| // Generated from affine.rs.tera template. Edit the template, not the generated file. |
| |
| use crate::{Mat3, Mat3A, Mat4, Quat, Vec3, Vec3A}; |
| use core::ops::{Deref, DerefMut, Mul, MulAssign}; |
| |
| /// A 3D affine transform, which can represent translation, rotation, scaling and shear. |
| /// |
| /// This type is 16 byte aligned. |
| #[derive(Copy, Clone)] |
| #[repr(C)] |
| pub struct Affine3A { |
| pub matrix3: Mat3A, |
| pub translation: Vec3A, |
| } |
| |
| impl Affine3A { |
| /// The degenerate zero transform. |
| /// |
| /// This transforms any finite vector and point to zero. |
| /// The zero transform is non-invertible. |
| pub const ZERO: Self = Self { |
| matrix3: Mat3A::ZERO, |
| translation: Vec3A::ZERO, |
| }; |
| |
| /// The identity transform. |
| /// |
| /// Multiplying a vector with this returns the same vector. |
| pub const IDENTITY: Self = Self { |
| matrix3: Mat3A::IDENTITY, |
| translation: Vec3A::ZERO, |
| }; |
| |
| /// All NAN:s. |
| pub const NAN: Self = Self { |
| matrix3: Mat3A::NAN, |
| translation: Vec3A::NAN, |
| }; |
| |
| /// Creates an affine transform from three column vectors. |
| #[inline(always)] |
| #[must_use] |
| pub const fn from_cols(x_axis: Vec3A, y_axis: Vec3A, z_axis: Vec3A, w_axis: Vec3A) -> Self { |
| Self { |
| matrix3: Mat3A::from_cols(x_axis, y_axis, z_axis), |
| translation: w_axis, |
| } |
| } |
| |
| /// Creates an affine transform from a `[f32; 12]` array stored in column major order. |
| #[inline] |
| #[must_use] |
| pub fn from_cols_array(m: &[f32; 12]) -> Self { |
| Self { |
| matrix3: Mat3A::from_cols_slice(&m[0..9]), |
| translation: Vec3A::from_slice(&m[9..12]), |
| } |
| } |
| |
| /// Creates a `[f32; 12]` array storing data in column major order. |
| #[inline] |
| #[must_use] |
| pub fn to_cols_array(&self) -> [f32; 12] { |
| let x = &self.matrix3.x_axis; |
| let y = &self.matrix3.y_axis; |
| let z = &self.matrix3.z_axis; |
| let w = &self.translation; |
| [x.x, x.y, x.z, y.x, y.y, y.z, z.x, z.y, z.z, w.x, w.y, w.z] |
| } |
| |
| /// Creates an affine transform from a `[[f32; 3]; 4]` |
| /// 3D array stored in column major order. |
| /// If your data is in row major order you will need to `transpose` the returned |
| /// matrix. |
| #[inline] |
| #[must_use] |
| pub fn from_cols_array_2d(m: &[[f32; 3]; 4]) -> Self { |
| Self { |
| matrix3: Mat3A::from_cols(m[0].into(), m[1].into(), m[2].into()), |
| translation: m[3].into(), |
| } |
| } |
| |
| /// Creates a `[[f32; 3]; 4]` 3D array storing data in |
| /// column major order. |
| /// If you require data in row major order `transpose` the matrix first. |
| #[inline] |
| #[must_use] |
| pub fn to_cols_array_2d(&self) -> [[f32; 3]; 4] { |
| [ |
| self.matrix3.x_axis.into(), |
| self.matrix3.y_axis.into(), |
| self.matrix3.z_axis.into(), |
| self.translation.into(), |
| ] |
| } |
| |
| /// Creates an affine transform from the first 12 values in `slice`. |
| /// |
| /// # Panics |
| /// |
| /// Panics if `slice` is less than 12 elements long. |
| #[inline] |
| #[must_use] |
| pub fn from_cols_slice(slice: &[f32]) -> Self { |
| Self { |
| matrix3: Mat3A::from_cols_slice(&slice[0..9]), |
| translation: Vec3A::from_slice(&slice[9..12]), |
| } |
| } |
| |
| /// Writes the columns of `self` to the first 12 elements in `slice`. |
| /// |
| /// # Panics |
| /// |
| /// Panics if `slice` is less than 12 elements long. |
| #[inline] |
| pub fn write_cols_to_slice(self, slice: &mut [f32]) { |
| self.matrix3.write_cols_to_slice(&mut slice[0..9]); |
| self.translation.write_to_slice(&mut slice[9..12]); |
| } |
| |
| /// Creates an affine transform that changes scale. |
| /// Note that if any scale is zero the transform will be non-invertible. |
| #[inline] |
| #[must_use] |
| pub fn from_scale(scale: Vec3) -> Self { |
| Self { |
| matrix3: Mat3A::from_diagonal(scale), |
| translation: Vec3A::ZERO, |
| } |
| } |
| /// Creates an affine transform from the given `rotation` quaternion. |
| #[inline] |
| #[must_use] |
| pub fn from_quat(rotation: Quat) -> Self { |
| Self { |
| matrix3: Mat3A::from_quat(rotation), |
| translation: Vec3A::ZERO, |
| } |
| } |
| |
| /// Creates an affine transform containing a 3D rotation around a normalized |
| /// rotation `axis` of `angle` (in radians). |
| #[inline] |
| #[must_use] |
| pub fn from_axis_angle(axis: Vec3, angle: f32) -> Self { |
| Self { |
| matrix3: Mat3A::from_axis_angle(axis, angle), |
| translation: Vec3A::ZERO, |
| } |
| } |
| |
| /// Creates an affine transform containing a 3D rotation around the x axis of |
| /// `angle` (in radians). |
| #[inline] |
| #[must_use] |
| pub fn from_rotation_x(angle: f32) -> Self { |
| Self { |
| matrix3: Mat3A::from_rotation_x(angle), |
| translation: Vec3A::ZERO, |
| } |
| } |
| |
| /// Creates an affine transform containing a 3D rotation around the y axis of |
| /// `angle` (in radians). |
| #[inline] |
| #[must_use] |
| pub fn from_rotation_y(angle: f32) -> Self { |
| Self { |
| matrix3: Mat3A::from_rotation_y(angle), |
| translation: Vec3A::ZERO, |
| } |
| } |
| |
| /// Creates an affine transform containing a 3D rotation around the z axis of |
| /// `angle` (in radians). |
| #[inline] |
| #[must_use] |
| pub fn from_rotation_z(angle: f32) -> Self { |
| Self { |
| matrix3: Mat3A::from_rotation_z(angle), |
| translation: Vec3A::ZERO, |
| } |
| } |
| |
| /// Creates an affine transformation from the given 3D `translation`. |
| #[inline] |
| #[must_use] |
| pub fn from_translation(translation: Vec3) -> Self { |
| #[allow(clippy::useless_conversion)] |
| Self { |
| matrix3: Mat3A::IDENTITY, |
| translation: translation.into(), |
| } |
| } |
| |
| /// Creates an affine transform from a 3x3 matrix (expressing scale, shear and |
| /// rotation) |
| #[inline] |
| #[must_use] |
| pub fn from_mat3(mat3: Mat3) -> Self { |
| #[allow(clippy::useless_conversion)] |
| Self { |
| matrix3: mat3.into(), |
| translation: Vec3A::ZERO, |
| } |
| } |
| |
| /// Creates an affine transform from a 3x3 matrix (expressing scale, shear and rotation) |
| /// and a translation vector. |
| /// |
| /// Equivalent to `Affine3A::from_translation(translation) * Affine3A::from_mat3(mat3)` |
| #[inline] |
| #[must_use] |
| pub fn from_mat3_translation(mat3: Mat3, translation: Vec3) -> Self { |
| #[allow(clippy::useless_conversion)] |
| Self { |
| matrix3: mat3.into(), |
| translation: translation.into(), |
| } |
| } |
| |
| /// Creates an affine transform from the given 3D `scale`, `rotation` and |
| /// `translation`. |
| /// |
| /// Equivalent to `Affine3A::from_translation(translation) * |
| /// Affine3A::from_quat(rotation) * Affine3A::from_scale(scale)` |
| #[inline] |
| #[must_use] |
| pub fn from_scale_rotation_translation(scale: Vec3, rotation: Quat, translation: Vec3) -> Self { |
| let rotation = Mat3A::from_quat(rotation); |
| #[allow(clippy::useless_conversion)] |
| Self { |
| matrix3: Mat3A::from_cols( |
| rotation.x_axis * scale.x, |
| rotation.y_axis * scale.y, |
| rotation.z_axis * scale.z, |
| ), |
| translation: translation.into(), |
| } |
| } |
| |
| /// Creates an affine transform from the given 3D `rotation` and `translation`. |
| /// |
| /// Equivalent to `Affine3A::from_translation(translation) * Affine3A::from_quat(rotation)` |
| #[inline] |
| #[must_use] |
| pub fn from_rotation_translation(rotation: Quat, translation: Vec3) -> Self { |
| #[allow(clippy::useless_conversion)] |
| Self { |
| matrix3: Mat3A::from_quat(rotation), |
| translation: translation.into(), |
| } |
| } |
| |
| /// The given `Mat4` must be an affine transform, |
| /// i.e. contain no perspective transform. |
| #[inline] |
| #[must_use] |
| pub fn from_mat4(m: Mat4) -> Self { |
| Self { |
| matrix3: Mat3A::from_cols( |
| Vec3A::from_vec4(m.x_axis), |
| Vec3A::from_vec4(m.y_axis), |
| Vec3A::from_vec4(m.z_axis), |
| ), |
| translation: Vec3A::from_vec4(m.w_axis), |
| } |
| } |
| |
| /// Extracts `scale`, `rotation` and `translation` from `self`. |
| /// |
| /// The transform is expected to be non-degenerate and without shearing, or the output |
| /// will be invalid. |
| /// |
| /// # Panics |
| /// |
| /// Will panic if the determinant `self.matrix3` is zero or if the resulting scale |
| /// vector contains any zero elements when `glam_assert` is enabled. |
| #[inline] |
| #[must_use] |
| pub fn to_scale_rotation_translation(&self) -> (Vec3, Quat, Vec3) { |
| use crate::f32::math; |
| let det = self.matrix3.determinant(); |
| glam_assert!(det != 0.0); |
| |
| let scale = Vec3::new( |
| self.matrix3.x_axis.length() * math::signum(det), |
| self.matrix3.y_axis.length(), |
| self.matrix3.z_axis.length(), |
| ); |
| |
| glam_assert!(scale.cmpne(Vec3::ZERO).all()); |
| |
| let inv_scale = scale.recip(); |
| |
| #[allow(clippy::useless_conversion)] |
| let rotation = Quat::from_mat3(&Mat3::from_cols( |
| (self.matrix3.x_axis * inv_scale.x).into(), |
| (self.matrix3.y_axis * inv_scale.y).into(), |
| (self.matrix3.z_axis * inv_scale.z).into(), |
| )); |
| |
| #[allow(clippy::useless_conversion)] |
| (scale, rotation, self.translation.into()) |
| } |
| |
| /// Creates a left-handed view transform using a camera position, an up direction, and a facing |
| /// direction. |
| /// |
| /// For a view coordinate system with `+X=right`, `+Y=up` and `+Z=forward`. |
| #[inline] |
| #[must_use] |
| pub fn look_to_lh(eye: Vec3, dir: Vec3, up: Vec3) -> Self { |
| Self::look_to_rh(eye, -dir, up) |
| } |
| |
| /// Creates a right-handed view transform using a camera position, an up direction, and a facing |
| /// direction. |
| /// |
| /// For a view coordinate system with `+X=right`, `+Y=up` and `+Z=back`. |
| #[inline] |
| #[must_use] |
| pub fn look_to_rh(eye: Vec3, dir: Vec3, up: Vec3) -> Self { |
| let f = dir.normalize(); |
| let s = f.cross(up).normalize(); |
| let u = s.cross(f); |
| |
| Self { |
| matrix3: Mat3A::from_cols( |
| Vec3A::new(s.x, u.x, -f.x), |
| Vec3A::new(s.y, u.y, -f.y), |
| Vec3A::new(s.z, u.z, -f.z), |
| ), |
| translation: Vec3A::new(-eye.dot(s), -eye.dot(u), eye.dot(f)), |
| } |
| } |
| |
| /// Creates a left-handed view transform using a camera position, an up direction, and a focal |
| /// point. |
| /// For a view coordinate system with `+X=right`, `+Y=up` and `+Z=forward`. |
| /// |
| /// # Panics |
| /// |
| /// Will panic if `up` is not normalized when `glam_assert` is enabled. |
| #[inline] |
| #[must_use] |
| pub fn look_at_lh(eye: Vec3, center: Vec3, up: Vec3) -> Self { |
| glam_assert!(up.is_normalized()); |
| Self::look_to_lh(eye, center - eye, up) |
| } |
| |
| /// Creates a right-handed view transform using a camera position, an up direction, and a focal |
| /// point. |
| /// For a view coordinate system with `+X=right`, `+Y=up` and `+Z=back`. |
| /// |
| /// # Panics |
| /// |
| /// Will panic if `up` is not normalized when `glam_assert` is enabled. |
| #[inline] |
| #[must_use] |
| pub fn look_at_rh(eye: Vec3, center: Vec3, up: Vec3) -> Self { |
| glam_assert!(up.is_normalized()); |
| Self::look_to_rh(eye, center - eye, up) |
| } |
| |
| /// Transforms the given 3D points, applying shear, scale, rotation and translation. |
| #[inline] |
| pub fn transform_point3(&self, rhs: Vec3) -> Vec3 { |
| #[allow(clippy::useless_conversion)] |
| ((self.matrix3.x_axis * rhs.x) |
| + (self.matrix3.y_axis * rhs.y) |
| + (self.matrix3.z_axis * rhs.z) |
| + self.translation) |
| .into() |
| } |
| |
| /// Transforms the given 3D vector, applying shear, scale and rotation (but NOT |
| /// translation). |
| /// |
| /// To also apply translation, use [`Self::transform_point3()`] instead. |
| #[inline] |
| #[must_use] |
| pub fn transform_vector3(&self, rhs: Vec3) -> Vec3 { |
| #[allow(clippy::useless_conversion)] |
| ((self.matrix3.x_axis * rhs.x) |
| + (self.matrix3.y_axis * rhs.y) |
| + (self.matrix3.z_axis * rhs.z)) |
| .into() |
| } |
| |
| /// Transforms the given [`Vec3A`], applying shear, scale, rotation and translation. |
| #[inline] |
| #[must_use] |
| pub fn transform_point3a(&self, rhs: Vec3A) -> Vec3A { |
| self.matrix3 * rhs + self.translation |
| } |
| |
| /// Transforms the given [`Vec3A`], applying shear, scale and rotation (but NOT |
| /// translation). |
| /// |
| /// To also apply translation, use [`Self::transform_point3a()`] instead. |
| #[inline] |
| #[must_use] |
| pub fn transform_vector3a(&self, rhs: Vec3A) -> Vec3A { |
| self.matrix3 * rhs |
| } |
| |
| /// Returns `true` if, and only if, all elements are finite. |
| /// |
| /// If any element is either `NaN`, positive or negative infinity, this will return |
| /// `false`. |
| #[inline] |
| #[must_use] |
| pub fn is_finite(&self) -> bool { |
| self.matrix3.is_finite() && self.translation.is_finite() |
| } |
| |
| /// Returns `true` if any elements are `NaN`. |
| #[inline] |
| #[must_use] |
| pub fn is_nan(&self) -> bool { |
| self.matrix3.is_nan() || self.translation.is_nan() |
| } |
| |
| /// Returns true if the absolute difference of all elements between `self` and `rhs` |
| /// is less than or equal to `max_abs_diff`. |
| /// |
| /// This can be used to compare if two 3x4 matrices contain similar elements. It works |
| /// best when comparing with a known value. The `max_abs_diff` that should be used used |
| /// depends on the values being compared against. |
| /// |
| /// For more see |
| /// [comparing floating point numbers](https://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/). |
| #[inline] |
| #[must_use] |
| pub fn abs_diff_eq(&self, rhs: Self, max_abs_diff: f32) -> bool { |
| self.matrix3.abs_diff_eq(rhs.matrix3, max_abs_diff) |
| && self.translation.abs_diff_eq(rhs.translation, max_abs_diff) |
| } |
| |
| /// Return the inverse of this transform. |
| /// |
| /// Note that if the transform is not invertible the result will be invalid. |
| #[inline] |
| #[must_use] |
| pub fn inverse(&self) -> Self { |
| let matrix3 = self.matrix3.inverse(); |
| // transform negative translation by the matrix inverse: |
| let translation = -(matrix3 * self.translation); |
| |
| Self { |
| matrix3, |
| translation, |
| } |
| } |
| } |
| |
| impl Default for Affine3A { |
| #[inline(always)] |
| fn default() -> Self { |
| Self::IDENTITY |
| } |
| } |
| |
| impl Deref for Affine3A { |
| type Target = crate::deref::Cols4<Vec3A>; |
| #[inline(always)] |
| fn deref(&self) -> &Self::Target { |
| unsafe { &*(self as *const Self as *const Self::Target) } |
| } |
| } |
| |
| impl DerefMut for Affine3A { |
| #[inline(always)] |
| fn deref_mut(&mut self) -> &mut Self::Target { |
| unsafe { &mut *(self as *mut Self as *mut Self::Target) } |
| } |
| } |
| |
| impl PartialEq for Affine3A { |
| #[inline] |
| fn eq(&self, rhs: &Self) -> bool { |
| self.matrix3.eq(&rhs.matrix3) && self.translation.eq(&rhs.translation) |
| } |
| } |
| |
| #[cfg(not(target_arch = "spirv"))] |
| impl core::fmt::Debug for Affine3A { |
| fn fmt(&self, fmt: &mut core::fmt::Formatter<'_>) -> core::fmt::Result { |
| fmt.debug_struct(stringify!(Affine3A)) |
| .field("matrix3", &self.matrix3) |
| .field("translation", &self.translation) |
| .finish() |
| } |
| } |
| |
| #[cfg(not(target_arch = "spirv"))] |
| impl core::fmt::Display for Affine3A { |
| fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result { |
| write!( |
| f, |
| "[{}, {}, {}, {}]", |
| self.matrix3.x_axis, self.matrix3.y_axis, self.matrix3.z_axis, self.translation |
| ) |
| } |
| } |
| |
| impl<'a> core::iter::Product<&'a Self> for Affine3A { |
| fn product<I>(iter: I) -> Self |
| where |
| I: Iterator<Item = &'a Self>, |
| { |
| iter.fold(Self::IDENTITY, |a, &b| a * b) |
| } |
| } |
| |
| impl Mul for Affine3A { |
| type Output = Affine3A; |
| |
| #[inline] |
| fn mul(self, rhs: Affine3A) -> Self::Output { |
| Self { |
| matrix3: self.matrix3 * rhs.matrix3, |
| translation: self.matrix3 * rhs.translation + self.translation, |
| } |
| } |
| } |
| |
| impl MulAssign for Affine3A { |
| #[inline] |
| fn mul_assign(&mut self, rhs: Affine3A) { |
| *self = self.mul(rhs); |
| } |
| } |
| |
| impl From<Affine3A> for Mat4 { |
| #[inline] |
| fn from(m: Affine3A) -> Mat4 { |
| Mat4::from_cols( |
| m.matrix3.x_axis.extend(0.0), |
| m.matrix3.y_axis.extend(0.0), |
| m.matrix3.z_axis.extend(0.0), |
| m.translation.extend(1.0), |
| ) |
| } |
| } |
| |
| impl Mul<Mat4> for Affine3A { |
| type Output = Mat4; |
| |
| #[inline] |
| fn mul(self, rhs: Mat4) -> Self::Output { |
| Mat4::from(self) * rhs |
| } |
| } |
| |
| impl Mul<Affine3A> for Mat4 { |
| type Output = Mat4; |
| |
| #[inline] |
| fn mul(self, rhs: Affine3A) -> Self::Output { |
| self * Mat4::from(rhs) |
| } |
| } |