| use crate::iter::Bytes; |
| |
| #[inline] |
| #[target_feature(enable = "avx2")] |
| pub unsafe fn match_uri_vectored(bytes: &mut Bytes) { |
| while bytes.as_ref().len() >= 32 { |
| |
| let advance = match_url_char_32_avx(bytes.as_ref()); |
| |
| bytes.advance(advance); |
| |
| if advance != 32 { |
| return; |
| } |
| } |
| // NOTE: use SWAR for <32B, more efficient than falling back to SSE4.2 |
| super::swar::match_uri_vectored(bytes) |
| } |
| |
| #[inline(always)] |
| #[allow(non_snake_case, overflowing_literals)] |
| #[allow(unused)] |
| unsafe fn match_url_char_32_avx(buf: &[u8]) -> usize { |
| // NOTE: This check might be not necessary since this function is only used in |
| // `match_uri_vectored` where buffer overflow is taken care of. |
| debug_assert!(buf.len() >= 32); |
| |
| #[cfg(target_arch = "x86")] |
| use core::arch::x86::*; |
| #[cfg(target_arch = "x86_64")] |
| use core::arch::x86_64::*; |
| |
| // pointer to buffer |
| let ptr = buf.as_ptr(); |
| |
| // %x21-%x7e %x80-%xff |
| // |
| // Character ranges allowed by this function, can also be interpreted as: |
| // 33 =< (x != 127) =< 255 |
| // |
| // Create a vector full of DEL (0x7f) characters. |
| let DEL: __m256i = _mm256_set1_epi8(0x7f); |
| // Create a vector full of exclamation mark (!) (0x21) characters. |
| // Used as lower threshold, characters in URLs cannot be smaller than this. |
| let LOW: __m256i = _mm256_set1_epi8(0x21); |
| |
| // Load a chunk of 32 bytes from `ptr` as a vector. |
| // We can check 32 bytes in parallel at most with AVX2 since |
| // YMM registers can only have 256 bits most. |
| let dat = _mm256_lddqu_si256(ptr as *const _); |
| |
| // unsigned comparison dat >= LOW |
| // |
| // `_mm256_max_epu8` creates a new vector by comparing vectors `dat` and `LOW` |
| // and picks the max. values from each for all indices. |
| // So if a byte in `dat` is <= 32, it'll be represented as 33 |
| // which is the smallest valid character. |
| // |
| // Then, we compare the new vector with `dat` for equality. |
| // |
| // `_mm256_cmpeq_epi8` returns a new vector where; |
| // * matching bytes are set to 0xFF (all bits set), |
| // * nonmatching bytes are set to 0 (no bits set). |
| let low = _mm256_cmpeq_epi8(_mm256_max_epu8(dat, LOW), dat); |
| // Similar to what we did before, but now invalid characters are set to 0xFF. |
| let del = _mm256_cmpeq_epi8(dat, DEL); |
| |
| // We glue the both comparisons via `_mm256_andnot_si256`. |
| // |
| // Since the representation of truthiness differ in these comparisons, |
| // we are in need of bitwise NOT to convert valid characters of `del`. |
| let bit = _mm256_andnot_si256(del, low); |
| // This creates a bitmask from the most significant bit of each byte. |
| // Simply, we're converting a vector value to scalar value here. |
| let res = _mm256_movemask_epi8(bit) as u32; |
| |
| // Count trailing zeros to find the first encountered invalid character. |
| // Bitwise NOT is required once again to flip truthiness. |
| // TODO: use .trailing_ones() once MSRV >= 1.46 |
| (!res).trailing_zeros() as usize |
| } |
| |
| #[target_feature(enable = "avx2")] |
| pub unsafe fn match_header_value_vectored(bytes: &mut Bytes) { |
| while bytes.as_ref().len() >= 32 { |
| let advance = match_header_value_char_32_avx(bytes.as_ref()); |
| bytes.advance(advance); |
| |
| if advance != 32 { |
| return; |
| } |
| } |
| // NOTE: use SWAR for <32B, more efficient than falling back to SSE4.2 |
| super::swar::match_header_value_vectored(bytes) |
| } |
| |
| #[inline(always)] |
| #[allow(non_snake_case)] |
| #[allow(unused)] |
| unsafe fn match_header_value_char_32_avx(buf: &[u8]) -> usize { |
| debug_assert!(buf.len() >= 32); |
| |
| #[cfg(target_arch = "x86")] |
| use core::arch::x86::*; |
| #[cfg(target_arch = "x86_64")] |
| use core::arch::x86_64::*; |
| |
| let ptr = buf.as_ptr(); |
| |
| // %x09 %x20-%x7e %x80-%xff |
| // Create a vector full of horizontal tab (\t) (0x09) characters. |
| let TAB: __m256i = _mm256_set1_epi8(0x09); |
| // Create a vector full of DEL (0x7f) characters. |
| let DEL: __m256i = _mm256_set1_epi8(0x7f); |
| // Create a vector full of space (0x20) characters. |
| let LOW: __m256i = _mm256_set1_epi8(0x20); |
| |
| // Load a chunk of 32 bytes from `ptr` as a vector. |
| let dat = _mm256_lddqu_si256(ptr as *const _); |
| |
| // unsigned comparison dat >= LOW |
| // |
| // Same as what we do in `match_url_char_32_avx`. |
| // This time the lower threshold is set to space character though. |
| let low = _mm256_cmpeq_epi8(_mm256_max_epu8(dat, LOW), dat); |
| // Check if `dat` includes `TAB` characters. |
| let tab = _mm256_cmpeq_epi8(dat, TAB); |
| // Check if `dat` includes `DEL` characters. |
| let del = _mm256_cmpeq_epi8(dat, DEL); |
| |
| // Combine all comparisons together, notice that we're also using OR |
| // to connect `low` and `tab` but flip bits of `del`. |
| // |
| // In the end, this is simply: |
| // ~del & (low | tab) |
| let bit = _mm256_andnot_si256(del, _mm256_or_si256(low, tab)); |
| // This creates a bitmask from the most significant bit of each byte. |
| // Creates a scalar value from vector value. |
| let res = _mm256_movemask_epi8(bit) as u32; |
| |
| // Count trailing zeros to find the first encountered invalid character. |
| // Bitwise NOT is required once again to flip truthiness. |
| // TODO: use .trailing_ones() once MSRV >= 1.46 |
| (!res).trailing_zeros() as usize |
| } |
| |
| #[test] |
| fn avx2_code_matches_uri_chars_table() { |
| if !is_x86_feature_detected!("avx2") { |
| return; |
| } |
| |
| #[allow(clippy::undocumented_unsafe_blocks)] |
| unsafe { |
| assert!(byte_is_allowed(b'_', match_uri_vectored)); |
| |
| for (b, allowed) in crate::URI_MAP.iter().cloned().enumerate() { |
| assert_eq!( |
| byte_is_allowed(b as u8, match_uri_vectored), allowed, |
| "byte_is_allowed({:?}) should be {:?}", b, allowed, |
| ); |
| } |
| } |
| } |
| |
| #[test] |
| fn avx2_code_matches_header_value_chars_table() { |
| if !is_x86_feature_detected!("avx2") { |
| return; |
| } |
| |
| #[allow(clippy::undocumented_unsafe_blocks)] |
| unsafe { |
| assert!(byte_is_allowed(b'_', match_header_value_vectored)); |
| |
| for (b, allowed) in crate::HEADER_VALUE_MAP.iter().cloned().enumerate() { |
| assert_eq!( |
| byte_is_allowed(b as u8, match_header_value_vectored), allowed, |
| "byte_is_allowed({:?}) should be {:?}", b, allowed, |
| ); |
| } |
| } |
| } |
| |
| #[cfg(test)] |
| unsafe fn byte_is_allowed(byte: u8, f: unsafe fn(bytes: &mut Bytes<'_>)) -> bool { |
| let slice = [ |
| b'_', b'_', b'_', b'_', |
| b'_', b'_', b'_', b'_', |
| b'_', b'_', b'_', b'_', |
| b'_', b'_', b'_', b'_', |
| b'_', b'_', b'_', b'_', |
| b'_', b'_', b'_', b'_', |
| b'_', b'_', byte, b'_', |
| b'_', b'_', b'_', b'_', |
| ]; |
| let mut bytes = Bytes::new(&slice); |
| |
| f(&mut bytes); |
| |
| match bytes.pos() { |
| 32 => true, |
| 26 => false, |
| _ => unreachable!(), |
| } |
| } |