| // Copyright 2024 The Fuchsia Authors |
| // |
| // Licensed under the 2-Clause BSD License <LICENSE-BSD or |
| // https://opensource.org/license/bsd-2-clause>, Apache License, Version 2.0 |
| // <LICENSE-APACHE or https://www.apache.org/licenses/LICENSE-2.0>, or the MIT |
| // license <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your option. |
| // This file may not be copied, modified, or distributed except according to |
| // those terms. |
| |
| use core::{mem, num::NonZeroUsize}; |
| |
| use crate::util; |
| |
| /// The target pointer width, counted in bits. |
| const POINTER_WIDTH_BITS: usize = mem::size_of::<usize>() * 8; |
| |
| /// The layout of a type which might be dynamically-sized. |
| /// |
| /// `DstLayout` describes the layout of sized types, slice types, and "slice |
| /// DSTs" - ie, those that are known by the type system to have a trailing slice |
| /// (as distinguished from `dyn Trait` types - such types *might* have a |
| /// trailing slice type, but the type system isn't aware of it). |
| /// |
| /// Note that `DstLayout` does not have any internal invariants, so no guarantee |
| /// is made that a `DstLayout` conforms to any of Rust's requirements regarding |
| /// the layout of real Rust types or instances of types. |
| #[doc(hidden)] |
| #[allow(missing_debug_implementations, missing_copy_implementations)] |
| #[cfg_attr(any(kani, test), derive(Copy, Clone, Debug, PartialEq, Eq))] |
| pub struct DstLayout { |
| pub(crate) align: NonZeroUsize, |
| pub(crate) size_info: SizeInfo, |
| } |
| |
| #[cfg_attr(any(kani, test), derive(Debug, PartialEq, Eq))] |
| #[derive(Copy, Clone)] |
| pub(crate) enum SizeInfo<E = usize> { |
| Sized { size: usize }, |
| SliceDst(TrailingSliceLayout<E>), |
| } |
| |
| #[cfg_attr(any(kani, test), derive(Debug, PartialEq, Eq))] |
| #[derive(Copy, Clone)] |
| pub(crate) struct TrailingSliceLayout<E = usize> { |
| // The offset of the first byte of the trailing slice field. Note that this |
| // is NOT the same as the minimum size of the type. For example, consider |
| // the following type: |
| // |
| // struct Foo { |
| // a: u16, |
| // b: u8, |
| // c: [u8], |
| // } |
| // |
| // In `Foo`, `c` is at byte offset 3. When `c.len() == 0`, `c` is followed |
| // by a padding byte. |
| pub(crate) offset: usize, |
| // The size of the element type of the trailing slice field. |
| pub(crate) elem_size: E, |
| } |
| |
| impl SizeInfo { |
| /// Attempts to create a `SizeInfo` from `Self` in which `elem_size` is a |
| /// `NonZeroUsize`. If `elem_size` is 0, returns `None`. |
| #[allow(unused)] |
| const fn try_to_nonzero_elem_size(&self) -> Option<SizeInfo<NonZeroUsize>> { |
| Some(match *self { |
| SizeInfo::Sized { size } => SizeInfo::Sized { size }, |
| SizeInfo::SliceDst(TrailingSliceLayout { offset, elem_size }) => { |
| if let Some(elem_size) = NonZeroUsize::new(elem_size) { |
| SizeInfo::SliceDst(TrailingSliceLayout { offset, elem_size }) |
| } else { |
| return None; |
| } |
| } |
| }) |
| } |
| } |
| |
| #[doc(hidden)] |
| #[derive(Copy, Clone)] |
| #[cfg_attr(test, derive(Debug))] |
| #[allow(missing_debug_implementations)] |
| pub enum CastType { |
| Prefix, |
| Suffix, |
| } |
| |
| #[cfg_attr(test, derive(Debug))] |
| pub(crate) enum MetadataCastError { |
| Alignment, |
| Size, |
| } |
| |
| impl DstLayout { |
| /// The minimum possible alignment of a type. |
| const MIN_ALIGN: NonZeroUsize = match NonZeroUsize::new(1) { |
| Some(min_align) => min_align, |
| None => const_unreachable!(), |
| }; |
| |
| /// The maximum theoretic possible alignment of a type. |
| /// |
| /// For compatibility with future Rust versions, this is defined as the |
| /// maximum power-of-two that fits into a `usize`. See also |
| /// [`DstLayout::CURRENT_MAX_ALIGN`]. |
| pub(crate) const THEORETICAL_MAX_ALIGN: NonZeroUsize = |
| match NonZeroUsize::new(1 << (POINTER_WIDTH_BITS - 1)) { |
| Some(max_align) => max_align, |
| None => const_unreachable!(), |
| }; |
| |
| /// The current, documented max alignment of a type \[1\]. |
| /// |
| /// \[1\] Per <https://doc.rust-lang.org/reference/type-layout.html#the-alignment-modifiers>: |
| /// |
| /// The alignment value must be a power of two from 1 up to |
| /// 2<sup>29</sup>. |
| #[cfg(not(kani))] |
| pub(crate) const CURRENT_MAX_ALIGN: NonZeroUsize = match NonZeroUsize::new(1 << 28) { |
| Some(max_align) => max_align, |
| None => const_unreachable!(), |
| }; |
| |
| /// Constructs a `DstLayout` for a zero-sized type with `repr_align` |
| /// alignment (or 1). If `repr_align` is provided, then it must be a power |
| /// of two. |
| /// |
| /// # Panics |
| /// |
| /// This function panics if the supplied `repr_align` is not a power of two. |
| /// |
| /// # Safety |
| /// |
| /// Unsafe code may assume that the contract of this function is satisfied. |
| #[doc(hidden)] |
| #[must_use] |
| #[inline] |
| pub const fn new_zst(repr_align: Option<NonZeroUsize>) -> DstLayout { |
| let align = match repr_align { |
| Some(align) => align, |
| None => Self::MIN_ALIGN, |
| }; |
| |
| const_assert!(align.get().is_power_of_two()); |
| |
| DstLayout { align, size_info: SizeInfo::Sized { size: 0 } } |
| } |
| |
| /// Constructs a `DstLayout` which describes `T`. |
| /// |
| /// # Safety |
| /// |
| /// Unsafe code may assume that `DstLayout` is the correct layout for `T`. |
| #[doc(hidden)] |
| #[must_use] |
| #[inline] |
| pub const fn for_type<T>() -> DstLayout { |
| // SAFETY: `align` is correct by construction. `T: Sized`, and so it is |
| // sound to initialize `size_info` to `SizeInfo::Sized { size }`; the |
| // `size` field is also correct by construction. |
| DstLayout { |
| align: match NonZeroUsize::new(mem::align_of::<T>()) { |
| Some(align) => align, |
| None => const_unreachable!(), |
| }, |
| size_info: SizeInfo::Sized { size: mem::size_of::<T>() }, |
| } |
| } |
| |
| /// Constructs a `DstLayout` which describes `[T]`. |
| /// |
| /// # Safety |
| /// |
| /// Unsafe code may assume that `DstLayout` is the correct layout for `[T]`. |
| pub(crate) const fn for_slice<T>() -> DstLayout { |
| // SAFETY: The alignment of a slice is equal to the alignment of its |
| // element type, and so `align` is initialized correctly. |
| // |
| // Since this is just a slice type, there is no offset between the |
| // beginning of the type and the beginning of the slice, so it is |
| // correct to set `offset: 0`. The `elem_size` is correct by |
| // construction. Since `[T]` is a (degenerate case of a) slice DST, it |
| // is correct to initialize `size_info` to `SizeInfo::SliceDst`. |
| DstLayout { |
| align: match NonZeroUsize::new(mem::align_of::<T>()) { |
| Some(align) => align, |
| None => const_unreachable!(), |
| }, |
| size_info: SizeInfo::SliceDst(TrailingSliceLayout { |
| offset: 0, |
| elem_size: mem::size_of::<T>(), |
| }), |
| } |
| } |
| |
| /// Like `Layout::extend`, this creates a layout that describes a record |
| /// whose layout consists of `self` followed by `next` that includes the |
| /// necessary inter-field padding, but not any trailing padding. |
| /// |
| /// In order to match the layout of a `#[repr(C)]` struct, this method |
| /// should be invoked for each field in declaration order. To add trailing |
| /// padding, call `DstLayout::pad_to_align` after extending the layout for |
| /// all fields. If `self` corresponds to a type marked with |
| /// `repr(packed(N))`, then `repr_packed` should be set to `Some(N)`, |
| /// otherwise `None`. |
| /// |
| /// This method cannot be used to match the layout of a record with the |
| /// default representation, as that representation is mostly unspecified. |
| /// |
| /// # Safety |
| /// |
| /// If a (potentially hypothetical) valid `repr(C)` Rust type begins with |
| /// fields whose layout are `self`, and those fields are immediately |
| /// followed by a field whose layout is `field`, then unsafe code may rely |
| /// on `self.extend(field, repr_packed)` producing a layout that correctly |
| /// encompasses those two components. |
| /// |
| /// We make no guarantees to the behavior of this method if these fragments |
| /// cannot appear in a valid Rust type (e.g., the concatenation of the |
| /// layouts would lead to a size larger than `isize::MAX`). |
| #[doc(hidden)] |
| #[must_use] |
| #[inline] |
| pub const fn extend(self, field: DstLayout, repr_packed: Option<NonZeroUsize>) -> Self { |
| use util::{max, min, padding_needed_for}; |
| |
| // If `repr_packed` is `None`, there are no alignment constraints, and |
| // the value can be defaulted to `THEORETICAL_MAX_ALIGN`. |
| let max_align = match repr_packed { |
| Some(max_align) => max_align, |
| None => Self::THEORETICAL_MAX_ALIGN, |
| }; |
| |
| const_assert!(max_align.get().is_power_of_two()); |
| |
| // We use Kani to prove that this method is robust to future increases |
| // in Rust's maximum allowed alignment. However, if such a change ever |
| // actually occurs, we'd like to be notified via assertion failures. |
| #[cfg(not(kani))] |
| { |
| const_debug_assert!(self.align.get() <= DstLayout::CURRENT_MAX_ALIGN.get()); |
| const_debug_assert!(field.align.get() <= DstLayout::CURRENT_MAX_ALIGN.get()); |
| if let Some(repr_packed) = repr_packed { |
| const_debug_assert!(repr_packed.get() <= DstLayout::CURRENT_MAX_ALIGN.get()); |
| } |
| } |
| |
| // The field's alignment is clamped by `repr_packed` (i.e., the |
| // `repr(packed(N))` attribute, if any) [1]. |
| // |
| // [1] Per https://doc.rust-lang.org/reference/type-layout.html#the-alignment-modifiers: |
| // |
| // The alignments of each field, for the purpose of positioning |
| // fields, is the smaller of the specified alignment and the alignment |
| // of the field's type. |
| let field_align = min(field.align, max_align); |
| |
| // The struct's alignment is the maximum of its previous alignment and |
| // `field_align`. |
| let align = max(self.align, field_align); |
| |
| let size_info = match self.size_info { |
| // If the layout is already a DST, we panic; DSTs cannot be extended |
| // with additional fields. |
| SizeInfo::SliceDst(..) => const_panic!("Cannot extend a DST with additional fields."), |
| |
| SizeInfo::Sized { size: preceding_size } => { |
| // Compute the minimum amount of inter-field padding needed to |
| // satisfy the field's alignment, and offset of the trailing |
| // field. [1] |
| // |
| // [1] Per https://doc.rust-lang.org/reference/type-layout.html#the-alignment-modifiers: |
| // |
| // Inter-field padding is guaranteed to be the minimum |
| // required in order to satisfy each field's (possibly |
| // altered) alignment. |
| let padding = padding_needed_for(preceding_size, field_align); |
| |
| // This will not panic (and is proven to not panic, with Kani) |
| // if the layout components can correspond to a leading layout |
| // fragment of a valid Rust type, but may panic otherwise (e.g., |
| // combining or aligning the components would create a size |
| // exceeding `isize::MAX`). |
| let offset = match preceding_size.checked_add(padding) { |
| Some(offset) => offset, |
| None => const_panic!("Adding padding to `self`'s size overflows `usize`."), |
| }; |
| |
| match field.size_info { |
| SizeInfo::Sized { size: field_size } => { |
| // If the trailing field is sized, the resulting layout |
| // will be sized. Its size will be the sum of the |
| // preceeding layout, the size of the new field, and the |
| // size of inter-field padding between the two. |
| // |
| // This will not panic (and is proven with Kani to not |
| // panic) if the layout components can correspond to a |
| // leading layout fragment of a valid Rust type, but may |
| // panic otherwise (e.g., combining or aligning the |
| // components would create a size exceeding |
| // `usize::MAX`). |
| let size = match offset.checked_add(field_size) { |
| Some(size) => size, |
| None => const_panic!("`field` cannot be appended without the total size overflowing `usize`"), |
| }; |
| SizeInfo::Sized { size } |
| } |
| SizeInfo::SliceDst(TrailingSliceLayout { |
| offset: trailing_offset, |
| elem_size, |
| }) => { |
| // If the trailing field is dynamically sized, so too |
| // will the resulting layout. The offset of the trailing |
| // slice component is the sum of the offset of the |
| // trailing field and the trailing slice offset within |
| // that field. |
| // |
| // This will not panic (and is proven with Kani to not |
| // panic) if the layout components can correspond to a |
| // leading layout fragment of a valid Rust type, but may |
| // panic otherwise (e.g., combining or aligning the |
| // components would create a size exceeding |
| // `usize::MAX`). |
| let offset = match offset.checked_add(trailing_offset) { |
| Some(offset) => offset, |
| None => const_panic!("`field` cannot be appended without the total size overflowing `usize`"), |
| }; |
| SizeInfo::SliceDst(TrailingSliceLayout { offset, elem_size }) |
| } |
| } |
| } |
| }; |
| |
| DstLayout { align, size_info } |
| } |
| |
| /// Like `Layout::pad_to_align`, this routine rounds the size of this layout |
| /// up to the nearest multiple of this type's alignment or `repr_packed` |
| /// (whichever is less). This method leaves DST layouts unchanged, since the |
| /// trailing padding of DSTs is computed at runtime. |
| /// |
| /// In order to match the layout of a `#[repr(C)]` struct, this method |
| /// should be invoked after the invocations of [`DstLayout::extend`]. If |
| /// `self` corresponds to a type marked with `repr(packed(N))`, then |
| /// `repr_packed` should be set to `Some(N)`, otherwise `None`. |
| /// |
| /// This method cannot be used to match the layout of a record with the |
| /// default representation, as that representation is mostly unspecified. |
| /// |
| /// # Safety |
| /// |
| /// If a (potentially hypothetical) valid `repr(C)` type begins with fields |
| /// whose layout are `self` followed only by zero or more bytes of trailing |
| /// padding (not included in `self`), then unsafe code may rely on |
| /// `self.pad_to_align(repr_packed)` producing a layout that correctly |
| /// encapsulates the layout of that type. |
| /// |
| /// We make no guarantees to the behavior of this method if `self` cannot |
| /// appear in a valid Rust type (e.g., because the addition of trailing |
| /// padding would lead to a size larger than `isize::MAX`). |
| #[doc(hidden)] |
| #[must_use] |
| #[inline] |
| pub const fn pad_to_align(self) -> Self { |
| use util::padding_needed_for; |
| |
| let size_info = match self.size_info { |
| // For sized layouts, we add the minimum amount of trailing padding |
| // needed to satisfy alignment. |
| SizeInfo::Sized { size: unpadded_size } => { |
| let padding = padding_needed_for(unpadded_size, self.align); |
| let size = match unpadded_size.checked_add(padding) { |
| Some(size) => size, |
| None => const_panic!("Adding padding caused size to overflow `usize`."), |
| }; |
| SizeInfo::Sized { size } |
| } |
| // For DST layouts, trailing padding depends on the length of the |
| // trailing DST and is computed at runtime. This does not alter the |
| // offset or element size of the layout, so we leave `size_info` |
| // unchanged. |
| size_info @ SizeInfo::SliceDst(_) => size_info, |
| }; |
| |
| DstLayout { align: self.align, size_info } |
| } |
| |
| /// Validates that a cast is sound from a layout perspective. |
| /// |
| /// Validates that the size and alignment requirements of a type with the |
| /// layout described in `self` would not be violated by performing a |
| /// `cast_type` cast from a pointer with address `addr` which refers to a |
| /// memory region of size `bytes_len`. |
| /// |
| /// If the cast is valid, `validate_cast_and_convert_metadata` returns |
| /// `(elems, split_at)`. If `self` describes a dynamically-sized type, then |
| /// `elems` is the maximum number of trailing slice elements for which a |
| /// cast would be valid (for sized types, `elem` is meaningless and should |
| /// be ignored). `split_at` is the index at which to split the memory region |
| /// in order for the prefix (suffix) to contain the result of the cast, and |
| /// in order for the remaining suffix (prefix) to contain the leftover |
| /// bytes. |
| /// |
| /// There are three conditions under which a cast can fail: |
| /// - The smallest possible value for the type is larger than the provided |
| /// memory region |
| /// - A prefix cast is requested, and `addr` does not satisfy `self`'s |
| /// alignment requirement |
| /// - A suffix cast is requested, and `addr + bytes_len` does not satisfy |
| /// `self`'s alignment requirement (as a consequence, since all instances |
| /// of the type are a multiple of its alignment, no size for the type will |
| /// result in a starting address which is properly aligned) |
| /// |
| /// # Safety |
| /// |
| /// The caller may assume that this implementation is correct, and may rely |
| /// on that assumption for the soundness of their code. In particular, the |
| /// caller may assume that, if `validate_cast_and_convert_metadata` returns |
| /// `Some((elems, split_at))`, then: |
| /// - A pointer to the type (for dynamically sized types, this includes |
| /// `elems` as its pointer metadata) describes an object of size `size <= |
| /// bytes_len` |
| /// - If this is a prefix cast: |
| /// - `addr` satisfies `self`'s alignment |
| /// - `size == split_at` |
| /// - If this is a suffix cast: |
| /// - `split_at == bytes_len - size` |
| /// - `addr + split_at` satisfies `self`'s alignment |
| /// |
| /// Note that this method does *not* ensure that a pointer constructed from |
| /// its return values will be a valid pointer. In particular, this method |
| /// does not reason about `isize` overflow, which is a requirement of many |
| /// Rust pointer APIs, and may at some point be determined to be a validity |
| /// invariant of pointer types themselves. This should never be a problem so |
| /// long as the arguments to this method are derived from a known-valid |
| /// pointer (e.g., one derived from a safe Rust reference), but it is |
| /// nonetheless the caller's responsibility to justify that pointer |
| /// arithmetic will not overflow based on a safety argument *other than* the |
| /// mere fact that this method returned successfully. |
| /// |
| /// # Panics |
| /// |
| /// `validate_cast_and_convert_metadata` will panic if `self` describes a |
| /// DST whose trailing slice element is zero-sized. |
| /// |
| /// If `addr + bytes_len` overflows `usize`, |
| /// `validate_cast_and_convert_metadata` may panic, or it may return |
| /// incorrect results. No guarantees are made about when |
| /// `validate_cast_and_convert_metadata` will panic. The caller should not |
| /// rely on `validate_cast_and_convert_metadata` panicking in any particular |
| /// condition, even if `debug_assertions` are enabled. |
| #[allow(unused)] |
| #[inline(always)] |
| pub(crate) const fn validate_cast_and_convert_metadata( |
| &self, |
| addr: usize, |
| bytes_len: usize, |
| cast_type: CastType, |
| ) -> Result<(usize, usize), MetadataCastError> { |
| // `debug_assert!`, but with `#[allow(clippy::arithmetic_side_effects)]`. |
| macro_rules! __const_debug_assert { |
| ($e:expr $(, $msg:expr)?) => { |
| const_debug_assert!({ |
| #[allow(clippy::arithmetic_side_effects)] |
| let e = $e; |
| e |
| } $(, $msg)?); |
| }; |
| } |
| |
| // Note that, in practice, `self` is always a compile-time constant. We |
| // do this check earlier than needed to ensure that we always panic as a |
| // result of bugs in the program (such as calling this function on an |
| // invalid type) instead of allowing this panic to be hidden if the cast |
| // would have failed anyway for runtime reasons (such as a too-small |
| // memory region). |
| // |
| // TODO(#67): Once our MSRV is 1.65, use let-else: |
| // https://blog.rust-lang.org/2022/11/03/Rust-1.65.0.html#let-else-statements |
| let size_info = match self.size_info.try_to_nonzero_elem_size() { |
| Some(size_info) => size_info, |
| None => const_panic!("attempted to cast to slice type with zero-sized element"), |
| }; |
| |
| // Precondition |
| __const_debug_assert!( |
| addr.checked_add(bytes_len).is_some(), |
| "`addr` + `bytes_len` > usize::MAX" |
| ); |
| |
| // Alignment checks go in their own block to avoid introducing variables |
| // into the top-level scope. |
| { |
| // We check alignment for `addr` (for prefix casts) or `addr + |
| // bytes_len` (for suffix casts). For a prefix cast, the correctness |
| // of this check is trivial - `addr` is the address the object will |
| // live at. |
| // |
| // For a suffix cast, we know that all valid sizes for the type are |
| // a multiple of the alignment (and by safety precondition, we know |
| // `DstLayout` may only describe valid Rust types). Thus, a |
| // validly-sized instance which lives at a validly-aligned address |
| // must also end at a validly-aligned address. Thus, if the end |
| // address for a suffix cast (`addr + bytes_len`) is not aligned, |
| // then no valid start address will be aligned either. |
| let offset = match cast_type { |
| CastType::Prefix => 0, |
| CastType::Suffix => bytes_len, |
| }; |
| |
| // Addition is guaranteed not to overflow because `offset <= |
| // bytes_len`, and `addr + bytes_len <= usize::MAX` is a |
| // precondition of this method. Modulus is guaranteed not to divide |
| // by 0 because `align` is non-zero. |
| #[allow(clippy::arithmetic_side_effects)] |
| if (addr + offset) % self.align.get() != 0 { |
| return Err(MetadataCastError::Alignment); |
| } |
| } |
| |
| let (elems, self_bytes) = match size_info { |
| SizeInfo::Sized { size } => { |
| if size > bytes_len { |
| return Err(MetadataCastError::Size); |
| } |
| (0, size) |
| } |
| SizeInfo::SliceDst(TrailingSliceLayout { offset, elem_size }) => { |
| // Calculate the maximum number of bytes that could be consumed |
| // - any number of bytes larger than this will either not be a |
| // multiple of the alignment, or will be larger than |
| // `bytes_len`. |
| let max_total_bytes = |
| util::round_down_to_next_multiple_of_alignment(bytes_len, self.align); |
| // Calculate the maximum number of bytes that could be consumed |
| // by the trailing slice. |
| // |
| // TODO(#67): Once our MSRV is 1.65, use let-else: |
| // https://blog.rust-lang.org/2022/11/03/Rust-1.65.0.html#let-else-statements |
| let max_slice_and_padding_bytes = match max_total_bytes.checked_sub(offset) { |
| Some(max) => max, |
| // `bytes_len` too small even for 0 trailing slice elements. |
| None => return Err(MetadataCastError::Size), |
| }; |
| |
| // Calculate the number of elements that fit in |
| // `max_slice_and_padding_bytes`; any remaining bytes will be |
| // considered padding. |
| // |
| // Guaranteed not to divide by zero: `elem_size` is non-zero. |
| #[allow(clippy::arithmetic_side_effects)] |
| let elems = max_slice_and_padding_bytes / elem_size.get(); |
| // Guaranteed not to overflow on multiplication: `usize::MAX >= |
| // max_slice_and_padding_bytes >= (max_slice_and_padding_bytes / |
| // elem_size) * elem_size`. |
| // |
| // Guaranteed not to overflow on addition: |
| // - max_slice_and_padding_bytes == max_total_bytes - offset |
| // - elems * elem_size <= max_slice_and_padding_bytes == max_total_bytes - offset |
| // - elems * elem_size + offset <= max_total_bytes <= usize::MAX |
| #[allow(clippy::arithmetic_side_effects)] |
| let without_padding = offset + elems * elem_size.get(); |
| // `self_bytes` is equal to the offset bytes plus the bytes |
| // consumed by the trailing slice plus any padding bytes |
| // required to satisfy the alignment. Note that we have computed |
| // the maximum number of trailing slice elements that could fit |
| // in `self_bytes`, so any padding is guaranteed to be less than |
| // the size of an extra element. |
| // |
| // Guaranteed not to overflow: |
| // - By previous comment: without_padding == elems * elem_size + |
| // offset <= max_total_bytes |
| // - By construction, `max_total_bytes` is a multiple of |
| // `self.align`. |
| // - At most, adding padding needed to round `without_padding` |
| // up to the next multiple of the alignment will bring |
| // `self_bytes` up to `max_total_bytes`. |
| #[allow(clippy::arithmetic_side_effects)] |
| let self_bytes = |
| without_padding + util::padding_needed_for(without_padding, self.align); |
| (elems, self_bytes) |
| } |
| }; |
| |
| __const_debug_assert!(self_bytes <= bytes_len); |
| |
| let split_at = match cast_type { |
| CastType::Prefix => self_bytes, |
| // Guaranteed not to underflow: |
| // - In the `Sized` branch, only returns `size` if `size <= |
| // bytes_len`. |
| // - In the `SliceDst` branch, calculates `self_bytes <= |
| // max_toatl_bytes`, which is upper-bounded by `bytes_len`. |
| #[allow(clippy::arithmetic_side_effects)] |
| CastType::Suffix => bytes_len - self_bytes, |
| }; |
| |
| Ok((elems, split_at)) |
| } |
| } |
| |
| // TODO(#67): For some reason, on our MSRV toolchain, this `allow` isn't |
| // enforced despite having `#![allow(unknown_lints)]` at the crate root, but |
| // putting it here works. Once our MSRV is high enough that this bug has been |
| // fixed, remove this `allow`. |
| #[allow(unknown_lints)] |
| #[cfg(test)] |
| mod tests { |
| use super::*; |
| |
| /// Tests of when a sized `DstLayout` is extended with a sized field. |
| #[allow(clippy::decimal_literal_representation)] |
| #[test] |
| fn test_dst_layout_extend_sized_with_sized() { |
| // This macro constructs a layout corresponding to a `u8` and extends it |
| // with a zero-sized trailing field of given alignment `n`. The macro |
| // tests that the resulting layout has both size and alignment `min(n, |
| // P)` for all valid values of `repr(packed(P))`. |
| macro_rules! test_align_is_size { |
| ($n:expr) => { |
| let base = DstLayout::for_type::<u8>(); |
| let trailing_field = DstLayout::for_type::<elain::Align<$n>>(); |
| |
| let packs = |
| core::iter::once(None).chain((0..29).map(|p| NonZeroUsize::new(2usize.pow(p)))); |
| |
| for pack in packs { |
| let composite = base.extend(trailing_field, pack); |
| let max_align = pack.unwrap_or(DstLayout::CURRENT_MAX_ALIGN); |
| let align = $n.min(max_align.get()); |
| assert_eq!( |
| composite, |
| DstLayout { |
| align: NonZeroUsize::new(align).unwrap(), |
| size_info: SizeInfo::Sized { size: align } |
| } |
| ) |
| } |
| }; |
| } |
| |
| test_align_is_size!(1); |
| test_align_is_size!(2); |
| test_align_is_size!(4); |
| test_align_is_size!(8); |
| test_align_is_size!(16); |
| test_align_is_size!(32); |
| test_align_is_size!(64); |
| test_align_is_size!(128); |
| test_align_is_size!(256); |
| test_align_is_size!(512); |
| test_align_is_size!(1024); |
| test_align_is_size!(2048); |
| test_align_is_size!(4096); |
| test_align_is_size!(8192); |
| test_align_is_size!(16384); |
| test_align_is_size!(32768); |
| test_align_is_size!(65536); |
| test_align_is_size!(131072); |
| test_align_is_size!(262144); |
| test_align_is_size!(524288); |
| test_align_is_size!(1048576); |
| test_align_is_size!(2097152); |
| test_align_is_size!(4194304); |
| test_align_is_size!(8388608); |
| test_align_is_size!(16777216); |
| test_align_is_size!(33554432); |
| test_align_is_size!(67108864); |
| test_align_is_size!(33554432); |
| test_align_is_size!(134217728); |
| test_align_is_size!(268435456); |
| } |
| |
| /// Tests of when a sized `DstLayout` is extended with a DST field. |
| #[test] |
| fn test_dst_layout_extend_sized_with_dst() { |
| // Test that for all combinations of real-world alignments and |
| // `repr_packed` values, that the extension of a sized `DstLayout`` with |
| // a DST field correctly computes the trailing offset in the composite |
| // layout. |
| |
| let aligns = (0..29).map(|p| NonZeroUsize::new(2usize.pow(p)).unwrap()); |
| let packs = core::iter::once(None).chain(aligns.clone().map(Some)); |
| |
| for align in aligns { |
| for pack in packs.clone() { |
| let base = DstLayout::for_type::<u8>(); |
| let elem_size = 42; |
| let trailing_field_offset = 11; |
| |
| let trailing_field = DstLayout { |
| align, |
| size_info: SizeInfo::SliceDst(TrailingSliceLayout { elem_size, offset: 11 }), |
| }; |
| |
| let composite = base.extend(trailing_field, pack); |
| |
| let max_align = pack.unwrap_or(DstLayout::CURRENT_MAX_ALIGN).get(); |
| |
| let align = align.get().min(max_align); |
| |
| assert_eq!( |
| composite, |
| DstLayout { |
| align: NonZeroUsize::new(align).unwrap(), |
| size_info: SizeInfo::SliceDst(TrailingSliceLayout { |
| elem_size, |
| offset: align + trailing_field_offset, |
| }), |
| } |
| ) |
| } |
| } |
| } |
| |
| /// Tests that calling `pad_to_align` on a sized `DstLayout` adds the |
| /// expected amount of trailing padding. |
| #[test] |
| fn test_dst_layout_pad_to_align_with_sized() { |
| // For all valid alignments `align`, construct a one-byte layout aligned |
| // to `align`, call `pad_to_align`, and assert that the size of the |
| // resulting layout is equal to `align`. |
| for align in (0..29).map(|p| NonZeroUsize::new(2usize.pow(p)).unwrap()) { |
| let layout = DstLayout { align, size_info: SizeInfo::Sized { size: 1 } }; |
| |
| assert_eq!( |
| layout.pad_to_align(), |
| DstLayout { align, size_info: SizeInfo::Sized { size: align.get() } } |
| ); |
| } |
| |
| // Test explicitly-provided combinations of unpadded and padded |
| // counterparts. |
| |
| macro_rules! test { |
| (unpadded { size: $unpadded_size:expr, align: $unpadded_align:expr } |
| => padded { size: $padded_size:expr, align: $padded_align:expr }) => { |
| let unpadded = DstLayout { |
| align: NonZeroUsize::new($unpadded_align).unwrap(), |
| size_info: SizeInfo::Sized { size: $unpadded_size }, |
| }; |
| let padded = unpadded.pad_to_align(); |
| |
| assert_eq!( |
| padded, |
| DstLayout { |
| align: NonZeroUsize::new($padded_align).unwrap(), |
| size_info: SizeInfo::Sized { size: $padded_size }, |
| } |
| ); |
| }; |
| } |
| |
| test!(unpadded { size: 0, align: 4 } => padded { size: 0, align: 4 }); |
| test!(unpadded { size: 1, align: 4 } => padded { size: 4, align: 4 }); |
| test!(unpadded { size: 2, align: 4 } => padded { size: 4, align: 4 }); |
| test!(unpadded { size: 3, align: 4 } => padded { size: 4, align: 4 }); |
| test!(unpadded { size: 4, align: 4 } => padded { size: 4, align: 4 }); |
| test!(unpadded { size: 5, align: 4 } => padded { size: 8, align: 4 }); |
| test!(unpadded { size: 6, align: 4 } => padded { size: 8, align: 4 }); |
| test!(unpadded { size: 7, align: 4 } => padded { size: 8, align: 4 }); |
| test!(unpadded { size: 8, align: 4 } => padded { size: 8, align: 4 }); |
| |
| let current_max_align = DstLayout::CURRENT_MAX_ALIGN.get(); |
| |
| test!(unpadded { size: 1, align: current_max_align } |
| => padded { size: current_max_align, align: current_max_align }); |
| |
| test!(unpadded { size: current_max_align + 1, align: current_max_align } |
| => padded { size: current_max_align * 2, align: current_max_align }); |
| } |
| |
| /// Tests that calling `pad_to_align` on a DST `DstLayout` is a no-op. |
| #[test] |
| fn test_dst_layout_pad_to_align_with_dst() { |
| for align in (0..29).map(|p| NonZeroUsize::new(2usize.pow(p)).unwrap()) { |
| for offset in 0..10 { |
| for elem_size in 0..10 { |
| let layout = DstLayout { |
| align, |
| size_info: SizeInfo::SliceDst(TrailingSliceLayout { offset, elem_size }), |
| }; |
| assert_eq!(layout.pad_to_align(), layout); |
| } |
| } |
| } |
| } |
| |
| // This test takes a long time when running under Miri, so we skip it in |
| // that case. This is acceptable because this is a logic test that doesn't |
| // attempt to expose UB. |
| #[test] |
| #[cfg_attr(miri, ignore)] |
| fn test_validate_cast_and_convert_metadata() { |
| #[allow(non_local_definitions)] |
| impl From<usize> for SizeInfo { |
| fn from(size: usize) -> SizeInfo { |
| SizeInfo::Sized { size } |
| } |
| } |
| |
| #[allow(non_local_definitions)] |
| impl From<(usize, usize)> for SizeInfo { |
| fn from((offset, elem_size): (usize, usize)) -> SizeInfo { |
| SizeInfo::SliceDst(TrailingSliceLayout { offset, elem_size }) |
| } |
| } |
| |
| fn layout<S: Into<SizeInfo>>(s: S, align: usize) -> DstLayout { |
| DstLayout { size_info: s.into(), align: NonZeroUsize::new(align).unwrap() } |
| } |
| |
| /// This macro accepts arguments in the form of: |
| /// |
| /// layout(_, _, _).validate(_, _, _), Ok(Some((_, _))) |
| /// | | | | | | | | |
| /// base_size ----+ | | | | | | | |
| /// align -----------+ | | | | | | |
| /// trailing_size ------+ | | | | | |
| /// addr ---------------------------+ | | | | |
| /// bytes_len -------------------------+ | | | |
| /// cast_type ----------------------------+ | | |
| /// elems ---------------------------------------------+ | |
| /// split_at ---------------------------------------------+ |
| /// |
| /// `.validate` is shorthand for `.validate_cast_and_convert_metadata` |
| /// for brevity. |
| /// |
| /// Each argument can either be an iterator or a wildcard. Each |
| /// wildcarded variable is implicitly replaced by an iterator over a |
| /// representative sample of values for that variable. Each `test!` |
| /// invocation iterates over every combination of values provided by |
| /// each variable's iterator (ie, the cartesian product) and validates |
| /// that the results are expected. |
| /// |
| /// The final argument uses the same syntax, but it has a different |
| /// meaning: |
| /// - If it is `Ok(pat)`, then the pattern `pat` is supplied to |
| /// a matching assert to validate the computed result for each |
| /// combination of input values. |
| /// - If it is `Err(Some(msg) | None)`, then `test!` validates that the |
| /// call to `validate_cast_and_convert_metadata` panics with the given |
| /// panic message or, if the current Rust toolchain version is too |
| /// early to support panicking in `const fn`s, panics with *some* |
| /// message. In the latter case, the `const_panic!` macro is used, |
| /// which emits code which causes a non-panicking error at const eval |
| /// time, but which does panic when invoked at runtime. Thus, it is |
| /// merely difficult to predict the *value* of this panic. We deem |
| /// that testing against the real panic strings on stable and nightly |
| /// toolchains is enough to ensure correctness. |
| /// |
| /// Note that the meta-variables that match these variables have the |
| /// `tt` type, and some valid expressions are not valid `tt`s (such as |
| /// `a..b`). In this case, wrap the expression in parentheses, and it |
| /// will become valid `tt`. |
| macro_rules! test { |
| ($(:$sizes:expr =>)? |
| layout($size:tt, $align:tt) |
| .validate($addr:tt, $bytes_len:tt, $cast_type:tt), $expect:pat $(,)? |
| ) => { |
| itertools::iproduct!( |
| test!(@generate_size $size), |
| test!(@generate_align $align), |
| test!(@generate_usize $addr), |
| test!(@generate_usize $bytes_len), |
| test!(@generate_cast_type $cast_type) |
| ).for_each(|(size_info, align, addr, bytes_len, cast_type)| { |
| // Temporarily disable the panic hook installed by the test |
| // harness. If we don't do this, all panic messages will be |
| // kept in an internal log. On its own, this isn't a |
| // problem, but if a non-caught panic ever happens (ie, in |
| // code later in this test not in this macro), all of the |
| // previously-buffered messages will be dumped, hiding the |
| // real culprit. |
| let previous_hook = std::panic::take_hook(); |
| // I don't understand why, but this seems to be required in |
| // addition to the previous line. |
| std::panic::set_hook(Box::new(|_| {})); |
| let actual = std::panic::catch_unwind(|| { |
| layout(size_info, align).validate_cast_and_convert_metadata(addr, bytes_len, cast_type) |
| }).map_err(|d| { |
| let msg = d.downcast::<&'static str>().ok().map(|s| *s.as_ref()); |
| assert!(msg.is_some() || cfg!(not(zerocopy_panic_in_const_and_vec_try_reserve_1_57_0)), "non-string panic messages are not permitted when `--cfg zerocopy_panic_in_const_and_vec_try_reserve` is set"); |
| msg |
| }); |
| std::panic::set_hook(previous_hook); |
| |
| assert!( |
| matches!(actual, $expect), |
| "layout({:?}, {}).validate_cast_and_convert_metadata({}, {}, {:?})" ,size_info, align, addr, bytes_len, cast_type |
| ); |
| }); |
| }; |
| (@generate_usize _) => { 0..8 }; |
| // Generate sizes for both Sized and !Sized types. |
| (@generate_size _) => { |
| test!(@generate_size (_)).chain(test!(@generate_size (_, _))) |
| }; |
| // Generate sizes for both Sized and !Sized types by chaining |
| // specified iterators for each. |
| (@generate_size ($sized_sizes:tt | $unsized_sizes:tt)) => { |
| test!(@generate_size ($sized_sizes)).chain(test!(@generate_size $unsized_sizes)) |
| }; |
| // Generate sizes for Sized types. |
| (@generate_size (_)) => { test!(@generate_size (0..8)) }; |
| (@generate_size ($sizes:expr)) => { $sizes.into_iter().map(Into::<SizeInfo>::into) }; |
| // Generate sizes for !Sized types. |
| (@generate_size ($min_sizes:tt, $elem_sizes:tt)) => { |
| itertools::iproduct!( |
| test!(@generate_min_size $min_sizes), |
| test!(@generate_elem_size $elem_sizes) |
| ).map(Into::<SizeInfo>::into) |
| }; |
| (@generate_fixed_size _) => { (0..8).into_iter().map(Into::<SizeInfo>::into) }; |
| (@generate_min_size _) => { 0..8 }; |
| (@generate_elem_size _) => { 1..8 }; |
| (@generate_align _) => { [1, 2, 4, 8, 16] }; |
| (@generate_opt_usize _) => { [None].into_iter().chain((0..8).map(Some).into_iter()) }; |
| (@generate_cast_type _) => { [CastType::Prefix, CastType::Suffix] }; |
| (@generate_cast_type $variant:ident) => { [CastType::$variant] }; |
| // Some expressions need to be wrapped in parentheses in order to be |
| // valid `tt`s (required by the top match pattern). See the comment |
| // below for more details. This arm removes these parentheses to |
| // avoid generating an `unused_parens` warning. |
| (@$_:ident ($vals:expr)) => { $vals }; |
| (@$_:ident $vals:expr) => { $vals }; |
| } |
| |
| const EVENS: [usize; 8] = [0, 2, 4, 6, 8, 10, 12, 14]; |
| const ODDS: [usize; 8] = [1, 3, 5, 7, 9, 11, 13, 15]; |
| |
| // base_size is too big for the memory region. |
| test!( |
| layout(((1..8) | ((1..8), (1..8))), _).validate([0], [0], _), |
| Ok(Err(MetadataCastError::Size)) |
| ); |
| test!( |
| layout(((2..8) | ((2..8), (2..8))), _).validate([0], [1], Prefix), |
| Ok(Err(MetadataCastError::Size)) |
| ); |
| test!( |
| layout(((2..8) | ((2..8), (2..8))), _).validate([0x1000_0000 - 1], [1], Suffix), |
| Ok(Err(MetadataCastError::Size)) |
| ); |
| |
| // addr is unaligned for prefix cast |
| test!(layout(_, [2]).validate(ODDS, _, Prefix), Ok(Err(MetadataCastError::Alignment))); |
| test!(layout(_, [2]).validate(ODDS, _, Prefix), Ok(Err(MetadataCastError::Alignment))); |
| |
| // addr is aligned, but end of buffer is unaligned for suffix cast |
| test!(layout(_, [2]).validate(EVENS, ODDS, Suffix), Ok(Err(MetadataCastError::Alignment))); |
| test!(layout(_, [2]).validate(EVENS, ODDS, Suffix), Ok(Err(MetadataCastError::Alignment))); |
| |
| // Unfortunately, these constants cannot easily be used in the |
| // implementation of `validate_cast_and_convert_metadata`, since |
| // `panic!` consumes a string literal, not an expression. |
| // |
| // It's important that these messages be in a separate module. If they |
| // were at the function's top level, we'd pass them to `test!` as, e.g., |
| // `Err(TRAILING)`, which would run into a subtle Rust footgun - the |
| // `TRAILING` identifier would be treated as a pattern to match rather |
| // than a value to check for equality. |
| mod msgs { |
| pub(super) const TRAILING: &str = |
| "attempted to cast to slice type with zero-sized element"; |
| pub(super) const OVERFLOW: &str = "`addr` + `bytes_len` > usize::MAX"; |
| } |
| |
| // casts with ZST trailing element types are unsupported |
| test!(layout((_, [0]), _).validate(_, _, _), Err(Some(msgs::TRAILING) | None),); |
| |
| // addr + bytes_len must not overflow usize |
| test!(layout(_, _).validate([usize::MAX], (1..100), _), Err(Some(msgs::OVERFLOW) | None)); |
| test!(layout(_, _).validate((1..100), [usize::MAX], _), Err(Some(msgs::OVERFLOW) | None)); |
| test!( |
| layout(_, _).validate( |
| [usize::MAX / 2 + 1, usize::MAX], |
| [usize::MAX / 2 + 1, usize::MAX], |
| _ |
| ), |
| Err(Some(msgs::OVERFLOW) | None) |
| ); |
| |
| // Validates that `validate_cast_and_convert_metadata` satisfies its own |
| // documented safety postconditions, and also a few other properties |
| // that aren't documented but we want to guarantee anyway. |
| fn validate_behavior( |
| (layout, addr, bytes_len, cast_type): (DstLayout, usize, usize, CastType), |
| ) { |
| if let Ok((elems, split_at)) = |
| layout.validate_cast_and_convert_metadata(addr, bytes_len, cast_type) |
| { |
| let (size_info, align) = (layout.size_info, layout.align); |
| let debug_str = format!( |
| "layout({:?}, {}).validate_cast_and_convert_metadata({}, {}, {:?}) => ({}, {})", |
| size_info, align, addr, bytes_len, cast_type, elems, split_at |
| ); |
| |
| // If this is a sized type (no trailing slice), then `elems` is |
| // meaningless, but in practice we set it to 0. Callers are not |
| // allowed to rely on this, but a lot of math is nicer if |
| // they're able to, and some callers might accidentally do that. |
| let sized = matches!(layout.size_info, SizeInfo::Sized { .. }); |
| assert!(!(sized && elems != 0), "{}", debug_str); |
| |
| let resulting_size = match layout.size_info { |
| SizeInfo::Sized { size } => size, |
| SizeInfo::SliceDst(TrailingSliceLayout { offset, elem_size }) => { |
| let padded_size = |elems| { |
| let without_padding = offset + elems * elem_size; |
| without_padding + util::padding_needed_for(without_padding, align) |
| }; |
| |
| let resulting_size = padded_size(elems); |
| // Test that `validate_cast_and_convert_metadata` |
| // computed the largest possible value that fits in the |
| // given range. |
| assert!(padded_size(elems + 1) > bytes_len, "{}", debug_str); |
| resulting_size |
| } |
| }; |
| |
| // Test safety postconditions guaranteed by |
| // `validate_cast_and_convert_metadata`. |
| assert!(resulting_size <= bytes_len, "{}", debug_str); |
| match cast_type { |
| CastType::Prefix => { |
| assert_eq!(addr % align, 0, "{}", debug_str); |
| assert_eq!(resulting_size, split_at, "{}", debug_str); |
| } |
| CastType::Suffix => { |
| assert_eq!(split_at, bytes_len - resulting_size, "{}", debug_str); |
| assert_eq!((addr + split_at) % align, 0, "{}", debug_str); |
| } |
| } |
| } else { |
| let min_size = match layout.size_info { |
| SizeInfo::Sized { size } => size, |
| SizeInfo::SliceDst(TrailingSliceLayout { offset, .. }) => { |
| offset + util::padding_needed_for(offset, layout.align) |
| } |
| }; |
| |
| // If a cast is invalid, it is either because... |
| // 1. there are insufficent bytes at the given region for type: |
| let insufficient_bytes = bytes_len < min_size; |
| // 2. performing the cast would misalign type: |
| let base = match cast_type { |
| CastType::Prefix => 0, |
| CastType::Suffix => bytes_len, |
| }; |
| let misaligned = (base + addr) % layout.align != 0; |
| |
| assert!(insufficient_bytes || misaligned); |
| } |
| } |
| |
| let sizes = 0..8; |
| let elem_sizes = 1..8; |
| let size_infos = sizes |
| .clone() |
| .map(Into::<SizeInfo>::into) |
| .chain(itertools::iproduct!(sizes, elem_sizes).map(Into::<SizeInfo>::into)); |
| let layouts = itertools::iproduct!(size_infos, [1, 2, 4, 8, 16, 32]) |
| .filter(|(size_info, align)| !matches!(size_info, SizeInfo::Sized { size } if size % align != 0)) |
| .map(|(size_info, align)| layout(size_info, align)); |
| itertools::iproduct!(layouts, 0..8, 0..8, [CastType::Prefix, CastType::Suffix]) |
| .for_each(validate_behavior); |
| } |
| |
| #[test] |
| #[cfg(__ZEROCOPY_INTERNAL_USE_ONLY_NIGHTLY_FEATURES_IN_TESTS)] |
| fn test_validate_rust_layout() { |
| use crate::util::testutil::*; |
| use core::{ |
| convert::TryInto as _, |
| ptr::{self, NonNull}, |
| }; |
| |
| // This test synthesizes pointers with various metadata and uses Rust's |
| // built-in APIs to confirm that Rust makes decisions about type layout |
| // which are consistent with what we believe is guaranteed by the |
| // language. If this test fails, it doesn't just mean our code is wrong |
| // - it means we're misunderstanding the language's guarantees. |
| |
| #[derive(Debug)] |
| struct MacroArgs { |
| offset: usize, |
| align: NonZeroUsize, |
| elem_size: Option<usize>, |
| } |
| |
| /// # Safety |
| /// |
| /// `test` promises to only call `addr_of_slice_field` on a `NonNull<T>` |
| /// which points to a valid `T`. |
| /// |
| /// `with_elems` must produce a pointer which points to a valid `T`. |
| fn test<T: ?Sized, W: Fn(usize) -> NonNull<T>>( |
| args: MacroArgs, |
| with_elems: W, |
| addr_of_slice_field: Option<fn(NonNull<T>) -> NonNull<u8>>, |
| ) { |
| let dst = args.elem_size.is_some(); |
| let layout = { |
| let size_info = match args.elem_size { |
| Some(elem_size) => { |
| SizeInfo::SliceDst(TrailingSliceLayout { offset: args.offset, elem_size }) |
| } |
| None => SizeInfo::Sized { |
| // Rust only supports types whose sizes are a multiple |
| // of their alignment. If the macro created a type like |
| // this: |
| // |
| // #[repr(C, align(2))] |
| // struct Foo([u8; 1]); |
| // |
| // ...then Rust will automatically round the type's size |
| // up to 2. |
| size: args.offset + util::padding_needed_for(args.offset, args.align), |
| }, |
| }; |
| DstLayout { size_info, align: args.align } |
| }; |
| |
| for elems in 0..128 { |
| let ptr = with_elems(elems); |
| |
| if let Some(addr_of_slice_field) = addr_of_slice_field { |
| let slc_field_ptr = addr_of_slice_field(ptr).as_ptr(); |
| // SAFETY: Both `slc_field_ptr` and `ptr` are pointers to |
| // the same valid Rust object. |
| #[allow(clippy::incompatible_msrv)] |
| // Work around https://github.com/rust-lang/rust-clippy/issues/12280 |
| let offset: usize = |
| unsafe { slc_field_ptr.byte_offset_from(ptr.as_ptr()).try_into().unwrap() }; |
| assert_eq!(offset, args.offset); |
| } |
| |
| // SAFETY: `ptr` points to a valid `T`. |
| let (size, align) = unsafe { |
| (mem::size_of_val_raw(ptr.as_ptr()), mem::align_of_val_raw(ptr.as_ptr())) |
| }; |
| |
| // Avoid expensive allocation when running under Miri. |
| let assert_msg = if !cfg!(miri) { |
| format!("\n{:?}\nsize:{}, align:{}", args, size, align) |
| } else { |
| String::new() |
| }; |
| |
| let without_padding = |
| args.offset + args.elem_size.map(|elem_size| elems * elem_size).unwrap_or(0); |
| assert!(size >= without_padding, "{}", assert_msg); |
| assert_eq!(align, args.align.get(), "{}", assert_msg); |
| |
| // This encodes the most important part of the test: our |
| // understanding of how Rust determines the layout of repr(C) |
| // types. Sized repr(C) types are trivial, but DST types have |
| // some subtlety. Note that: |
| // - For sized types, `without_padding` is just the size of the |
| // type that we constructed for `Foo`. Since we may have |
| // requested a larger alignment, `Foo` may actually be larger |
| // than this, hence `padding_needed_for`. |
| // - For unsized types, `without_padding` is dynamically |
| // computed from the offset, the element size, and element |
| // count. We expect that the size of the object should be |
| // `offset + elem_size * elems` rounded up to the next |
| // alignment. |
| let expected_size = |
| without_padding + util::padding_needed_for(without_padding, args.align); |
| assert_eq!(expected_size, size, "{}", assert_msg); |
| |
| // For zero-sized element types, |
| // `validate_cast_and_convert_metadata` just panics, so we skip |
| // testing those types. |
| if args.elem_size.map(|elem_size| elem_size > 0).unwrap_or(true) { |
| let addr = ptr.addr().get(); |
| let (got_elems, got_split_at) = layout |
| .validate_cast_and_convert_metadata(addr, size, CastType::Prefix) |
| .unwrap(); |
| // Avoid expensive allocation when running under Miri. |
| let assert_msg = if !cfg!(miri) { |
| format!( |
| "{}\nvalidate_cast_and_convert_metadata({}, {})", |
| assert_msg, addr, size, |
| ) |
| } else { |
| String::new() |
| }; |
| assert_eq!(got_split_at, size, "{}", assert_msg); |
| if dst { |
| assert!(got_elems >= elems, "{}", assert_msg); |
| if got_elems != elems { |
| // If `validate_cast_and_convert_metadata` |
| // returned more elements than `elems`, that |
| // means that `elems` is not the maximum number |
| // of elements that can fit in `size` - in other |
| // words, there is enough padding at the end of |
| // the value to fit at least one more element. |
| // If we use this metadata to synthesize a |
| // pointer, despite having a different element |
| // count, we still expect it to have the same |
| // size. |
| let got_ptr = with_elems(got_elems); |
| // SAFETY: `got_ptr` is a pointer to a valid `T`. |
| let size_of_got_ptr = unsafe { mem::size_of_val_raw(got_ptr.as_ptr()) }; |
| assert_eq!(size_of_got_ptr, size, "{}", assert_msg); |
| } |
| } else { |
| // For sized casts, the returned element value is |
| // technically meaningless, and we don't guarantee any |
| // particular value. In practice, it's always zero. |
| assert_eq!(got_elems, 0, "{}", assert_msg) |
| } |
| } |
| } |
| } |
| |
| macro_rules! validate_against_rust { |
| ($offset:literal, $align:literal $(, $elem_size:literal)?) => {{ |
| #[repr(C, align($align))] |
| struct Foo([u8; $offset]$(, [[u8; $elem_size]])?); |
| |
| let args = MacroArgs { |
| offset: $offset, |
| align: $align.try_into().unwrap(), |
| elem_size: { |
| #[allow(unused)] |
| let ret = None::<usize>; |
| $(let ret = Some($elem_size);)? |
| ret |
| } |
| }; |
| |
| #[repr(C, align($align))] |
| struct FooAlign; |
| // Create an aligned buffer to use in order to synthesize |
| // pointers to `Foo`. We don't ever load values from these |
| // pointers - we just do arithmetic on them - so having a "real" |
| // block of memory as opposed to a validly-aligned-but-dangling |
| // pointer is only necessary to make Miri happy since we run it |
| // with "strict provenance" checking enabled. |
| let aligned_buf = Align::<_, FooAlign>::new([0u8; 1024]); |
| let with_elems = |elems| { |
| let slc = NonNull::slice_from_raw_parts(NonNull::from(&aligned_buf.t), elems); |
| #[allow(clippy::as_conversions)] |
| NonNull::new(slc.as_ptr() as *mut Foo).unwrap() |
| }; |
| let addr_of_slice_field = { |
| #[allow(unused)] |
| let f = None::<fn(NonNull<Foo>) -> NonNull<u8>>; |
| $( |
| // SAFETY: `test` promises to only call `f` with a `ptr` |
| // to a valid `Foo`. |
| let f: Option<fn(NonNull<Foo>) -> NonNull<u8>> = Some(|ptr: NonNull<Foo>| unsafe { |
| NonNull::new(ptr::addr_of_mut!((*ptr.as_ptr()).1)).unwrap().cast::<u8>() |
| }); |
| let _ = $elem_size; |
| )? |
| f |
| }; |
| |
| test::<Foo, _>(args, with_elems, addr_of_slice_field); |
| }}; |
| } |
| |
| // Every permutation of: |
| // - offset in [0, 4] |
| // - align in [1, 16] |
| // - elem_size in [0, 4] (plus no elem_size) |
| validate_against_rust!(0, 1); |
| validate_against_rust!(0, 1, 0); |
| validate_against_rust!(0, 1, 1); |
| validate_against_rust!(0, 1, 2); |
| validate_against_rust!(0, 1, 3); |
| validate_against_rust!(0, 1, 4); |
| validate_against_rust!(0, 2); |
| validate_against_rust!(0, 2, 0); |
| validate_against_rust!(0, 2, 1); |
| validate_against_rust!(0, 2, 2); |
| validate_against_rust!(0, 2, 3); |
| validate_against_rust!(0, 2, 4); |
| validate_against_rust!(0, 4); |
| validate_against_rust!(0, 4, 0); |
| validate_against_rust!(0, 4, 1); |
| validate_against_rust!(0, 4, 2); |
| validate_against_rust!(0, 4, 3); |
| validate_against_rust!(0, 4, 4); |
| validate_against_rust!(0, 8); |
| validate_against_rust!(0, 8, 0); |
| validate_against_rust!(0, 8, 1); |
| validate_against_rust!(0, 8, 2); |
| validate_against_rust!(0, 8, 3); |
| validate_against_rust!(0, 8, 4); |
| validate_against_rust!(0, 16); |
| validate_against_rust!(0, 16, 0); |
| validate_against_rust!(0, 16, 1); |
| validate_against_rust!(0, 16, 2); |
| validate_against_rust!(0, 16, 3); |
| validate_against_rust!(0, 16, 4); |
| validate_against_rust!(1, 1); |
| validate_against_rust!(1, 1, 0); |
| validate_against_rust!(1, 1, 1); |
| validate_against_rust!(1, 1, 2); |
| validate_against_rust!(1, 1, 3); |
| validate_against_rust!(1, 1, 4); |
| validate_against_rust!(1, 2); |
| validate_against_rust!(1, 2, 0); |
| validate_against_rust!(1, 2, 1); |
| validate_against_rust!(1, 2, 2); |
| validate_against_rust!(1, 2, 3); |
| validate_against_rust!(1, 2, 4); |
| validate_against_rust!(1, 4); |
| validate_against_rust!(1, 4, 0); |
| validate_against_rust!(1, 4, 1); |
| validate_against_rust!(1, 4, 2); |
| validate_against_rust!(1, 4, 3); |
| validate_against_rust!(1, 4, 4); |
| validate_against_rust!(1, 8); |
| validate_against_rust!(1, 8, 0); |
| validate_against_rust!(1, 8, 1); |
| validate_against_rust!(1, 8, 2); |
| validate_against_rust!(1, 8, 3); |
| validate_against_rust!(1, 8, 4); |
| validate_against_rust!(1, 16); |
| validate_against_rust!(1, 16, 0); |
| validate_against_rust!(1, 16, 1); |
| validate_against_rust!(1, 16, 2); |
| validate_against_rust!(1, 16, 3); |
| validate_against_rust!(1, 16, 4); |
| validate_against_rust!(2, 1); |
| validate_against_rust!(2, 1, 0); |
| validate_against_rust!(2, 1, 1); |
| validate_against_rust!(2, 1, 2); |
| validate_against_rust!(2, 1, 3); |
| validate_against_rust!(2, 1, 4); |
| validate_against_rust!(2, 2); |
| validate_against_rust!(2, 2, 0); |
| validate_against_rust!(2, 2, 1); |
| validate_against_rust!(2, 2, 2); |
| validate_against_rust!(2, 2, 3); |
| validate_against_rust!(2, 2, 4); |
| validate_against_rust!(2, 4); |
| validate_against_rust!(2, 4, 0); |
| validate_against_rust!(2, 4, 1); |
| validate_against_rust!(2, 4, 2); |
| validate_against_rust!(2, 4, 3); |
| validate_against_rust!(2, 4, 4); |
| validate_against_rust!(2, 8); |
| validate_against_rust!(2, 8, 0); |
| validate_against_rust!(2, 8, 1); |
| validate_against_rust!(2, 8, 2); |
| validate_against_rust!(2, 8, 3); |
| validate_against_rust!(2, 8, 4); |
| validate_against_rust!(2, 16); |
| validate_against_rust!(2, 16, 0); |
| validate_against_rust!(2, 16, 1); |
| validate_against_rust!(2, 16, 2); |
| validate_against_rust!(2, 16, 3); |
| validate_against_rust!(2, 16, 4); |
| validate_against_rust!(3, 1); |
| validate_against_rust!(3, 1, 0); |
| validate_against_rust!(3, 1, 1); |
| validate_against_rust!(3, 1, 2); |
| validate_against_rust!(3, 1, 3); |
| validate_against_rust!(3, 1, 4); |
| validate_against_rust!(3, 2); |
| validate_against_rust!(3, 2, 0); |
| validate_against_rust!(3, 2, 1); |
| validate_against_rust!(3, 2, 2); |
| validate_against_rust!(3, 2, 3); |
| validate_against_rust!(3, 2, 4); |
| validate_against_rust!(3, 4); |
| validate_against_rust!(3, 4, 0); |
| validate_against_rust!(3, 4, 1); |
| validate_against_rust!(3, 4, 2); |
| validate_against_rust!(3, 4, 3); |
| validate_against_rust!(3, 4, 4); |
| validate_against_rust!(3, 8); |
| validate_against_rust!(3, 8, 0); |
| validate_against_rust!(3, 8, 1); |
| validate_against_rust!(3, 8, 2); |
| validate_against_rust!(3, 8, 3); |
| validate_against_rust!(3, 8, 4); |
| validate_against_rust!(3, 16); |
| validate_against_rust!(3, 16, 0); |
| validate_against_rust!(3, 16, 1); |
| validate_against_rust!(3, 16, 2); |
| validate_against_rust!(3, 16, 3); |
| validate_against_rust!(3, 16, 4); |
| validate_against_rust!(4, 1); |
| validate_against_rust!(4, 1, 0); |
| validate_against_rust!(4, 1, 1); |
| validate_against_rust!(4, 1, 2); |
| validate_against_rust!(4, 1, 3); |
| validate_against_rust!(4, 1, 4); |
| validate_against_rust!(4, 2); |
| validate_against_rust!(4, 2, 0); |
| validate_against_rust!(4, 2, 1); |
| validate_against_rust!(4, 2, 2); |
| validate_against_rust!(4, 2, 3); |
| validate_against_rust!(4, 2, 4); |
| validate_against_rust!(4, 4); |
| validate_against_rust!(4, 4, 0); |
| validate_against_rust!(4, 4, 1); |
| validate_against_rust!(4, 4, 2); |
| validate_against_rust!(4, 4, 3); |
| validate_against_rust!(4, 4, 4); |
| validate_against_rust!(4, 8); |
| validate_against_rust!(4, 8, 0); |
| validate_against_rust!(4, 8, 1); |
| validate_against_rust!(4, 8, 2); |
| validate_against_rust!(4, 8, 3); |
| validate_against_rust!(4, 8, 4); |
| validate_against_rust!(4, 16); |
| validate_against_rust!(4, 16, 0); |
| validate_against_rust!(4, 16, 1); |
| validate_against_rust!(4, 16, 2); |
| validate_against_rust!(4, 16, 3); |
| validate_against_rust!(4, 16, 4); |
| } |
| } |