| // Generated from affine.rs.tera template. Edit the template, not the generated file. |
| |
| use crate::{DMat2, DMat3, DVec2}; |
| use core::ops::{Deref, DerefMut, Mul, MulAssign}; |
| |
| /// A 2D affine transform, which can represent translation, rotation, scaling and shear. |
| #[derive(Copy, Clone)] |
| #[repr(C)] |
| pub struct DAffine2 { |
| pub matrix2: DMat2, |
| pub translation: DVec2, |
| } |
| |
| impl DAffine2 { |
| /// The degenerate zero transform. |
| /// |
| /// This transforms any finite vector and point to zero. |
| /// The zero transform is non-invertible. |
| pub const ZERO: Self = Self { |
| matrix2: DMat2::ZERO, |
| translation: DVec2::ZERO, |
| }; |
| |
| /// The identity transform. |
| /// |
| /// Multiplying a vector with this returns the same vector. |
| pub const IDENTITY: Self = Self { |
| matrix2: DMat2::IDENTITY, |
| translation: DVec2::ZERO, |
| }; |
| |
| /// All NAN:s. |
| pub const NAN: Self = Self { |
| matrix2: DMat2::NAN, |
| translation: DVec2::NAN, |
| }; |
| |
| /// Creates an affine transform from three column vectors. |
| #[inline(always)] |
| #[must_use] |
| pub const fn from_cols(x_axis: DVec2, y_axis: DVec2, z_axis: DVec2) -> Self { |
| Self { |
| matrix2: DMat2::from_cols(x_axis, y_axis), |
| translation: z_axis, |
| } |
| } |
| |
| /// Creates an affine transform from a `[f64; 6]` array stored in column major order. |
| #[inline] |
| #[must_use] |
| pub fn from_cols_array(m: &[f64; 6]) -> Self { |
| Self { |
| matrix2: DMat2::from_cols_slice(&m[0..4]), |
| translation: DVec2::from_slice(&m[4..6]), |
| } |
| } |
| |
| /// Creates a `[f64; 6]` array storing data in column major order. |
| #[inline] |
| #[must_use] |
| pub fn to_cols_array(&self) -> [f64; 6] { |
| let x = &self.matrix2.x_axis; |
| let y = &self.matrix2.y_axis; |
| let z = &self.translation; |
| [x.x, x.y, y.x, y.y, z.x, z.y] |
| } |
| |
| /// Creates an affine transform from a `[[f64; 2]; 3]` |
| /// 2D array stored in column major order. |
| /// If your data is in row major order you will need to `transpose` the returned |
| /// matrix. |
| #[inline] |
| #[must_use] |
| pub fn from_cols_array_2d(m: &[[f64; 2]; 3]) -> Self { |
| Self { |
| matrix2: DMat2::from_cols(m[0].into(), m[1].into()), |
| translation: m[2].into(), |
| } |
| } |
| |
| /// Creates a `[[f64; 2]; 3]` 2D array storing data in |
| /// column major order. |
| /// If you require data in row major order `transpose` the matrix first. |
| #[inline] |
| #[must_use] |
| pub fn to_cols_array_2d(&self) -> [[f64; 2]; 3] { |
| [ |
| self.matrix2.x_axis.into(), |
| self.matrix2.y_axis.into(), |
| self.translation.into(), |
| ] |
| } |
| |
| /// Creates an affine transform from the first 6 values in `slice`. |
| /// |
| /// # Panics |
| /// |
| /// Panics if `slice` is less than 6 elements long. |
| #[inline] |
| #[must_use] |
| pub fn from_cols_slice(slice: &[f64]) -> Self { |
| Self { |
| matrix2: DMat2::from_cols_slice(&slice[0..4]), |
| translation: DVec2::from_slice(&slice[4..6]), |
| } |
| } |
| |
| /// Writes the columns of `self` to the first 6 elements in `slice`. |
| /// |
| /// # Panics |
| /// |
| /// Panics if `slice` is less than 6 elements long. |
| #[inline] |
| pub fn write_cols_to_slice(self, slice: &mut [f64]) { |
| self.matrix2.write_cols_to_slice(&mut slice[0..4]); |
| self.translation.write_to_slice(&mut slice[4..6]); |
| } |
| |
| /// Creates an affine transform that changes scale. |
| /// Note that if any scale is zero the transform will be non-invertible. |
| #[inline] |
| #[must_use] |
| pub fn from_scale(scale: DVec2) -> Self { |
| Self { |
| matrix2: DMat2::from_diagonal(scale), |
| translation: DVec2::ZERO, |
| } |
| } |
| |
| /// Creates an affine transform from the given rotation `angle`. |
| #[inline] |
| #[must_use] |
| pub fn from_angle(angle: f64) -> Self { |
| Self { |
| matrix2: DMat2::from_angle(angle), |
| translation: DVec2::ZERO, |
| } |
| } |
| |
| /// Creates an affine transformation from the given 2D `translation`. |
| #[inline] |
| #[must_use] |
| pub fn from_translation(translation: DVec2) -> Self { |
| Self { |
| matrix2: DMat2::IDENTITY, |
| translation, |
| } |
| } |
| |
| /// Creates an affine transform from a 2x2 matrix (expressing scale, shear and rotation) |
| #[inline] |
| #[must_use] |
| pub fn from_mat2(matrix2: DMat2) -> Self { |
| Self { |
| matrix2, |
| translation: DVec2::ZERO, |
| } |
| } |
| |
| /// Creates an affine transform from a 2x2 matrix (expressing scale, shear and rotation) and a |
| /// translation vector. |
| /// |
| /// Equivalent to |
| /// `DAffine2::from_translation(translation) * DAffine2::from_mat2(mat2)` |
| #[inline] |
| #[must_use] |
| pub fn from_mat2_translation(matrix2: DMat2, translation: DVec2) -> Self { |
| Self { |
| matrix2, |
| translation, |
| } |
| } |
| |
| /// Creates an affine transform from the given 2D `scale`, rotation `angle` (in radians) and |
| /// `translation`. |
| /// |
| /// Equivalent to `DAffine2::from_translation(translation) * |
| /// DAffine2::from_angle(angle) * DAffine2::from_scale(scale)` |
| #[inline] |
| #[must_use] |
| pub fn from_scale_angle_translation(scale: DVec2, angle: f64, translation: DVec2) -> Self { |
| let rotation = DMat2::from_angle(angle); |
| Self { |
| matrix2: DMat2::from_cols(rotation.x_axis * scale.x, rotation.y_axis * scale.y), |
| translation, |
| } |
| } |
| |
| /// Creates an affine transform from the given 2D rotation `angle` (in radians) and |
| /// `translation`. |
| /// |
| /// Equivalent to `DAffine2::from_translation(translation) * DAffine2::from_angle(angle)` |
| #[inline] |
| #[must_use] |
| pub fn from_angle_translation(angle: f64, translation: DVec2) -> Self { |
| Self { |
| matrix2: DMat2::from_angle(angle), |
| translation, |
| } |
| } |
| |
| /// The given `DMat3` must be an affine transform, |
| #[inline] |
| #[must_use] |
| pub fn from_mat3(m: DMat3) -> Self { |
| use crate::swizzles::Vec3Swizzles; |
| Self { |
| matrix2: DMat2::from_cols(m.x_axis.xy(), m.y_axis.xy()), |
| translation: m.z_axis.xy(), |
| } |
| } |
| |
| /// Extracts `scale`, `angle` and `translation` from `self`. |
| /// |
| /// The transform is expected to be non-degenerate and without shearing, or the output |
| /// will be invalid. |
| /// |
| /// # Panics |
| /// |
| /// Will panic if the determinant `self.matrix2` is zero or if the resulting scale |
| /// vector contains any zero elements when `glam_assert` is enabled. |
| #[inline] |
| #[must_use] |
| pub fn to_scale_angle_translation(self) -> (DVec2, f64, DVec2) { |
| use crate::f64::math; |
| let det = self.matrix2.determinant(); |
| glam_assert!(det != 0.0); |
| |
| let scale = DVec2::new( |
| self.matrix2.x_axis.length() * math::signum(det), |
| self.matrix2.y_axis.length(), |
| ); |
| |
| glam_assert!(scale.cmpne(DVec2::ZERO).all()); |
| |
| let angle = math::atan2(-self.matrix2.y_axis.x, self.matrix2.y_axis.y); |
| |
| (scale, angle, self.translation) |
| } |
| |
| /// Transforms the given 2D point, applying shear, scale, rotation and translation. |
| #[inline] |
| #[must_use] |
| pub fn transform_point2(&self, rhs: DVec2) -> DVec2 { |
| self.matrix2 * rhs + self.translation |
| } |
| |
| /// Transforms the given 2D vector, applying shear, scale and rotation (but NOT |
| /// translation). |
| /// |
| /// To also apply translation, use [`Self::transform_point2()`] instead. |
| #[inline] |
| pub fn transform_vector2(&self, rhs: DVec2) -> DVec2 { |
| self.matrix2 * rhs |
| } |
| |
| /// Returns `true` if, and only if, all elements are finite. |
| /// |
| /// If any element is either `NaN`, positive or negative infinity, this will return |
| /// `false`. |
| #[inline] |
| #[must_use] |
| pub fn is_finite(&self) -> bool { |
| self.matrix2.is_finite() && self.translation.is_finite() |
| } |
| |
| /// Returns `true` if any elements are `NaN`. |
| #[inline] |
| #[must_use] |
| pub fn is_nan(&self) -> bool { |
| self.matrix2.is_nan() || self.translation.is_nan() |
| } |
| |
| /// Returns true if the absolute difference of all elements between `self` and `rhs` |
| /// is less than or equal to `max_abs_diff`. |
| /// |
| /// This can be used to compare if two 3x4 matrices contain similar elements. It works |
| /// best when comparing with a known value. The `max_abs_diff` that should be used used |
| /// depends on the values being compared against. |
| /// |
| /// For more see |
| /// [comparing floating point numbers](https://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/). |
| #[inline] |
| #[must_use] |
| pub fn abs_diff_eq(&self, rhs: Self, max_abs_diff: f64) -> bool { |
| self.matrix2.abs_diff_eq(rhs.matrix2, max_abs_diff) |
| && self.translation.abs_diff_eq(rhs.translation, max_abs_diff) |
| } |
| |
| /// Return the inverse of this transform. |
| /// |
| /// Note that if the transform is not invertible the result will be invalid. |
| #[inline] |
| #[must_use] |
| pub fn inverse(&self) -> Self { |
| let matrix2 = self.matrix2.inverse(); |
| // transform negative translation by the matrix inverse: |
| let translation = -(matrix2 * self.translation); |
| |
| Self { |
| matrix2, |
| translation, |
| } |
| } |
| } |
| |
| impl Default for DAffine2 { |
| #[inline(always)] |
| fn default() -> Self { |
| Self::IDENTITY |
| } |
| } |
| |
| impl Deref for DAffine2 { |
| type Target = crate::deref::Cols3<DVec2>; |
| #[inline(always)] |
| fn deref(&self) -> &Self::Target { |
| unsafe { &*(self as *const Self as *const Self::Target) } |
| } |
| } |
| |
| impl DerefMut for DAffine2 { |
| #[inline(always)] |
| fn deref_mut(&mut self) -> &mut Self::Target { |
| unsafe { &mut *(self as *mut Self as *mut Self::Target) } |
| } |
| } |
| |
| impl PartialEq for DAffine2 { |
| #[inline] |
| fn eq(&self, rhs: &Self) -> bool { |
| self.matrix2.eq(&rhs.matrix2) && self.translation.eq(&rhs.translation) |
| } |
| } |
| |
| #[cfg(not(target_arch = "spirv"))] |
| impl core::fmt::Debug for DAffine2 { |
| fn fmt(&self, fmt: &mut core::fmt::Formatter<'_>) -> core::fmt::Result { |
| fmt.debug_struct(stringify!(DAffine2)) |
| .field("matrix2", &self.matrix2) |
| .field("translation", &self.translation) |
| .finish() |
| } |
| } |
| |
| #[cfg(not(target_arch = "spirv"))] |
| impl core::fmt::Display for DAffine2 { |
| fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result { |
| write!( |
| f, |
| "[{}, {}, {}]", |
| self.matrix2.x_axis, self.matrix2.y_axis, self.translation |
| ) |
| } |
| } |
| |
| impl<'a> core::iter::Product<&'a Self> for DAffine2 { |
| fn product<I>(iter: I) -> Self |
| where |
| I: Iterator<Item = &'a Self>, |
| { |
| iter.fold(Self::IDENTITY, |a, &b| a * b) |
| } |
| } |
| |
| impl Mul for DAffine2 { |
| type Output = DAffine2; |
| |
| #[inline] |
| fn mul(self, rhs: DAffine2) -> Self::Output { |
| Self { |
| matrix2: self.matrix2 * rhs.matrix2, |
| translation: self.matrix2 * rhs.translation + self.translation, |
| } |
| } |
| } |
| |
| impl MulAssign for DAffine2 { |
| #[inline] |
| fn mul_assign(&mut self, rhs: DAffine2) { |
| *self = self.mul(rhs); |
| } |
| } |
| |
| impl From<DAffine2> for DMat3 { |
| #[inline] |
| fn from(m: DAffine2) -> DMat3 { |
| Self::from_cols( |
| m.matrix2.x_axis.extend(0.0), |
| m.matrix2.y_axis.extend(0.0), |
| m.translation.extend(1.0), |
| ) |
| } |
| } |
| |
| impl Mul<DMat3> for DAffine2 { |
| type Output = DMat3; |
| |
| #[inline] |
| fn mul(self, rhs: DMat3) -> Self::Output { |
| DMat3::from(self) * rhs |
| } |
| } |
| |
| impl Mul<DAffine2> for DMat3 { |
| type Output = DMat3; |
| |
| #[inline] |
| fn mul(self, rhs: DAffine2) -> Self::Output { |
| self * DMat3::from(rhs) |
| } |
| } |