blob: 86785d53d577291a24f62fadb9224a4dec5049b9 [file] [log] [blame]
//! Compares the performance of `UnicodeSegmentation::unicode_words` with stdlib's UTF-8
//! scalar-based `std::str::split_whitespace`.
//!
//! It is expected that `std::str::split_whitespace` is faster than
//! `UnicodeSegmentation::unicode_words` since it does not consider the complexity of grapheme
//! clusters. The question in this benchmark is how much slower full unicode handling is.
use criterion::{black_box, criterion_group, criterion_main, BenchmarkId, Criterion};
use std::fs;
use unicode_segmentation::UnicodeSegmentation;
const FILES: &[&str] = &[
"arabic",
"english",
"hindi",
"japanese",
"korean",
"mandarin",
"russian",
"source_code",
];
#[inline(always)]
fn grapheme(text: &str) {
for w in text.unicode_words() {
black_box(w);
}
}
#[inline(always)]
fn scalar(text: &str) {
for w in text.split_whitespace() {
black_box(w);
}
}
fn bench_all(c: &mut Criterion) {
let mut group = c.benchmark_group("words");
for file in FILES {
group.bench_with_input(
BenchmarkId::new("grapheme", file),
&fs::read_to_string(format!("benches/texts/{}.txt", file)).unwrap(),
|b, content| b.iter(|| grapheme(content)),
);
}
for file in FILES {
group.bench_with_input(
BenchmarkId::new("scalar", file),
&fs::read_to_string(format!("benches/texts/{}.txt", file)).unwrap(),
|b, content| b.iter(|| scalar(content)),
);
}
}
criterion_group!(benches, bench_all);
criterion_main!(benches);