| // Copyright 2018 Developers of the Rand project. |
| // |
| // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or |
| // https://www.apache.org/licenses/LICENSE-2.0> or the MIT license |
| // <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your |
| // option. This file may not be copied, modified, or distributed |
| // except according to those terms. |
| |
| //! The Bernoulli distribution. |
| |
| use crate::distributions::Distribution; |
| use crate::Rng; |
| use core::{fmt, u64}; |
| |
| #[cfg(feature = "serde1")] |
| use serde::{Serialize, Deserialize}; |
| /// The Bernoulli distribution. |
| /// |
| /// This is a special case of the Binomial distribution where `n = 1`. |
| /// |
| /// # Example |
| /// |
| /// ```rust |
| /// use rand::distributions::{Bernoulli, Distribution}; |
| /// |
| /// let d = Bernoulli::new(0.3).unwrap(); |
| /// let v = d.sample(&mut rand::thread_rng()); |
| /// println!("{} is from a Bernoulli distribution", v); |
| /// ``` |
| /// |
| /// # Precision |
| /// |
| /// This `Bernoulli` distribution uses 64 bits from the RNG (a `u64`), |
| /// so only probabilities that are multiples of 2<sup>-64</sup> can be |
| /// represented. |
| #[derive(Clone, Copy, Debug, PartialEq)] |
| #[cfg_attr(feature = "serde1", derive(Serialize, Deserialize))] |
| pub struct Bernoulli { |
| /// Probability of success, relative to the maximal integer. |
| p_int: u64, |
| } |
| |
| // To sample from the Bernoulli distribution we use a method that compares a |
| // random `u64` value `v < (p * 2^64)`. |
| // |
| // If `p == 1.0`, the integer `v` to compare against can not represented as a |
| // `u64`. We manually set it to `u64::MAX` instead (2^64 - 1 instead of 2^64). |
| // Note that value of `p < 1.0` can never result in `u64::MAX`, because an |
| // `f64` only has 53 bits of precision, and the next largest value of `p` will |
| // result in `2^64 - 2048`. |
| // |
| // Also there is a 100% theoretical concern: if someone consistently wants to |
| // generate `true` using the Bernoulli distribution (i.e. by using a probability |
| // of `1.0`), just using `u64::MAX` is not enough. On average it would return |
| // false once every 2^64 iterations. Some people apparently care about this |
| // case. |
| // |
| // That is why we special-case `u64::MAX` to always return `true`, without using |
| // the RNG, and pay the performance price for all uses that *are* reasonable. |
| // Luckily, if `new()` and `sample` are close, the compiler can optimize out the |
| // extra check. |
| const ALWAYS_TRUE: u64 = u64::MAX; |
| |
| // This is just `2.0.powi(64)`, but written this way because it is not available |
| // in `no_std` mode. |
| const SCALE: f64 = 2.0 * (1u64 << 63) as f64; |
| |
| /// Error type returned from `Bernoulli::new`. |
| #[derive(Clone, Copy, Debug, PartialEq, Eq)] |
| pub enum BernoulliError { |
| /// `p < 0` or `p > 1`. |
| InvalidProbability, |
| } |
| |
| impl fmt::Display for BernoulliError { |
| fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| f.write_str(match self { |
| BernoulliError::InvalidProbability => "p is outside [0, 1] in Bernoulli distribution", |
| }) |
| } |
| } |
| |
| #[cfg(feature = "std")] |
| impl ::std::error::Error for BernoulliError {} |
| |
| impl Bernoulli { |
| /// Construct a new `Bernoulli` with the given probability of success `p`. |
| /// |
| /// # Precision |
| /// |
| /// For `p = 1.0`, the resulting distribution will always generate true. |
| /// For `p = 0.0`, the resulting distribution will always generate false. |
| /// |
| /// This method is accurate for any input `p` in the range `[0, 1]` which is |
| /// a multiple of 2<sup>-64</sup>. (Note that not all multiples of |
| /// 2<sup>-64</sup> in `[0, 1]` can be represented as a `f64`.) |
| #[inline] |
| pub fn new(p: f64) -> Result<Bernoulli, BernoulliError> { |
| if !(0.0..1.0).contains(&p) { |
| if p == 1.0 { |
| return Ok(Bernoulli { p_int: ALWAYS_TRUE }); |
| } |
| return Err(BernoulliError::InvalidProbability); |
| } |
| Ok(Bernoulli { |
| p_int: (p * SCALE) as u64, |
| }) |
| } |
| |
| /// Construct a new `Bernoulli` with the probability of success of |
| /// `numerator`-in-`denominator`. I.e. `new_ratio(2, 3)` will return |
| /// a `Bernoulli` with a 2-in-3 chance, or about 67%, of returning `true`. |
| /// |
| /// return `true`. If `numerator == 0` it will always return `false`. |
| /// For `numerator > denominator` and `denominator == 0`, this returns an |
| /// error. Otherwise, for `numerator == denominator`, samples are always |
| /// true; for `numerator == 0` samples are always false. |
| #[inline] |
| pub fn from_ratio(numerator: u32, denominator: u32) -> Result<Bernoulli, BernoulliError> { |
| if numerator > denominator || denominator == 0 { |
| return Err(BernoulliError::InvalidProbability); |
| } |
| if numerator == denominator { |
| return Ok(Bernoulli { p_int: ALWAYS_TRUE }); |
| } |
| let p_int = ((f64::from(numerator) / f64::from(denominator)) * SCALE) as u64; |
| Ok(Bernoulli { p_int }) |
| } |
| } |
| |
| impl Distribution<bool> for Bernoulli { |
| #[inline] |
| fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> bool { |
| // Make sure to always return true for p = 1.0. |
| if self.p_int == ALWAYS_TRUE { |
| return true; |
| } |
| let v: u64 = rng.gen(); |
| v < self.p_int |
| } |
| } |
| |
| #[cfg(test)] |
| mod test { |
| use super::Bernoulli; |
| use crate::distributions::Distribution; |
| use crate::Rng; |
| |
| #[test] |
| #[cfg(feature="serde1")] |
| fn test_serializing_deserializing_bernoulli() { |
| let coin_flip = Bernoulli::new(0.5).unwrap(); |
| let de_coin_flip : Bernoulli = bincode::deserialize(&bincode::serialize(&coin_flip).unwrap()).unwrap(); |
| |
| assert_eq!(coin_flip.p_int, de_coin_flip.p_int); |
| } |
| |
| #[test] |
| fn test_trivial() { |
| // We prefer to be explicit here. |
| #![allow(clippy::bool_assert_comparison)] |
| |
| let mut r = crate::test::rng(1); |
| let always_false = Bernoulli::new(0.0).unwrap(); |
| let always_true = Bernoulli::new(1.0).unwrap(); |
| for _ in 0..5 { |
| assert_eq!(r.sample::<bool, _>(&always_false), false); |
| assert_eq!(r.sample::<bool, _>(&always_true), true); |
| assert_eq!(Distribution::<bool>::sample(&always_false, &mut r), false); |
| assert_eq!(Distribution::<bool>::sample(&always_true, &mut r), true); |
| } |
| } |
| |
| #[test] |
| #[cfg_attr(miri, ignore)] // Miri is too slow |
| fn test_average() { |
| const P: f64 = 0.3; |
| const NUM: u32 = 3; |
| const DENOM: u32 = 10; |
| let d1 = Bernoulli::new(P).unwrap(); |
| let d2 = Bernoulli::from_ratio(NUM, DENOM).unwrap(); |
| const N: u32 = 100_000; |
| |
| let mut sum1: u32 = 0; |
| let mut sum2: u32 = 0; |
| let mut rng = crate::test::rng(2); |
| for _ in 0..N { |
| if d1.sample(&mut rng) { |
| sum1 += 1; |
| } |
| if d2.sample(&mut rng) { |
| sum2 += 1; |
| } |
| } |
| let avg1 = (sum1 as f64) / (N as f64); |
| assert!((avg1 - P).abs() < 5e-3); |
| |
| let avg2 = (sum2 as f64) / (N as f64); |
| assert!((avg2 - (NUM as f64) / (DENOM as f64)).abs() < 5e-3); |
| } |
| |
| #[test] |
| fn value_stability() { |
| let mut rng = crate::test::rng(3); |
| let distr = Bernoulli::new(0.4532).unwrap(); |
| let mut buf = [false; 10]; |
| for x in &mut buf { |
| *x = rng.sample(&distr); |
| } |
| assert_eq!(buf, [ |
| true, false, false, true, false, false, true, true, true, true |
| ]); |
| } |
| |
| #[test] |
| fn bernoulli_distributions_can_be_compared() { |
| assert_eq!(Bernoulli::new(1.0), Bernoulli::new(1.0)); |
| } |
| } |