| // Copyright 2015-2023 Brian Smith. |
| // |
| // Permission to use, copy, modify, and/or distribute this software for any |
| // purpose with or without fee is hereby granted, provided that the above |
| // copyright notice and this permission notice appear in all copies. |
| // |
| // THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHORS DISCLAIM ALL WARRANTIES |
| // WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF |
| // MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY |
| // SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
| // WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION |
| // OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN |
| // CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. |
| |
| use super::{ |
| super::{ |
| montgomery::{Unencoded, R, RR}, |
| n0::N0, |
| }, |
| BoxedLimbs, Elem, Nonnegative, One, PublicModulus, SlightlySmallerModulus, SmallerModulus, |
| Width, |
| }; |
| use crate::{ |
| bits, cpu, error, |
| limb::{self, Limb, LimbMask, LIMB_BITS}, |
| polyfill::LeadingZerosStripped, |
| }; |
| use core::marker::PhantomData; |
| |
| /// The x86 implementation of `bn_mul_mont`, at least, requires at least 4 |
| /// limbs. For a long time we have required 4 limbs for all targets, though |
| /// this may be unnecessary. TODO: Replace this with |
| /// `n.len() < 256 / LIMB_BITS` so that 32-bit and 64-bit platforms behave the |
| /// same. |
| pub const MODULUS_MIN_LIMBS: usize = 4; |
| |
| pub const MODULUS_MAX_LIMBS: usize = super::super::BIGINT_MODULUS_MAX_LIMBS; |
| |
| /// The modulus *m* for a ring ℤ/mℤ, along with the precomputed values needed |
| /// for efficient Montgomery multiplication modulo *m*. The value must be odd |
| /// and larger than 2. The larger-than-1 requirement is imposed, at least, by |
| /// the modular inversion code. |
| pub struct Modulus<M> { |
| limbs: BoxedLimbs<M>, // Also `value >= 3`. |
| |
| // n0 * N == -1 (mod r). |
| // |
| // r == 2**(N0::LIMBS_USED * LIMB_BITS) and LG_LITTLE_R == lg(r). This |
| // ensures that we can do integer division by |r| by simply ignoring |
| // `N0::LIMBS_USED` limbs. Similarly, we can calculate values modulo `r` by |
| // just looking at the lowest `N0::LIMBS_USED` limbs. This is what makes |
| // Montgomery multiplication efficient. |
| // |
| // As shown in Algorithm 1 of "Fast Prime Field Elliptic Curve Cryptography |
| // with 256 Bit Primes" by Shay Gueron and Vlad Krasnov, in the loop of a |
| // multi-limb Montgomery multiplication of a * b (mod n), given the |
| // unreduced product t == a * b, we repeatedly calculate: |
| // |
| // t1 := t % r |t1| is |t|'s lowest limb (see previous paragraph). |
| // t2 := t1*n0*n |
| // t3 := t + t2 |
| // t := t3 / r copy all limbs of |t3| except the lowest to |t|. |
| // |
| // In the last step, it would only make sense to ignore the lowest limb of |
| // |t3| if it were zero. The middle steps ensure that this is the case: |
| // |
| // t3 == 0 (mod r) |
| // t + t2 == 0 (mod r) |
| // t + t1*n0*n == 0 (mod r) |
| // t1*n0*n == -t (mod r) |
| // t*n0*n == -t (mod r) |
| // n0*n == -1 (mod r) |
| // n0 == -1/n (mod r) |
| // |
| // Thus, in each iteration of the loop, we multiply by the constant factor |
| // n0, the negative inverse of n (mod r). |
| // |
| // TODO(perf): Not all 32-bit platforms actually make use of n0[1]. For the |
| // ones that don't, we could use a shorter `R` value and use faster `Limb` |
| // calculations instead of double-precision `u64` calculations. |
| n0: N0, |
| |
| oneRR: One<M, RR>, |
| |
| cpu_features: cpu::Features, |
| } |
| |
| impl<M: PublicModulus> Clone for Modulus<M> { |
| fn clone(&self) -> Self { |
| Self { |
| limbs: self.limbs.clone(), |
| n0: self.n0.clone(), |
| oneRR: self.oneRR.clone(), |
| cpu_features: self.cpu_features, |
| } |
| } |
| } |
| |
| impl<M: PublicModulus> core::fmt::Debug for Modulus<M> { |
| fn fmt(&self, fmt: &mut ::core::fmt::Formatter) -> Result<(), ::core::fmt::Error> { |
| fmt.debug_struct("Modulus") |
| // TODO: Print modulus value. |
| .finish() |
| } |
| } |
| |
| impl<M> Modulus<M> { |
| pub(crate) fn from_be_bytes_with_bit_length( |
| input: untrusted::Input, |
| cpu_features: cpu::Features, |
| ) -> Result<(Self, bits::BitLength), error::KeyRejected> { |
| let limbs = BoxedLimbs::positive_minimal_width_from_be_bytes(input)?; |
| Self::from_boxed_limbs(limbs, cpu_features) |
| } |
| |
| pub(crate) fn from_nonnegative_with_bit_length( |
| n: Nonnegative, |
| cpu_features: cpu::Features, |
| ) -> Result<(Self, bits::BitLength), error::KeyRejected> { |
| let limbs = BoxedLimbs::new_unchecked(n.into_limbs()); |
| Self::from_boxed_limbs(limbs, cpu_features) |
| } |
| |
| pub(crate) fn from_elem<L>( |
| elem: Elem<L, Unencoded>, |
| cpu_features: cpu::Features, |
| ) -> Result<Self, error::KeyRejected> |
| where |
| M: SlightlySmallerModulus<L>, |
| { |
| let (m, _bits) = Self::from_boxed_limbs( |
| BoxedLimbs::minimal_width_from_unpadded(&elem.limbs), |
| cpu_features, |
| )?; |
| Ok(m) |
| } |
| |
| fn from_boxed_limbs( |
| n: BoxedLimbs<M>, |
| cpu_features: cpu::Features, |
| ) -> Result<(Self, bits::BitLength), error::KeyRejected> { |
| if n.len() > MODULUS_MAX_LIMBS { |
| return Err(error::KeyRejected::too_large()); |
| } |
| if n.len() < MODULUS_MIN_LIMBS { |
| return Err(error::KeyRejected::unexpected_error()); |
| } |
| if limb::limbs_are_even_constant_time(&n) != LimbMask::False { |
| return Err(error::KeyRejected::invalid_component()); |
| } |
| if limb::limbs_less_than_limb_constant_time(&n, 3) != LimbMask::False { |
| return Err(error::KeyRejected::unexpected_error()); |
| } |
| |
| // n_mod_r = n % r. As explained in the documentation for `n0`, this is |
| // done by taking the lowest `N0::LIMBS_USED` limbs of `n`. |
| #[allow(clippy::useless_conversion)] |
| let n0 = { |
| prefixed_extern! { |
| fn bn_neg_inv_mod_r_u64(n: u64) -> u64; |
| } |
| |
| // XXX: u64::from isn't guaranteed to be constant time. |
| let mut n_mod_r: u64 = u64::from(n[0]); |
| |
| if N0::LIMBS_USED == 2 { |
| // XXX: If we use `<< LIMB_BITS` here then 64-bit builds |
| // fail to compile because of `deny(exceeding_bitshifts)`. |
| debug_assert_eq!(LIMB_BITS, 32); |
| n_mod_r |= u64::from(n[1]) << 32; |
| } |
| N0::from(unsafe { bn_neg_inv_mod_r_u64(n_mod_r) }) |
| }; |
| |
| let bits = limb::limbs_minimal_bits(&n); |
| let oneRR = { |
| let partial = PartialModulus { |
| limbs: &n, |
| n0: n0.clone(), |
| m: PhantomData, |
| cpu_features, |
| }; |
| |
| One::newRR(&partial, bits) |
| }; |
| |
| Ok(( |
| Self { |
| limbs: n, |
| n0, |
| oneRR, |
| cpu_features, |
| }, |
| bits, |
| )) |
| } |
| |
| #[inline] |
| pub(super) fn cpu_features(&self) -> cpu::Features { |
| self.cpu_features |
| } |
| |
| #[inline] |
| pub(super) fn limbs(&self) -> &[Limb] { |
| &self.limbs |
| } |
| |
| #[inline] |
| pub(super) fn n0(&self) -> &N0 { |
| &self.n0 |
| } |
| |
| #[inline] |
| pub(super) fn width(&self) -> Width<M> { |
| self.limbs.width() |
| } |
| |
| pub(super) fn zero<E>(&self) -> Elem<M, E> { |
| Elem { |
| limbs: BoxedLimbs::zero(self.width()), |
| encoding: PhantomData, |
| } |
| } |
| |
| // TODO: Get rid of this |
| pub(super) fn one(&self) -> Elem<M, Unencoded> { |
| let mut r = self.zero(); |
| r.limbs[0] = 1; |
| r |
| } |
| |
| pub fn oneRR(&self) -> &One<M, RR> { |
| &self.oneRR |
| } |
| |
| pub fn to_elem<L>(&self, l: &Modulus<L>) -> Elem<L, Unencoded> |
| where |
| M: SmallerModulus<L>, |
| { |
| // TODO: Encode this assertion into the `where` above. |
| assert_eq!(self.width().num_limbs, l.width().num_limbs); |
| Elem { |
| limbs: BoxedLimbs::new_unchecked(self.limbs.clone().into_limbs()), |
| encoding: PhantomData, |
| } |
| } |
| |
| pub(crate) fn as_partial(&self) -> PartialModulus<M> { |
| PartialModulus { |
| limbs: &self.limbs, |
| n0: self.n0.clone(), |
| m: PhantomData, |
| cpu_features: self.cpu_features, |
| } |
| } |
| } |
| |
| impl<M: PublicModulus> Modulus<M> { |
| pub fn be_bytes(&self) -> LeadingZerosStripped<impl ExactSizeIterator<Item = u8> + Clone + '_> { |
| LeadingZerosStripped::new(limb::unstripped_be_bytes(&self.limbs)) |
| } |
| } |
| |
| pub(crate) struct PartialModulus<'a, M> { |
| limbs: &'a [Limb], |
| n0: N0, |
| m: PhantomData<M>, |
| cpu_features: cpu::Features, |
| } |
| |
| impl<M> PartialModulus<'_, M> { |
| // TODO: XXX Avoid duplication with `Modulus`. |
| pub(super) fn zero(&self) -> Elem<M, R> { |
| let width = Width { |
| num_limbs: self.limbs.len(), |
| m: PhantomData, |
| }; |
| Elem { |
| limbs: BoxedLimbs::zero(width), |
| encoding: PhantomData, |
| } |
| } |
| |
| #[inline] |
| pub(super) fn limbs(&self) -> &[Limb] { |
| self.limbs |
| } |
| |
| #[inline] |
| pub(super) fn n0(&self) -> &N0 { |
| &self.n0 |
| } |
| |
| #[inline] |
| pub fn cpu_features(&self) -> cpu::Features { |
| self.cpu_features |
| } |
| } |