| // Generated from mat.rs.tera template. Edit the template, not the generated file. |
| |
| use crate::{f32::math, swizzles::*, DMat3, EulerRot, Mat2, Mat3, Mat4, Quat, Vec2, Vec3, Vec3A}; |
| #[cfg(not(target_arch = "spirv"))] |
| use core::fmt; |
| use core::iter::{Product, Sum}; |
| use core::ops::{Add, AddAssign, Mul, MulAssign, Neg, Sub, SubAssign}; |
| |
| #[cfg(target_arch = "x86")] |
| use core::arch::x86::*; |
| #[cfg(target_arch = "x86_64")] |
| use core::arch::x86_64::*; |
| |
| /// Creates a 3x3 matrix from three column vectors. |
| #[inline(always)] |
| #[must_use] |
| pub const fn mat3a(x_axis: Vec3A, y_axis: Vec3A, z_axis: Vec3A) -> Mat3A { |
| Mat3A::from_cols(x_axis, y_axis, z_axis) |
| } |
| |
| /// A 3x3 column major matrix. |
| /// |
| /// This 3x3 matrix type features convenience methods for creating and using linear and |
| /// affine transformations. If you are primarily dealing with 2D affine transformations the |
| /// [`Affine2`](crate::Affine2) type is much faster and more space efficient than |
| /// using a 3x3 matrix. |
| /// |
| /// Linear transformations including 3D rotation and scale can be created using methods |
| /// such as [`Self::from_diagonal()`], [`Self::from_quat()`], [`Self::from_axis_angle()`], |
| /// [`Self::from_rotation_x()`], [`Self::from_rotation_y()`], or |
| /// [`Self::from_rotation_z()`]. |
| /// |
| /// The resulting matrices can be use to transform 3D vectors using regular vector |
| /// multiplication. |
| /// |
| /// Affine transformations including 2D translation, rotation and scale can be created |
| /// using methods such as [`Self::from_translation()`], [`Self::from_angle()`], |
| /// [`Self::from_scale()`] and [`Self::from_scale_angle_translation()`]. |
| /// |
| /// The [`Self::transform_point2()`] and [`Self::transform_vector2()`] convenience methods |
| /// are provided for performing affine transforms on 2D vectors and points. These multiply |
| /// 2D inputs as 3D vectors with an implicit `z` value of `1` for points and `0` for |
| /// vectors respectively. These methods assume that `Self` contains a valid affine |
| /// transform. |
| #[derive(Clone, Copy)] |
| #[repr(C)] |
| pub struct Mat3A { |
| pub x_axis: Vec3A, |
| pub y_axis: Vec3A, |
| pub z_axis: Vec3A, |
| } |
| |
| impl Mat3A { |
| /// A 3x3 matrix with all elements set to `0.0`. |
| pub const ZERO: Self = Self::from_cols(Vec3A::ZERO, Vec3A::ZERO, Vec3A::ZERO); |
| |
| /// A 3x3 identity matrix, where all diagonal elements are `1`, and all off-diagonal elements are `0`. |
| pub const IDENTITY: Self = Self::from_cols(Vec3A::X, Vec3A::Y, Vec3A::Z); |
| |
| /// All NAN:s. |
| pub const NAN: Self = Self::from_cols(Vec3A::NAN, Vec3A::NAN, Vec3A::NAN); |
| |
| #[allow(clippy::too_many_arguments)] |
| #[inline(always)] |
| #[must_use] |
| const fn new( |
| m00: f32, |
| m01: f32, |
| m02: f32, |
| m10: f32, |
| m11: f32, |
| m12: f32, |
| m20: f32, |
| m21: f32, |
| m22: f32, |
| ) -> Self { |
| Self { |
| x_axis: Vec3A::new(m00, m01, m02), |
| y_axis: Vec3A::new(m10, m11, m12), |
| z_axis: Vec3A::new(m20, m21, m22), |
| } |
| } |
| |
| /// Creates a 3x3 matrix from three column vectors. |
| #[inline(always)] |
| #[must_use] |
| pub const fn from_cols(x_axis: Vec3A, y_axis: Vec3A, z_axis: Vec3A) -> Self { |
| Self { |
| x_axis, |
| y_axis, |
| z_axis, |
| } |
| } |
| |
| /// Creates a 3x3 matrix from a `[f32; 9]` array stored in column major order. |
| /// If your data is stored in row major you will need to `transpose` the returned |
| /// matrix. |
| #[inline] |
| #[must_use] |
| pub const fn from_cols_array(m: &[f32; 9]) -> Self { |
| Self::new(m[0], m[1], m[2], m[3], m[4], m[5], m[6], m[7], m[8]) |
| } |
| |
| /// Creates a `[f32; 9]` array storing data in column major order. |
| /// If you require data in row major order `transpose` the matrix first. |
| #[inline] |
| #[must_use] |
| pub const fn to_cols_array(&self) -> [f32; 9] { |
| let [x_axis_x, x_axis_y, x_axis_z] = self.x_axis.to_array(); |
| let [y_axis_x, y_axis_y, y_axis_z] = self.y_axis.to_array(); |
| let [z_axis_x, z_axis_y, z_axis_z] = self.z_axis.to_array(); |
| |
| [ |
| x_axis_x, x_axis_y, x_axis_z, y_axis_x, y_axis_y, y_axis_z, z_axis_x, z_axis_y, |
| z_axis_z, |
| ] |
| } |
| |
| /// Creates a 3x3 matrix from a `[[f32; 3]; 3]` 3D array stored in column major order. |
| /// If your data is in row major order you will need to `transpose` the returned |
| /// matrix. |
| #[inline] |
| #[must_use] |
| pub const fn from_cols_array_2d(m: &[[f32; 3]; 3]) -> Self { |
| Self::from_cols( |
| Vec3A::from_array(m[0]), |
| Vec3A::from_array(m[1]), |
| Vec3A::from_array(m[2]), |
| ) |
| } |
| |
| /// Creates a `[[f32; 3]; 3]` 3D array storing data in column major order. |
| /// If you require data in row major order `transpose` the matrix first. |
| #[inline] |
| #[must_use] |
| pub const fn to_cols_array_2d(&self) -> [[f32; 3]; 3] { |
| [ |
| self.x_axis.to_array(), |
| self.y_axis.to_array(), |
| self.z_axis.to_array(), |
| ] |
| } |
| |
| /// Creates a 3x3 matrix with its diagonal set to `diagonal` and all other entries set to 0. |
| #[doc(alias = "scale")] |
| #[inline] |
| #[must_use] |
| pub const fn from_diagonal(diagonal: Vec3) -> Self { |
| Self::new( |
| diagonal.x, 0.0, 0.0, 0.0, diagonal.y, 0.0, 0.0, 0.0, diagonal.z, |
| ) |
| } |
| |
| /// Creates a 3x3 matrix from a 4x4 matrix, discarding the 4th row and column. |
| #[inline] |
| #[must_use] |
| pub fn from_mat4(m: Mat4) -> Self { |
| Self::from_cols(m.x_axis.into(), m.y_axis.into(), m.z_axis.into()) |
| } |
| |
| /// Creates a 3D rotation matrix from the given quaternion. |
| /// |
| /// # Panics |
| /// |
| /// Will panic if `rotation` is not normalized when `glam_assert` is enabled. |
| #[inline] |
| #[must_use] |
| pub fn from_quat(rotation: Quat) -> Self { |
| glam_assert!(rotation.is_normalized()); |
| |
| let x2 = rotation.x + rotation.x; |
| let y2 = rotation.y + rotation.y; |
| let z2 = rotation.z + rotation.z; |
| let xx = rotation.x * x2; |
| let xy = rotation.x * y2; |
| let xz = rotation.x * z2; |
| let yy = rotation.y * y2; |
| let yz = rotation.y * z2; |
| let zz = rotation.z * z2; |
| let wx = rotation.w * x2; |
| let wy = rotation.w * y2; |
| let wz = rotation.w * z2; |
| |
| Self::from_cols( |
| Vec3A::new(1.0 - (yy + zz), xy + wz, xz - wy), |
| Vec3A::new(xy - wz, 1.0 - (xx + zz), yz + wx), |
| Vec3A::new(xz + wy, yz - wx, 1.0 - (xx + yy)), |
| ) |
| } |
| |
| /// Creates a 3D rotation matrix from a normalized rotation `axis` and `angle` (in |
| /// radians). |
| /// |
| /// # Panics |
| /// |
| /// Will panic if `axis` is not normalized when `glam_assert` is enabled. |
| #[inline] |
| #[must_use] |
| pub fn from_axis_angle(axis: Vec3, angle: f32) -> Self { |
| glam_assert!(axis.is_normalized()); |
| |
| let (sin, cos) = math::sin_cos(angle); |
| let (xsin, ysin, zsin) = axis.mul(sin).into(); |
| let (x, y, z) = axis.into(); |
| let (x2, y2, z2) = axis.mul(axis).into(); |
| let omc = 1.0 - cos; |
| let xyomc = x * y * omc; |
| let xzomc = x * z * omc; |
| let yzomc = y * z * omc; |
| Self::from_cols( |
| Vec3A::new(x2 * omc + cos, xyomc + zsin, xzomc - ysin), |
| Vec3A::new(xyomc - zsin, y2 * omc + cos, yzomc + xsin), |
| Vec3A::new(xzomc + ysin, yzomc - xsin, z2 * omc + cos), |
| ) |
| } |
| |
| /// Creates a 3D rotation matrix from the given euler rotation sequence and the angles (in |
| /// radians). |
| #[inline] |
| #[must_use] |
| pub fn from_euler(order: EulerRot, a: f32, b: f32, c: f32) -> Self { |
| let quat = Quat::from_euler(order, a, b, c); |
| Self::from_quat(quat) |
| } |
| |
| /// Creates a 3D rotation matrix from `angle` (in radians) around the x axis. |
| #[inline] |
| #[must_use] |
| pub fn from_rotation_x(angle: f32) -> Self { |
| let (sina, cosa) = math::sin_cos(angle); |
| Self::from_cols( |
| Vec3A::X, |
| Vec3A::new(0.0, cosa, sina), |
| Vec3A::new(0.0, -sina, cosa), |
| ) |
| } |
| |
| /// Creates a 3D rotation matrix from `angle` (in radians) around the y axis. |
| #[inline] |
| #[must_use] |
| pub fn from_rotation_y(angle: f32) -> Self { |
| let (sina, cosa) = math::sin_cos(angle); |
| Self::from_cols( |
| Vec3A::new(cosa, 0.0, -sina), |
| Vec3A::Y, |
| Vec3A::new(sina, 0.0, cosa), |
| ) |
| } |
| |
| /// Creates a 3D rotation matrix from `angle` (in radians) around the z axis. |
| #[inline] |
| #[must_use] |
| pub fn from_rotation_z(angle: f32) -> Self { |
| let (sina, cosa) = math::sin_cos(angle); |
| Self::from_cols( |
| Vec3A::new(cosa, sina, 0.0), |
| Vec3A::new(-sina, cosa, 0.0), |
| Vec3A::Z, |
| ) |
| } |
| |
| /// Creates an affine transformation matrix from the given 2D `translation`. |
| /// |
| /// The resulting matrix can be used to transform 2D points and vectors. See |
| /// [`Self::transform_point2()`] and [`Self::transform_vector2()`]. |
| #[inline] |
| #[must_use] |
| pub fn from_translation(translation: Vec2) -> Self { |
| Self::from_cols( |
| Vec3A::X, |
| Vec3A::Y, |
| Vec3A::new(translation.x, translation.y, 1.0), |
| ) |
| } |
| |
| /// Creates an affine transformation matrix from the given 2D rotation `angle` (in |
| /// radians). |
| /// |
| /// The resulting matrix can be used to transform 2D points and vectors. See |
| /// [`Self::transform_point2()`] and [`Self::transform_vector2()`]. |
| #[inline] |
| #[must_use] |
| pub fn from_angle(angle: f32) -> Self { |
| let (sin, cos) = math::sin_cos(angle); |
| Self::from_cols( |
| Vec3A::new(cos, sin, 0.0), |
| Vec3A::new(-sin, cos, 0.0), |
| Vec3A::Z, |
| ) |
| } |
| |
| /// Creates an affine transformation matrix from the given 2D `scale`, rotation `angle` (in |
| /// radians) and `translation`. |
| /// |
| /// The resulting matrix can be used to transform 2D points and vectors. See |
| /// [`Self::transform_point2()`] and [`Self::transform_vector2()`]. |
| #[inline] |
| #[must_use] |
| pub fn from_scale_angle_translation(scale: Vec2, angle: f32, translation: Vec2) -> Self { |
| let (sin, cos) = math::sin_cos(angle); |
| Self::from_cols( |
| Vec3A::new(cos * scale.x, sin * scale.x, 0.0), |
| Vec3A::new(-sin * scale.y, cos * scale.y, 0.0), |
| Vec3A::new(translation.x, translation.y, 1.0), |
| ) |
| } |
| |
| /// Creates an affine transformation matrix from the given non-uniform 2D `scale`. |
| /// |
| /// The resulting matrix can be used to transform 2D points and vectors. See |
| /// [`Self::transform_point2()`] and [`Self::transform_vector2()`]. |
| /// |
| /// # Panics |
| /// |
| /// Will panic if all elements of `scale` are zero when `glam_assert` is enabled. |
| #[inline] |
| #[must_use] |
| pub fn from_scale(scale: Vec2) -> Self { |
| // Do not panic as long as any component is non-zero |
| glam_assert!(scale.cmpne(Vec2::ZERO).any()); |
| |
| Self::from_cols( |
| Vec3A::new(scale.x, 0.0, 0.0), |
| Vec3A::new(0.0, scale.y, 0.0), |
| Vec3A::Z, |
| ) |
| } |
| |
| /// Creates an affine transformation matrix from the given 2x2 matrix. |
| /// |
| /// The resulting matrix can be used to transform 2D points and vectors. See |
| /// [`Self::transform_point2()`] and [`Self::transform_vector2()`]. |
| #[inline] |
| pub fn from_mat2(m: Mat2) -> Self { |
| Self::from_cols((m.x_axis, 0.0).into(), (m.y_axis, 0.0).into(), Vec3A::Z) |
| } |
| |
| /// Creates a 3x3 matrix from the first 9 values in `slice`. |
| /// |
| /// # Panics |
| /// |
| /// Panics if `slice` is less than 9 elements long. |
| #[inline] |
| #[must_use] |
| pub const fn from_cols_slice(slice: &[f32]) -> Self { |
| Self::new( |
| slice[0], slice[1], slice[2], slice[3], slice[4], slice[5], slice[6], slice[7], |
| slice[8], |
| ) |
| } |
| |
| /// Writes the columns of `self` to the first 9 elements in `slice`. |
| /// |
| /// # Panics |
| /// |
| /// Panics if `slice` is less than 9 elements long. |
| #[inline] |
| pub fn write_cols_to_slice(self, slice: &mut [f32]) { |
| slice[0] = self.x_axis.x; |
| slice[1] = self.x_axis.y; |
| slice[2] = self.x_axis.z; |
| slice[3] = self.y_axis.x; |
| slice[4] = self.y_axis.y; |
| slice[5] = self.y_axis.z; |
| slice[6] = self.z_axis.x; |
| slice[7] = self.z_axis.y; |
| slice[8] = self.z_axis.z; |
| } |
| |
| /// Returns the matrix column for the given `index`. |
| /// |
| /// # Panics |
| /// |
| /// Panics if `index` is greater than 2. |
| #[inline] |
| #[must_use] |
| pub fn col(&self, index: usize) -> Vec3A { |
| match index { |
| 0 => self.x_axis, |
| 1 => self.y_axis, |
| 2 => self.z_axis, |
| _ => panic!("index out of bounds"), |
| } |
| } |
| |
| /// Returns a mutable reference to the matrix column for the given `index`. |
| /// |
| /// # Panics |
| /// |
| /// Panics if `index` is greater than 2. |
| #[inline] |
| pub fn col_mut(&mut self, index: usize) -> &mut Vec3A { |
| match index { |
| 0 => &mut self.x_axis, |
| 1 => &mut self.y_axis, |
| 2 => &mut self.z_axis, |
| _ => panic!("index out of bounds"), |
| } |
| } |
| |
| /// Returns the matrix row for the given `index`. |
| /// |
| /// # Panics |
| /// |
| /// Panics if `index` is greater than 2. |
| #[inline] |
| #[must_use] |
| pub fn row(&self, index: usize) -> Vec3A { |
| match index { |
| 0 => Vec3A::new(self.x_axis.x, self.y_axis.x, self.z_axis.x), |
| 1 => Vec3A::new(self.x_axis.y, self.y_axis.y, self.z_axis.y), |
| 2 => Vec3A::new(self.x_axis.z, self.y_axis.z, self.z_axis.z), |
| _ => panic!("index out of bounds"), |
| } |
| } |
| |
| /// Returns `true` if, and only if, all elements are finite. |
| /// If any element is either `NaN`, positive or negative infinity, this will return `false`. |
| #[inline] |
| #[must_use] |
| pub fn is_finite(&self) -> bool { |
| self.x_axis.is_finite() && self.y_axis.is_finite() && self.z_axis.is_finite() |
| } |
| |
| /// Returns `true` if any elements are `NaN`. |
| #[inline] |
| #[must_use] |
| pub fn is_nan(&self) -> bool { |
| self.x_axis.is_nan() || self.y_axis.is_nan() || self.z_axis.is_nan() |
| } |
| |
| /// Returns the transpose of `self`. |
| #[inline] |
| #[must_use] |
| pub fn transpose(&self) -> Self { |
| unsafe { |
| let tmp0 = _mm_shuffle_ps(self.x_axis.0, self.y_axis.0, 0b01_00_01_00); |
| let tmp1 = _mm_shuffle_ps(self.x_axis.0, self.y_axis.0, 0b11_10_11_10); |
| |
| Self { |
| x_axis: Vec3A(_mm_shuffle_ps(tmp0, self.z_axis.0, 0b00_00_10_00)), |
| y_axis: Vec3A(_mm_shuffle_ps(tmp0, self.z_axis.0, 0b01_01_11_01)), |
| z_axis: Vec3A(_mm_shuffle_ps(tmp1, self.z_axis.0, 0b10_10_10_00)), |
| } |
| } |
| } |
| |
| /// Returns the determinant of `self`. |
| #[inline] |
| #[must_use] |
| pub fn determinant(&self) -> f32 { |
| self.z_axis.dot(self.x_axis.cross(self.y_axis)) |
| } |
| |
| /// Returns the inverse of `self`. |
| /// |
| /// If the matrix is not invertible the returned matrix will be invalid. |
| /// |
| /// # Panics |
| /// |
| /// Will panic if the determinant of `self` is zero when `glam_assert` is enabled. |
| #[inline] |
| #[must_use] |
| pub fn inverse(&self) -> Self { |
| let tmp0 = self.y_axis.cross(self.z_axis); |
| let tmp1 = self.z_axis.cross(self.x_axis); |
| let tmp2 = self.x_axis.cross(self.y_axis); |
| let det = self.z_axis.dot(tmp2); |
| glam_assert!(det != 0.0); |
| let inv_det = Vec3A::splat(det.recip()); |
| Self::from_cols(tmp0.mul(inv_det), tmp1.mul(inv_det), tmp2.mul(inv_det)).transpose() |
| } |
| |
| /// Transforms the given 2D vector as a point. |
| /// |
| /// This is the equivalent of multiplying `rhs` as a 3D vector where `z` is `1`. |
| /// |
| /// This method assumes that `self` contains a valid affine transform. |
| /// |
| /// # Panics |
| /// |
| /// Will panic if the 2nd row of `self` is not `(0, 0, 1)` when `glam_assert` is enabled. |
| #[inline] |
| #[must_use] |
| pub fn transform_point2(&self, rhs: Vec2) -> Vec2 { |
| glam_assert!(self.row(2).abs_diff_eq(Vec3A::Z, 1e-6)); |
| Mat2::from_cols(self.x_axis.xy(), self.y_axis.xy()) * rhs + self.z_axis.xy() |
| } |
| |
| /// Rotates the given 2D vector. |
| /// |
| /// This is the equivalent of multiplying `rhs` as a 3D vector where `z` is `0`. |
| /// |
| /// This method assumes that `self` contains a valid affine transform. |
| /// |
| /// # Panics |
| /// |
| /// Will panic if the 2nd row of `self` is not `(0, 0, 1)` when `glam_assert` is enabled. |
| #[inline] |
| #[must_use] |
| pub fn transform_vector2(&self, rhs: Vec2) -> Vec2 { |
| glam_assert!(self.row(2).abs_diff_eq(Vec3A::Z, 1e-6)); |
| Mat2::from_cols(self.x_axis.xy(), self.y_axis.xy()) * rhs |
| } |
| |
| /// Transforms a 3D vector. |
| #[inline] |
| #[must_use] |
| pub fn mul_vec3(&self, rhs: Vec3) -> Vec3 { |
| self.mul_vec3a(rhs.into()).into() |
| } |
| |
| /// Transforms a [`Vec3A`]. |
| #[inline] |
| #[must_use] |
| pub fn mul_vec3a(&self, rhs: Vec3A) -> Vec3A { |
| let mut res = self.x_axis.mul(rhs.xxx()); |
| res = res.add(self.y_axis.mul(rhs.yyy())); |
| res = res.add(self.z_axis.mul(rhs.zzz())); |
| res |
| } |
| |
| /// Multiplies two 3x3 matrices. |
| #[inline] |
| #[must_use] |
| pub fn mul_mat3(&self, rhs: &Self) -> Self { |
| Self::from_cols( |
| self.mul(rhs.x_axis), |
| self.mul(rhs.y_axis), |
| self.mul(rhs.z_axis), |
| ) |
| } |
| |
| /// Adds two 3x3 matrices. |
| #[inline] |
| #[must_use] |
| pub fn add_mat3(&self, rhs: &Self) -> Self { |
| Self::from_cols( |
| self.x_axis.add(rhs.x_axis), |
| self.y_axis.add(rhs.y_axis), |
| self.z_axis.add(rhs.z_axis), |
| ) |
| } |
| |
| /// Subtracts two 3x3 matrices. |
| #[inline] |
| #[must_use] |
| pub fn sub_mat3(&self, rhs: &Self) -> Self { |
| Self::from_cols( |
| self.x_axis.sub(rhs.x_axis), |
| self.y_axis.sub(rhs.y_axis), |
| self.z_axis.sub(rhs.z_axis), |
| ) |
| } |
| |
| /// Multiplies a 3x3 matrix by a scalar. |
| #[inline] |
| #[must_use] |
| pub fn mul_scalar(&self, rhs: f32) -> Self { |
| Self::from_cols( |
| self.x_axis.mul(rhs), |
| self.y_axis.mul(rhs), |
| self.z_axis.mul(rhs), |
| ) |
| } |
| |
| /// Returns true if the absolute difference of all elements between `self` and `rhs` |
| /// is less than or equal to `max_abs_diff`. |
| /// |
| /// This can be used to compare if two matrices contain similar elements. It works best |
| /// when comparing with a known value. The `max_abs_diff` that should be used used |
| /// depends on the values being compared against. |
| /// |
| /// For more see |
| /// [comparing floating point numbers](https://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/). |
| #[inline] |
| #[must_use] |
| pub fn abs_diff_eq(&self, rhs: Self, max_abs_diff: f32) -> bool { |
| self.x_axis.abs_diff_eq(rhs.x_axis, max_abs_diff) |
| && self.y_axis.abs_diff_eq(rhs.y_axis, max_abs_diff) |
| && self.z_axis.abs_diff_eq(rhs.z_axis, max_abs_diff) |
| } |
| |
| #[inline] |
| pub fn as_dmat3(&self) -> DMat3 { |
| DMat3::from_cols( |
| self.x_axis.as_dvec3(), |
| self.y_axis.as_dvec3(), |
| self.z_axis.as_dvec3(), |
| ) |
| } |
| } |
| |
| impl Default for Mat3A { |
| #[inline] |
| fn default() -> Self { |
| Self::IDENTITY |
| } |
| } |
| |
| impl Add<Mat3A> for Mat3A { |
| type Output = Self; |
| #[inline] |
| fn add(self, rhs: Self) -> Self::Output { |
| self.add_mat3(&rhs) |
| } |
| } |
| |
| impl AddAssign<Mat3A> for Mat3A { |
| #[inline] |
| fn add_assign(&mut self, rhs: Self) { |
| *self = self.add_mat3(&rhs); |
| } |
| } |
| |
| impl Sub<Mat3A> for Mat3A { |
| type Output = Self; |
| #[inline] |
| fn sub(self, rhs: Self) -> Self::Output { |
| self.sub_mat3(&rhs) |
| } |
| } |
| |
| impl SubAssign<Mat3A> for Mat3A { |
| #[inline] |
| fn sub_assign(&mut self, rhs: Self) { |
| *self = self.sub_mat3(&rhs); |
| } |
| } |
| |
| impl Neg for Mat3A { |
| type Output = Self; |
| #[inline] |
| fn neg(self) -> Self::Output { |
| Self::from_cols(self.x_axis.neg(), self.y_axis.neg(), self.z_axis.neg()) |
| } |
| } |
| |
| impl Mul<Mat3A> for Mat3A { |
| type Output = Self; |
| #[inline] |
| fn mul(self, rhs: Self) -> Self::Output { |
| self.mul_mat3(&rhs) |
| } |
| } |
| |
| impl MulAssign<Mat3A> for Mat3A { |
| #[inline] |
| fn mul_assign(&mut self, rhs: Self) { |
| *self = self.mul_mat3(&rhs); |
| } |
| } |
| |
| impl Mul<Vec3A> for Mat3A { |
| type Output = Vec3A; |
| #[inline] |
| fn mul(self, rhs: Vec3A) -> Self::Output { |
| self.mul_vec3a(rhs) |
| } |
| } |
| |
| impl Mul<Mat3A> for f32 { |
| type Output = Mat3A; |
| #[inline] |
| fn mul(self, rhs: Mat3A) -> Self::Output { |
| rhs.mul_scalar(self) |
| } |
| } |
| |
| impl Mul<f32> for Mat3A { |
| type Output = Self; |
| #[inline] |
| fn mul(self, rhs: f32) -> Self::Output { |
| self.mul_scalar(rhs) |
| } |
| } |
| |
| impl MulAssign<f32> for Mat3A { |
| #[inline] |
| fn mul_assign(&mut self, rhs: f32) { |
| *self = self.mul_scalar(rhs); |
| } |
| } |
| |
| impl Mul<Vec3> for Mat3A { |
| type Output = Vec3; |
| #[inline] |
| fn mul(self, rhs: Vec3) -> Vec3 { |
| self.mul_vec3a(rhs.into()).into() |
| } |
| } |
| |
| impl From<Mat3> for Mat3A { |
| #[inline] |
| fn from(m: Mat3) -> Self { |
| Self { |
| x_axis: m.x_axis.into(), |
| y_axis: m.y_axis.into(), |
| z_axis: m.z_axis.into(), |
| } |
| } |
| } |
| |
| impl Sum<Self> for Mat3A { |
| fn sum<I>(iter: I) -> Self |
| where |
| I: Iterator<Item = Self>, |
| { |
| iter.fold(Self::ZERO, Self::add) |
| } |
| } |
| |
| impl<'a> Sum<&'a Self> for Mat3A { |
| fn sum<I>(iter: I) -> Self |
| where |
| I: Iterator<Item = &'a Self>, |
| { |
| iter.fold(Self::ZERO, |a, &b| Self::add(a, b)) |
| } |
| } |
| |
| impl Product for Mat3A { |
| fn product<I>(iter: I) -> Self |
| where |
| I: Iterator<Item = Self>, |
| { |
| iter.fold(Self::IDENTITY, Self::mul) |
| } |
| } |
| |
| impl<'a> Product<&'a Self> for Mat3A { |
| fn product<I>(iter: I) -> Self |
| where |
| I: Iterator<Item = &'a Self>, |
| { |
| iter.fold(Self::IDENTITY, |a, &b| Self::mul(a, b)) |
| } |
| } |
| |
| impl PartialEq for Mat3A { |
| #[inline] |
| fn eq(&self, rhs: &Self) -> bool { |
| self.x_axis.eq(&rhs.x_axis) && self.y_axis.eq(&rhs.y_axis) && self.z_axis.eq(&rhs.z_axis) |
| } |
| } |
| |
| #[cfg(not(target_arch = "spirv"))] |
| impl fmt::Debug for Mat3A { |
| fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result { |
| fmt.debug_struct(stringify!(Mat3A)) |
| .field("x_axis", &self.x_axis) |
| .field("y_axis", &self.y_axis) |
| .field("z_axis", &self.z_axis) |
| .finish() |
| } |
| } |
| |
| #[cfg(not(target_arch = "spirv"))] |
| impl fmt::Display for Mat3A { |
| fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| write!(f, "[{}, {}, {}]", self.x_axis, self.y_axis, self.z_axis) |
| } |
| } |