| assert!(ctx.collected_typerefs()); |
| |
| // NOTE: What follows is reverse-engineered from LLVM's |
| // lib/AST/RecordLayoutBuilder.cpp |
| // |
| // FIXME(emilio): There are some differences between Microsoft and the |
| // Itanium ABI, but we'll ignore those and stick to Itanium for now. |
| // |
| // Also, we need to handle packed bitfields and stuff. |
| // |
| // TODO(emilio): Take into account C++'s wide bitfields, and |
| // packing, sigh. |
| |
| fn flush_allocation_unit<E>( |
| fields: &mut E, |
| bitfield_unit_count: &mut usize, |
| unit_size_in_bits: usize, |
| unit_align_in_bits: usize, |
| bitfields: Vec<Bitfield>, |
| packed: bool, |
| ) where |
| E: Extend<Field>, |
| { |
| *bitfield_unit_count += 1; |
| let align = if packed { |
| 1 |
| } else { |
| bytes_from_bits_pow2(unit_align_in_bits) |
| }; |
| let size = align_to(unit_size_in_bits, 8) / 8; |
| let layout = Layout::new(size, align); |
| fields.extend(Some(Field::Bitfields(BitfieldUnit { |
| nth: *bitfield_unit_count, |
| layout, |
| bitfields, |
| }))); |
| } |
| |
| let mut max_align = 0; |
| let mut unfilled_bits_in_unit = 0; |
| let mut unit_size_in_bits = 0; |
| let mut unit_align = 0; |
| let mut bitfields_in_unit = vec![]; |
| |
| // TODO(emilio): Determine this from attributes or pragma ms_struct |
| // directives. Also, perhaps we should check if the target is MSVC? |
| const is_ms_struct: bool = false; |
| |
| for bitfield in raw_bitfields { |
| let bitfield_width = bitfield.bitfield_width().unwrap() as usize; |
| let bitfield_layout = |
| ctx.resolve_type(bitfield.ty()).layout(ctx).ok_or(())?; |
| let bitfield_size = bitfield_layout.size; |
| let bitfield_align = bitfield_layout.align; |
| |
| let mut offset = unit_size_in_bits; |
| if !packed { |
| if is_ms_struct { |
| if unit_size_in_bits != 0 && |
| (bitfield_width == 0 || |
| bitfield_width > unfilled_bits_in_unit) |
| { |
| // We've reached the end of this allocation unit, so flush it |
| // and its bitfields. |
| unit_size_in_bits = |
| align_to(unit_size_in_bits, unit_align * 8); |
| flush_allocation_unit( |
| fields, |
| bitfield_unit_count, |
| unit_size_in_bits, |
| unit_align, |
| mem::take(&mut bitfields_in_unit), |
| packed, |
| ); |
| |
| // Now we're working on a fresh bitfield allocation unit, so reset |
| // the current unit size and alignment. |
| offset = 0; |
| unit_align = 0; |
| } |
| } else if offset != 0 && |
| (bitfield_width == 0 || |
| (offset & (bitfield_align * 8 - 1)) + bitfield_width > |
| bitfield_size * 8) |
| { |
| offset = align_to(offset, bitfield_align * 8); |
| } |
| } |
| |
| // According to the x86[-64] ABI spec: "Unnamed bit-fields’ types do not |
| // affect the alignment of a structure or union". This makes sense: such |
| // bit-fields are only used for padding, and we can't perform an |
| // un-aligned read of something we can't read because we can't even name |
| // it. |
| if bitfield.name().is_some() { |
| max_align = cmp::max(max_align, bitfield_align); |
| |
| // NB: The `bitfield_width` here is completely, absolutely |
| // intentional. Alignment of the allocation unit is based on the |
| // maximum bitfield width, not (directly) on the bitfields' types' |
| // alignment. |
| unit_align = cmp::max(unit_align, bitfield_width); |
| } |
| |
| // Always keep all bitfields around. While unnamed bitifields are used |
| // for padding (and usually not needed hereafter), large unnamed |
| // bitfields over their types size cause weird allocation size behavior from clang. |
| // Therefore, all bitfields needed to be kept around in order to check for this |
| // and make the struct opaque in this case |
| bitfields_in_unit.push(Bitfield::new(offset, bitfield)); |
| |
| unit_size_in_bits = offset + bitfield_width; |
| |
| // Compute what the physical unit's final size would be given what we |
| // have seen so far, and use that to compute how many bits are still |
| // available in the unit. |
| let data_size = align_to(unit_size_in_bits, bitfield_align * 8); |
| unfilled_bits_in_unit = data_size - unit_size_in_bits; |
| } |
| |
| if unit_size_in_bits != 0 { |
| // Flush the last allocation unit and its bitfields. |
| flush_allocation_unit( |
| fields, |
| bitfield_unit_count, |
| unit_size_in_bits, |
| unit_align, |
| bitfields_in_unit, |
| packed, |
| ); |
| } |
| |
| Ok(()) |
| } |
| |
| /// A compound structure's fields are initially raw, and have bitfields that |
| /// have not been grouped into allocation units. During this time, the fields |
| /// are mutable and we build them up during parsing. |
| /// |
| /// Then, once resolving typerefs is completed, we compute all structs' fields' |
| /// bitfield allocation units, and they remain frozen and immutable forever |
| /// after. |
| #[derive(Debug)] |
| enum CompFields { |
| Before(Vec<RawField>), |
| After { |
| fields: Vec<Field>, |
| has_bitfield_units: bool, |
| }, |
| Error, |
| } |
| |
| impl Default for CompFields { |
| fn default() -> CompFields { |
| CompFields::Before(vec![]) |
| } |
| } |
| |
| impl CompFields { |
| fn append_raw_field(&mut self, raw: RawField) { |
| match *self { |
| CompFields::Before(ref mut raws) => { |
| raws.push(raw); |
| } |
| _ => { |
| panic!( |
| "Must not append new fields after computing bitfield allocation units" |
| ); |
| } |
| } |
| } |
| |
| fn compute_bitfield_units(&mut self, ctx: &BindgenContext, packed: bool) { |
| let raws = match *self { |
| CompFields::Before(ref mut raws) => mem::take(raws), |
| _ => { |
| panic!("Already computed bitfield units"); |
| } |
| }; |
| |
| let result = raw_fields_to_fields_and_bitfield_units(ctx, raws, packed); |
| |
| match result { |
| Ok((fields, has_bitfield_units)) => { |
| *self = CompFields::After { |
| fields, |
| has_bitfield_units, |
| }; |
| } |
| Err(()) => { |
| *self = CompFields::Error; |
| } |
| } |
| } |
| |
| fn deanonymize_fields(&mut self, ctx: &BindgenContext, methods: &[Method]) { |
| let fields = match *self { |
| CompFields::After { ref mut fields, .. } => fields, |
| // Nothing to do here. |
| CompFields::Error => return, |
| CompFields::Before(_) => { |
| panic!("Not yet computed bitfield units."); |
| } |
| }; |
| |
| fn has_method( |
| methods: &[Method], |
| ctx: &BindgenContext, |
| name: &str, |
| ) -> bool { |
| methods.iter().any(|method| { |
| let method_name = ctx.resolve_func(method.signature()).name(); |
| method_name == name || ctx.rust_mangle(method_name) == name |
| }) |
| } |
| |
| struct AccessorNamesPair { |
| getter: String, |
| setter: String, |
| } |
| |
| let mut accessor_names: HashMap<String, AccessorNamesPair> = fields |
| .iter() |
| .flat_map(|field| match *field { |
| Field::Bitfields(ref bu) => &*bu.bitfields, |
| Field::DataMember(_) => &[], |
| }) |
| .filter_map(|bitfield| bitfield.name()) |
| .map(|bitfield_name| { |
| let bitfield_name = bitfield_name.to_string(); |
| let getter = { |
| let mut getter = |
| ctx.rust_mangle(&bitfield_name).to_string(); |
| if has_method(methods, ctx, &getter) { |
| getter.push_str("_bindgen_bitfield"); |
| } |
| getter |
| }; |
| let setter = { |
| let setter = format!("set_{}", bitfield_name); |
| let mut setter = ctx.rust_mangle(&setter).to_string(); |
| if has_method(methods, ctx, &setter) { |
| setter.push_str("_bindgen_bitfield"); |
| } |
| setter |
| }; |
| (bitfield_name, AccessorNamesPair { getter, setter }) |
| }) |
| .collect(); |
| |
| let mut anon_field_counter = 0; |
| for field in fields.iter_mut() { |
| match *field { |
| Field::DataMember(FieldData { ref mut name, .. }) => { |
| if name.is_some() { |
| continue; |
| } |
| |
| anon_field_counter += 1; |
| *name = Some(format!( |
| "{}{}", |
| ctx.options().anon_fields_prefix, |
| anon_field_counter |
| )); |
| } |
| Field::Bitfields(ref mut bu) => { |
| for bitfield in &mut bu.bitfields { |
| if bitfield.name().is_none() { |
| continue; |
| } |
| |
| if let Some(AccessorNamesPair { getter, setter }) = |
| accessor_names.remove(bitfield.name().unwrap()) |
| { |
| bitfield.getter_name = Some(getter); |
| bitfield.setter_name = Some(setter); |
| } |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| impl Trace for CompFields { |
| type Extra = (); |
| |
| fn trace<T>(&self, context: &BindgenContext, tracer: &mut T, _: &()) |
| where |
| T: Tracer, |
| { |
| match *self { |
| CompFields::Error => {} |
| CompFields::Before(ref fields) => { |
| for f in fields { |
| tracer.visit_kind(f.ty().into(), EdgeKind::Field); |
| } |
| } |
| CompFields::After { ref fields, .. } => { |
| for f in fields { |
| f.trace(context, tracer, &()); |
| } |
| } |
| } |
| } |
| } |
| |
| /// Common data shared across different field types. |
| #[derive(Clone, Debug)] |
| pub(crate) struct FieldData { |
| /// The name of the field, empty if it's an unnamed bitfield width. |
| name: Option<String>, |
| |
| /// The inner type. |
| ty: TypeId, |
| |
| /// The doc comment on the field if any. |
| comment: Option<String>, |
| |
| /// Annotations for this field, or the default. |
| annotations: Annotations, |
| |
| /// If this field is a bitfield, and how many bits does it contain if it is. |
| bitfield_width: Option<u32>, |
| |
| /// If the C++ field is declared `public` |
| public: bool, |
| |
| /// The offset of the field (in bits) |
| offset: Option<usize>, |
| } |
| |
| impl FieldMethods for FieldData { |
| fn name(&self) -> Option<&str> { |
| self.name.as_deref() |
| } |
| |
| fn ty(&self) -> TypeId { |
| self.ty |
| } |
| |
| fn comment(&self) -> Option<&str> { |
| self.comment.as_deref() |
| } |
| |
| fn bitfield_width(&self) -> Option<u32> { |
| self.bitfield_width |
| } |
| |
| fn is_public(&self) -> bool { |
| self.public |
| } |
| |
| fn annotations(&self) -> &Annotations { |
| &self.annotations |
| } |
| |
| fn offset(&self) -> Option<usize> { |
| self.offset |
| } |
| } |
| |
| /// The kind of inheritance a base class is using. |
| #[derive(Clone, Debug, PartialEq, Eq)] |
| pub(crate) enum BaseKind { |
| /// Normal inheritance, like: |
| /// |
| /// ```cpp |
| /// class A : public B {}; |
| /// ``` |
| Normal, |
| /// Virtual inheritance, like: |
| /// |
| /// ```cpp |
| /// class A: public virtual B {}; |
| /// ``` |
| Virtual, |
| } |
| |
| /// A base class. |
| #[derive(Clone, Debug)] |
| pub(crate) struct Base { |
| /// The type of this base class. |
| pub(crate) ty: TypeId, |
| /// The kind of inheritance we're doing. |
| pub(crate) kind: BaseKind, |
| /// Name of the field in which this base should be stored. |
| pub(crate) field_name: String, |
| /// Whether this base is inherited from publically. |
| pub(crate) is_pub: bool, |
| } |
| |
| impl Base { |
| /// Whether this base class is inheriting virtually. |
| pub(crate) fn is_virtual(&self) -> bool { |
| self.kind == BaseKind::Virtual |
| } |
| |
| /// Whether this base class should have it's own field for storage. |
| pub(crate) fn requires_storage(&self, ctx: &BindgenContext) -> bool { |
| // Virtual bases are already taken into account by the vtable |
| // pointer. |
| // |
| // FIXME(emilio): Is this always right? |
| if self.is_virtual() { |
| return false; |
| } |
| |
| // NB: We won't include zero-sized types in our base chain because they |
| // would contribute to our size given the dummy field we insert for |
| // zero-sized types. |
| if self.ty.is_zero_sized(ctx) { |
| return false; |
| } |
| |
| true |
| } |
| |
| /// Whether this base is inherited from publically. |
| pub(crate) fn is_public(&self) -> bool { |
| self.is_pub |
| } |
| } |
| |
| /// A compound type. |
| /// |
| /// Either a struct or union, a compound type is built up from the combination |
| /// of fields which also are associated with their own (potentially compound) |
| /// type. |
| #[derive(Debug)] |
| pub(crate) struct CompInfo { |
| /// Whether this is a struct or a union. |
| kind: CompKind, |
| |
| /// The members of this struct or union. |
| fields: CompFields, |
| |
| /// The abstract template parameters of this class. Note that these are NOT |
| /// concrete template arguments, and should always be a |
| /// `Type(TypeKind::TypeParam(name))`. For concrete template arguments, see |
| /// `TypeKind::TemplateInstantiation`. |
| template_params: Vec<TypeId>, |
| |
| /// The method declarations inside this class, if in C++ mode. |
| methods: Vec<Method>, |
| |
| /// The different constructors this struct or class contains. |
| constructors: Vec<FunctionId>, |
| |
| /// The destructor of this type. The bool represents whether this destructor |
| /// is virtual. |
| destructor: Option<(MethodKind, FunctionId)>, |
| |
| /// Vector of classes this one inherits from. |
| base_members: Vec<Base>, |
| |
| /// The inner types that were declared inside this class, in something like: |
| /// |
| /// class Foo { |
| /// typedef int FooTy; |
| /// struct Bar { |
| /// int baz; |
| /// }; |
| /// } |
| /// |
| /// static Foo::Bar const = {3}; |
| inner_types: Vec<TypeId>, |
| |
| /// Set of static constants declared inside this class. |
| inner_vars: Vec<VarId>, |
| |
| /// Whether this type should generate an vtable (TODO: Should be able to |
| /// look at the virtual methods and ditch this field). |
| has_own_virtual_method: bool, |
| |
| /// Whether this type has destructor. |
| has_destructor: bool, |
| |
| /// Whether this type has a base type with more than one member. |
| /// |
| /// TODO: We should be able to compute this. |
| has_nonempty_base: bool, |
| |
| /// If this type has a template parameter which is not a type (e.g.: a |
| /// size_t) |
| has_non_type_template_params: bool, |
| |
| /// Whether this type has a bit field member whose width couldn't be |
| /// evaluated (e.g. if it depends on a template parameter). We generate an |
| /// opaque type in this case. |
| has_unevaluable_bit_field_width: bool, |
| |
| /// Whether we saw `__attribute__((packed))` on or within this type. |
| packed_attr: bool, |
| |
| /// Used to know if we've found an opaque attribute that could cause us to |
| /// generate a type with invalid layout. This is explicitly used to avoid us |
| /// generating bad alignments when parsing types like max_align_t. |
| /// |
| /// It's not clear what the behavior should be here, if generating the item |
| /// and pray, or behave as an opaque type. |
| found_unknown_attr: bool, |
| |
| /// Used to indicate when a struct has been forward declared. Usually used |
| /// in headers so that APIs can't modify them directly. |
| is_forward_declaration: bool, |
| } |
| |
| impl CompInfo { |
| /// Construct a new compound type. |
| pub(crate) fn new(kind: CompKind) -> Self { |
| CompInfo { |
| kind, |
| fields: CompFields::default(), |
| template_params: vec![], |
| methods: vec![], |
| constructors: vec![], |
| destructor: None, |
| base_members: vec![], |
| inner_types: vec![], |
| inner_vars: vec![], |
| has_own_virtual_method: false, |
| has_destructor: false, |
| has_nonempty_base: false, |
| has_non_type_template_params: false, |
| has_unevaluable_bit_field_width: false, |
| packed_attr: false, |
| found_unknown_attr: false, |
| is_forward_declaration: false, |
| } |
| } |
| |
| /// Compute the layout of this type. |
| /// |
| /// This is called as a fallback under some circumstances where LLVM doesn't |
| /// give us the correct layout. |
| /// |
| /// If we're a union without known layout, we try to compute it from our |
| /// members. This is not ideal, but clang fails to report the size for these |
| /// kind of unions, see test/headers/template_union.hpp |
| pub(crate) fn layout(&self, ctx: &BindgenContext) -> Option<Layout> { |
| // We can't do better than clang here, sorry. |
| if self.kind == CompKind::Struct { |
| return None; |
| } |
| |
| // By definition, we don't have the right layout information here if |
| // we're a forward declaration. |
| if self.is_forward_declaration() { |
| return None; |
| } |
| |
| // empty union case |
| if !self.has_fields() { |
| return None; |
| } |
| |
| let mut max_size = 0; |
| // Don't allow align(0) |
| let mut max_align = 1; |
| self.each_known_field_layout(ctx, |layout| { |
| max_size = cmp::max(max_size, layout.size); |
| max_align = cmp::max(max_align, layout.align); |
| }); |
| |
| Some(Layout::new(max_size, max_align)) |
| } |
| |
| /// Get this type's set of fields. |
| pub(crate) fn fields(&self) -> &[Field] { |
| match self.fields { |
| CompFields::Error => &[], |
| CompFields::After { ref fields, .. } => fields, |
| CompFields::Before(..) => { |
| panic!("Should always have computed bitfield units first"); |
| } |
| } |
| } |
| |
| fn has_fields(&self) -> bool { |
| match self.fields { |
| CompFields::Error => false, |
| CompFields::After { ref fields, .. } => !fields.is_empty(), |
| CompFields::Before(ref raw_fields) => !raw_fields.is_empty(), |
| } |
| } |
| |
| fn each_known_field_layout( |
| &self, |
| ctx: &BindgenContext, |
| mut callback: impl FnMut(Layout), |
| ) { |
| match self.fields { |
| CompFields::Error => {} |
| CompFields::After { ref fields, .. } => { |
| for field in fields.iter() { |
| if let Some(layout) = field.layout(ctx) { |
| callback(layout); |
| } |
| } |
| } |
| CompFields::Before(ref raw_fields) => { |
| for field in raw_fields.iter() { |
| let field_ty = ctx.resolve_type(field.0.ty); |
| if let Some(layout) = field_ty.layout(ctx) { |
| callback(layout); |
| } |
| } |
| } |
| } |
| } |
| |
| fn has_bitfields(&self) -> bool { |
| match self.fields { |
| CompFields::Error => false, |
| CompFields::After { |
| has_bitfield_units, .. |
| } => has_bitfield_units, |
| CompFields::Before(_) => { |
| panic!("Should always have computed bitfield units first"); |
| } |
| } |
| } |
| |
| /// Returns whether we have a too large bitfield unit, in which case we may |
| /// not be able to derive some of the things we should be able to normally |
| /// derive. |
| pub(crate) fn has_too_large_bitfield_unit(&self) -> bool { |
| if !self.has_bitfields() { |
| return false; |
| } |
| self.fields().iter().any(|field| match *field { |
| Field::DataMember(..) => false, |
| Field::Bitfields(ref unit) => { |
| unit.layout.size > RUST_DERIVE_IN_ARRAY_LIMIT |
| } |
| }) |
| } |
| |
| /// Does this type have any template parameters that aren't types |
| /// (e.g. int)? |
| pub(crate) fn has_non_type_template_params(&self) -> bool { |
| self.has_non_type_template_params |
| } |
| |
| /// Do we see a virtual function during parsing? |
| /// Get the has_own_virtual_method boolean. |
| pub(crate) fn has_own_virtual_method(&self) -> bool { |
| self.has_own_virtual_method |
| } |
| |
| /// Did we see a destructor when parsing this type? |
| pub(crate) fn has_own_destructor(&self) -> bool { |
| self.has_destructor |
| } |
| |
| /// Get this type's set of methods. |
| pub(crate) fn methods(&self) -> &[Method] { |
| &self.methods |
| } |
| |
| /// Get this type's set of constructors. |
| pub(crate) fn constructors(&self) -> &[FunctionId] { |
| &self.constructors |
| } |
| |
| /// Get this type's destructor. |
| pub(crate) fn destructor(&self) -> Option<(MethodKind, FunctionId)> { |
| self.destructor |
| } |
| |
| /// What kind of compound type is this? |
| pub(crate) fn kind(&self) -> CompKind { |
| self.kind |
| } |
| |
| /// Is this a union? |
| pub(crate) fn is_union(&self) -> bool { |
| self.kind() == CompKind::Union |
| } |
| |
| /// The set of types that this one inherits from. |
| pub(crate) fn base_members(&self) -> &[Base] { |
| &self.base_members |
| } |
| |
| /// Construct a new compound type from a Clang type. |
| pub(crate) fn from_ty( |
| potential_id: ItemId, |
| ty: &clang::Type, |
| location: Option<clang::Cursor>, |
| ctx: &mut BindgenContext, |
| ) -> Result<Self, ParseError> { |
| use clang_sys::*; |
| assert!( |
| ty.template_args().is_none(), |
| "We handle template instantiations elsewhere" |
| ); |
| |
| let mut cursor = ty.declaration(); |
| let mut kind = Self::kind_from_cursor(&cursor); |
| if kind.is_err() { |
| if let Some(location) = location { |
| kind = Self::kind_from_cursor(&location); |
| cursor = location; |
| } |
| } |
| |
| let kind = kind?; |
| |
| debug!("CompInfo::from_ty({:?}, {:?})", kind, cursor); |
| |
| let mut ci = CompInfo::new(kind); |
| ci.is_forward_declaration = |
| location.map_or(true, |cur| match cur.kind() { |
| CXCursor_ParmDecl => true, |
| CXCursor_StructDecl | CXCursor_UnionDecl | |
| CXCursor_ClassDecl => !cur.is_definition(), |
| _ => false, |
| }); |
| |
| let mut maybe_anonymous_struct_field = None; |
| cursor.visit(|cur| { |
| if cur.kind() != CXCursor_FieldDecl { |
| if let Some((ty, clang_ty, public, offset)) = |
| maybe_anonymous_struct_field.take() |
| { |
| if cur.kind() == CXCursor_TypedefDecl && |
| cur.typedef_type().unwrap().canonical_type() == |
| clang_ty |
| { |
| // Typedefs of anonymous structs appear later in the ast |
| // than the struct itself, that would otherwise be an |
| // anonymous field. Detect that case here, and do |
| // nothing. |
| } else { |
| let field = RawField::new( |
| None, ty, None, None, None, public, offset, |
| ); |
| ci.fields.append_raw_field(field); |
| } |
| } |
| } |
| |
| match cur.kind() { |
| CXCursor_FieldDecl => { |
| if let Some((ty, clang_ty, public, offset)) = |
| maybe_anonymous_struct_field.take() |
| { |
| let mut used = false; |
| cur.visit(|child| { |
| if child.cur_type() == clang_ty { |
| used = true; |
| } |
| CXChildVisit_Continue |
| }); |
| |
| if !used { |
| let field = RawField::new( |
| None, ty, None, None, None, public, offset, |
| ); |
| ci.fields.append_raw_field(field); |
| } |
| } |
| |
| let bit_width = if cur.is_bit_field() { |
| let width = cur.bit_width(); |
| |
| // Make opaque type if the bit width couldn't be |
| // evaluated. |
| if width.is_none() { |
| ci.has_unevaluable_bit_field_width = true; |
| return CXChildVisit_Break; |
| } |
| |
| width |
| } else { |
| None |
| }; |
| |
| let field_type = Item::from_ty_or_ref( |
| cur.cur_type(), |
| cur, |
| Some(potential_id), |
| ctx, |
| ); |
| |
| let comment = cur.raw_comment(); |
| let annotations = Annotations::new(&cur); |
| let name = cur.spelling(); |
| let is_public = cur.public_accessible(); |
| let offset = cur.offset_of_field().ok(); |
| |
| // Name can be empty if there are bitfields, for example, |
| // see tests/headers/struct_with_bitfields.h |
| assert!( |
| !name.is_empty() || bit_width.is_some(), |
| "Empty field name?" |
| ); |
| |
| let name = if name.is_empty() { None } else { Some(name) }; |
| |
| let field = RawField::new( |
| name, |
| field_type, |
| comment, |
| annotations, |
| bit_width, |
| is_public, |
| offset, |
| ); |
| ci.fields.append_raw_field(field); |
| |
| // No we look for things like attributes and stuff. |
| cur.visit(|cur| { |
| if cur.kind() == CXCursor_UnexposedAttr { |
| ci.found_unknown_attr = true; |
| } |
| CXChildVisit_Continue |
| }); |
| } |
| CXCursor_UnexposedAttr => { |
| ci.found_unknown_attr = true; |
| } |
| CXCursor_EnumDecl | |
| CXCursor_TypeAliasDecl | |
| CXCursor_TypeAliasTemplateDecl | |
| CXCursor_TypedefDecl | |
| CXCursor_StructDecl | |
| CXCursor_UnionDecl | |
| CXCursor_ClassTemplate | |
| CXCursor_ClassDecl => { |
| // We can find non-semantic children here, clang uses a |
| // StructDecl to note incomplete structs that haven't been |
| // forward-declared before, see [1]. |
| // |
| // Also, clang seems to scope struct definitions inside |
| // unions, and other named struct definitions inside other |
| // structs to the whole translation unit. |
| // |
| // Let's just assume that if the cursor we've found is a |
| // definition, it's a valid inner type. |
| // |
| // [1]: https://github.com/rust-lang/rust-bindgen/issues/482 |
| let is_inner_struct = |
| cur.semantic_parent() == cursor || cur.is_definition(); |
| if !is_inner_struct { |
| return CXChildVisit_Continue; |
| } |
| |
| // Even if this is a definition, we may not be the semantic |
| // parent, see #1281. |
| let inner = Item::parse(cur, Some(potential_id), ctx) |
| .expect("Inner ClassDecl"); |
| |
| // If we avoided recursion parsing this type (in |
| // `Item::from_ty_with_id()`), then this might not be a |
| // valid type ID, so check and gracefully handle this. |
| if ctx.resolve_item_fallible(inner).is_some() { |
| let inner = inner.expect_type_id(ctx); |
| |
| ci.inner_types.push(inner); |
| |
| // A declaration of an union or a struct without name |
| // could also be an unnamed field, unfortunately. |
| if cur.is_anonymous() && cur.kind() != CXCursor_EnumDecl |
| { |
| let ty = cur.cur_type(); |
| let public = cur.public_accessible(); |
| let offset = cur.offset_of_field().ok(); |
| |
| maybe_anonymous_struct_field = |
| Some((inner, ty, public, offset)); |
| } |
| } |
| } |
| CXCursor_PackedAttr => { |
| ci.packed_attr = true; |
| } |
| CXCursor_TemplateTypeParameter => { |
| let param = Item::type_param(None, cur, ctx).expect( |
| "Item::type_param should't fail when pointing \ |
| at a TemplateTypeParameter", |
| ); |
| ci.template_params.push(param); |
| } |
| CXCursor_CXXBaseSpecifier => { |
| let is_virtual_base = cur.is_virtual_base(); |
| ci.has_own_virtual_method |= is_virtual_base; |
| |
| let kind = if is_virtual_base { |
| BaseKind::Virtual |
| } else { |
| BaseKind::Normal |
| }; |
| |
| let field_name = match ci.base_members.len() { |
| 0 => "_base".into(), |
| n => format!("_base_{}", n), |
| }; |
| let type_id = |
| Item::from_ty_or_ref(cur.cur_type(), cur, None, ctx); |
| ci.base_members.push(Base { |
| ty: type_id, |
| kind, |
| field_name, |
| is_pub: cur.access_specifier() == |
| clang_sys::CX_CXXPublic, |
| }); |
| } |
| CXCursor_Constructor | CXCursor_Destructor | |
| CXCursor_CXXMethod => { |
| let is_virtual = cur.method_is_virtual(); |
| let is_static = cur.method_is_static(); |
| debug_assert!(!(is_static && is_virtual), "How?"); |
| |
| ci.has_destructor |= cur.kind() == CXCursor_Destructor; |
| ci.has_own_virtual_method |= is_virtual; |
| |
| // This used to not be here, but then I tried generating |
| // stylo bindings with this (without path filters), and |
| // cried a lot with a method in gfx/Point.h |
| // (ToUnknownPoint), that somehow was causing the same type |
| // to be inserted in the map two times. |
| // |
| // I couldn't make a reduced test case, but anyway... |
| // Methods of template functions not only used to be inlined, |
| // but also instantiated, and we wouldn't be able to call |
| // them, so just bail out. |
| if !ci.template_params.is_empty() { |
| return CXChildVisit_Continue; |
| } |
| |
| // NB: This gets us an owned `Function`, not a |
| // `FunctionSig`. |
| let signature = |
| match Item::parse(cur, Some(potential_id), ctx) { |
| Ok(item) |
| if ctx |
| .resolve_item(item) |
| .kind() |
| .is_function() => |
| { |
| item |
| } |
| _ => return CXChildVisit_Continue, |
| }; |
| |
| let signature = signature.expect_function_id(ctx); |
| |
| match cur.kind() { |
| CXCursor_Constructor => { |
| ci.constructors.push(signature); |
| } |
| CXCursor_Destructor => { |
| let kind = if is_virtual { |
| MethodKind::VirtualDestructor { |
| pure_virtual: cur.method_is_pure_virtual(), |
| } |
| } else { |
| MethodKind::Destructor |
| }; |
| ci.destructor = Some((kind, signature)); |
| } |
| CXCursor_CXXMethod => { |
| let is_const = cur.method_is_const(); |
| let method_kind = if is_static { |
| MethodKind::Static |
| } else if is_virtual { |
| MethodKind::Virtual { |
| pure_virtual: cur.method_is_pure_virtual(), |
| } |
| } else { |
| MethodKind::Normal |
| }; |
| |
| let method = |
| Method::new(method_kind, signature, is_const); |
| |
| ci.methods.push(method); |
| } |
| _ => unreachable!("How can we see this here?"), |
| } |
| } |
| CXCursor_NonTypeTemplateParameter => { |
| ci.has_non_type_template_params = true; |
| } |
| CXCursor_VarDecl => { |
| let linkage = cur.linkage(); |
| if linkage != CXLinkage_External && |
| linkage != CXLinkage_UniqueExternal |
| { |
| return CXChildVisit_Continue; |
| } |
| |
| let visibility = cur.visibility(); |
| if visibility != CXVisibility_Default { |
| return CXChildVisit_Continue; |
| } |
| |
| if let Ok(item) = Item::parse(cur, Some(potential_id), ctx) |
| { |
| ci.inner_vars.push(item.as_var_id_unchecked()); |
| } |
| } |
| // Intentionally not handled |
| CXCursor_CXXAccessSpecifier | |
| CXCursor_CXXFinalAttr | |
| CXCursor_FunctionTemplate | |
| CXCursor_ConversionFunction => {} |
| _ => { |
| warn!( |
| "unhandled comp member `{}` (kind {:?}) in `{}` ({})", |
| cur.spelling(), |
| clang::kind_to_str(cur.kind()), |
| cursor.spelling(), |
| cur.location() |
| ); |
| } |
| } |
| CXChildVisit_Continue |
| }); |
| |
| if let Some((ty, _, public, offset)) = maybe_anonymous_struct_field { |
| let field = |
| RawField::new(None, ty, None, None, None, public, offset); |
| ci.fields.append_raw_field(field); |
| } |
| |
| Ok(ci) |
| } |
| |
| fn kind_from_cursor( |
| cursor: &clang::Cursor, |
| ) -> Result<CompKind, ParseError> { |
| use clang_sys::*; |
| Ok(match cursor.kind() { |
| CXCursor_UnionDecl => CompKind::Union, |
| CXCursor_ClassDecl | CXCursor_StructDecl => CompKind::Struct, |
| CXCursor_CXXBaseSpecifier | |
| CXCursor_ClassTemplatePartialSpecialization | |
| CXCursor_ClassTemplate => match cursor.template_kind() { |
| CXCursor_UnionDecl => CompKind::Union, |
| _ => CompKind::Struct, |
| }, |
| _ => { |
| warn!("Unknown kind for comp type: {:?}", cursor); |
| return Err(ParseError::Continue); |
| } |
| }) |
| } |
| |
| /// Get the set of types that were declared within this compound type |
| /// (e.g. nested class definitions). |
| pub(crate) fn inner_types(&self) -> &[TypeId] { |
| &self.inner_types |
| } |
| |
| /// Get the set of static variables declared within this compound type. |
| pub(crate) fn inner_vars(&self) -> &[VarId] { |
| &self.inner_vars |
| } |
| |
| /// Have we found a field with an opaque type that could potentially mess up |
| /// the layout of this compound type? |
| pub(crate) fn found_unknown_attr(&self) -> bool { |
| self.found_unknown_attr |
| } |
| |
| /// Is this compound type packed? |
| pub(crate) fn is_packed( |
| &self, |
| ctx: &BindgenContext, |
| layout: Option<&Layout>, |
| ) -> bool { |
| if self.packed_attr { |
| return true; |
| } |
| |
| // Even though `libclang` doesn't expose `#pragma packed(...)`, we can |
| // detect it through its effects. |
| if let Some(parent_layout) = layout { |
| let mut packed = false; |
| self.each_known_field_layout(ctx, |layout| { |
| packed = packed || layout.align > parent_layout.align; |
| }); |
| if packed { |
| info!("Found a struct that was defined within `#pragma packed(...)`"); |
| return true; |
| } |
| |
| if self.has_own_virtual_method && parent_layout.align == 1 { |
| return true; |
| } |
| } |
| |
| false |
| } |
| |
| /// Return true if a compound type is "naturally packed". This means we can exclude the |
| /// "packed" attribute without changing the layout. |
| /// This is useful for types that need an "align(N)" attribute since rustc won't compile |
| /// structs that have both of those attributes. |
| pub(crate) fn already_packed(&self, ctx: &BindgenContext) -> Option<bool> { |
| let mut total_size: usize = 0; |
| |
| for field in self.fields().iter() { |
| let layout = field.layout(ctx)?; |
| |
| if layout.align != 0 && total_size % layout.align != 0 { |
| return Some(false); |
| } |
| |
| total_size += layout.size; |
| } |
| |
| Some(true) |
| } |
| |
| /// Returns true if compound type has been forward declared |
| pub(crate) fn is_forward_declaration(&self) -> bool { |
| self.is_forward_declaration |
| } |
| |
| /// Compute this compound structure's bitfield allocation units. |
| pub(crate) fn compute_bitfield_units( |
| &mut self, |
| ctx: &BindgenContext, |
| layout: Option<&Layout>, |
| ) { |
| let packed = self.is_packed(ctx, layout); |
| self.fields.compute_bitfield_units(ctx, packed) |
| } |
| |
| /// Assign for each anonymous field a generated name. |
| pub(crate) fn deanonymize_fields(&mut self, ctx: &BindgenContext) { |
| self.fields.deanonymize_fields(ctx, &self.methods); |
| } |
| |
| /// Returns whether the current union can be represented as a Rust `union` |
| /// |
| /// Requirements: |
| /// 1. Current RustTarget allows for `untagged_union` |
| /// 2. Each field can derive `Copy` or we use ManuallyDrop. |
| /// 3. It's not zero-sized. |
| /// |
| /// Second boolean returns whether all fields can be copied (and thus |
| /// ManuallyDrop is not needed). |
| pub(crate) fn is_rust_union( |
| &self, |
| ctx: &BindgenContext, |
| layout: Option<&Layout>, |
| name: &str, |
| ) -> (bool, bool) { |
| if !self.is_union() { |
| return (false, false); |
| } |
| |
| if !ctx.options().untagged_union { |
| return (false, false); |
| } |
| |
| if self.is_forward_declaration() { |
| return (false, false); |
| } |
| |
| let union_style = if ctx.options().bindgen_wrapper_union.matches(name) { |
| NonCopyUnionStyle::BindgenWrapper |
| } else if ctx.options().manually_drop_union.matches(name) { |
| NonCopyUnionStyle::ManuallyDrop |
| } else { |
| ctx.options().default_non_copy_union_style |
| }; |
| |
| let all_can_copy = self.fields().iter().all(|f| match *f { |
| Field::DataMember(ref field_data) => { |
| field_data.ty().can_derive_copy(ctx) |
| } |
| Field::Bitfields(_) => true, |
| }); |
| |
| if !all_can_copy && union_style == NonCopyUnionStyle::BindgenWrapper { |
| return (false, false); |
| } |
| |
| if layout.map_or(false, |l| l.size == 0) { |
| return (false, false); |
| } |
| |
| (true, all_can_copy) |
| } |
| } |
| |
| impl DotAttributes for CompInfo { |
| fn dot_attributes<W>( |
| &self, |
| ctx: &BindgenContext, |
| out: &mut W, |
| ) -> io::Result<()> |
| where |
| W: io::Write, |
| { |
| writeln!(out, "<tr><td>CompKind</td><td>{:?}</td></tr>", self.kind)?; |
| |
| if self.has_own_virtual_method { |
| writeln!(out, "<tr><td>has_vtable</td><td>true</td></tr>")?; |
| } |
| |
| if self.has_destructor { |
| writeln!(out, "<tr><td>has_destructor</td><td>true</td></tr>")?; |
| } |
| |
| if self.has_nonempty_base { |
| writeln!(out, "<tr><td>has_nonempty_base</td><td>true</td></tr>")?; |
| } |
| |
| if self.has_non_type_template_params { |
| writeln!( |
| out, |
| "<tr><td>has_non_type_template_params</td><td>true</td></tr>" |
| )?; |
| } |
| |
| if self.packed_attr { |
| writeln!(out, "<tr><td>packed_attr</td><td>true</td></tr>")?; |
| } |
| |
| if self.is_forward_declaration { |
| writeln!( |
| out, |
| "<tr><td>is_forward_declaration</td><td>true</td></tr>" |
| )?; |
| } |
| |
| if !self.fields().is_empty() { |
| writeln!(out, r#"<tr><td>fields</td><td><table border="0">"#)?; |
| for field in self.fields() { |
| field.dot_attributes(ctx, out)?; |
| } |
| writeln!(out, "</table></td></tr>")?; |
| } |
| |
| Ok(()) |
| } |
| } |
| |
| impl IsOpaque for CompInfo { |
| type Extra = Option<Layout>; |
| |
| fn is_opaque(&self, ctx: &BindgenContext, layout: &Option<Layout>) -> bool { |
| if self.has_non_type_template_params || |
| self.has_unevaluable_bit_field_width |
| { |
| return true; |
| } |
| |
| // When we do not have the layout for a bitfield's type (for example, it |
| // is a type parameter), then we can't compute bitfield units. We are |
| // left with no choice but to make the whole struct opaque, or else we |
| // might generate structs with incorrect sizes and alignments. |
| if let CompFields::Error = self.fields { |
| return true; |
| } |
| |
| // Bitfields with a width that is larger than their unit's width have |
| // some strange things going on, and the best we can do is make the |
| // whole struct opaque. |
| if self.fields().iter().any(|f| match *f { |
| Field::DataMember(_) => false, |
| Field::Bitfields(ref unit) => unit.bitfields().iter().any(|bf| { |
| let bitfield_layout = ctx |
| .resolve_type(bf.ty()) |
| .layout(ctx) |
| .expect("Bitfield without layout? Gah!"); |
| bf.width() / 8 > bitfield_layout.size as u32 |
| }), |
| }) { |
| return true; |
| } |
| |
| if !ctx.options().rust_features().repr_packed_n { |
| // If we don't have `#[repr(packed(N)]`, the best we can |
| // do is make this struct opaque. |
| // |
| // See https://github.com/rust-lang/rust-bindgen/issues/537 and |
| // https://github.com/rust-lang/rust/issues/33158 |
| if self.is_packed(ctx, layout.as_ref()) && |
| layout.map_or(false, |l| l.align > 1) |
| { |
| warn!("Found a type that is both packed and aligned to greater than \ |
| 1; Rust before version 1.33 doesn't have `#[repr(packed(N))]`, so we \ |
| are treating it as opaque. You may wish to set bindgen's rust target \ |
| version to 1.33 or later to enable `#[repr(packed(N))]` support."); |
| return true; |
| } |
| } |
| |
| false |
| } |
| } |
| |
| impl TemplateParameters for CompInfo { |
| fn self_template_params(&self, _ctx: &BindgenContext) -> Vec<TypeId> { |
| self.template_params.clone() |
| } |
| } |
| |
| impl Trace for CompInfo { |
| type Extra = Item; |
| |
| fn trace<T>(&self, context: &BindgenContext, tracer: &mut T, item: &Item) |
| where |
| T: Tracer, |
| { |
| for p in item.all_template_params(context) { |
| tracer.visit_kind(p.into(), EdgeKind::TemplateParameterDefinition); |
| } |
| |
| for ty in self.inner_types() { |
| tracer.visit_kind(ty.into(), EdgeKind::InnerType); |
| } |
| |
| for &var in self.inner_vars() { |
| tracer.visit_kind(var.into(), EdgeKind::InnerVar); |
| } |
| |
| for method in self.methods() { |
| tracer.visit_kind(method.signature.into(), EdgeKind::Method); |
| } |
| |
| if let Some((_kind, signature)) = self.destructor() { |
| tracer.visit_kind(signature.into(), EdgeKind::Destructor); |
| } |
| |
| for ctor in self.constructors() { |
| tracer.visit_kind(ctor.into(), EdgeKind::Constructor); |
| } |
| |
| // Base members and fields are not generated for opaque types (but all |
| // of the above things are) so stop here. |
| if item.is_opaque(context, &()) { |
| return; |
| } |
| |
| for base in self.base_members() { |
| tracer.visit_kind(base.ty.into(), EdgeKind::BaseMember); |
| } |
| |
| self.fields.trace(context, tracer, &()); |
| } |
| } |