blob: cf9fe5f75f7b1b6d486eea49a99b049b99dca599 [file] [log] [blame]
// Generated from affine.rs.tera template. Edit the template, not the generated file.
use crate::{DMat2, DMat3, DVec2};
use core::ops::{Deref, DerefMut, Mul, MulAssign};
/// A 2D affine transform, which can represent translation, rotation, scaling and shear.
#[derive(Copy, Clone)]
#[repr(C)]
pub struct DAffine2 {
pub matrix2: DMat2,
pub translation: DVec2,
}
impl DAffine2 {
/// The degenerate zero transform.
///
/// This transforms any finite vector and point to zero.
/// The zero transform is non-invertible.
pub const ZERO: Self = Self {
matrix2: DMat2::ZERO,
translation: DVec2::ZERO,
};
/// The identity transform.
///
/// Multiplying a vector with this returns the same vector.
pub const IDENTITY: Self = Self {
matrix2: DMat2::IDENTITY,
translation: DVec2::ZERO,
};
/// All NAN:s.
pub const NAN: Self = Self {
matrix2: DMat2::NAN,
translation: DVec2::NAN,
};
/// Creates an affine transform from three column vectors.
#[inline(always)]
#[must_use]
pub const fn from_cols(x_axis: DVec2, y_axis: DVec2, z_axis: DVec2) -> Self {
Self {
matrix2: DMat2::from_cols(x_axis, y_axis),
translation: z_axis,
}
}
/// Creates an affine transform from a `[f64; 6]` array stored in column major order.
#[inline]
#[must_use]
pub fn from_cols_array(m: &[f64; 6]) -> Self {
Self {
matrix2: DMat2::from_cols_slice(&m[0..4]),
translation: DVec2::from_slice(&m[4..6]),
}
}
/// Creates a `[f64; 6]` array storing data in column major order.
#[inline]
#[must_use]
pub fn to_cols_array(&self) -> [f64; 6] {
let x = &self.matrix2.x_axis;
let y = &self.matrix2.y_axis;
let z = &self.translation;
[x.x, x.y, y.x, y.y, z.x, z.y]
}
/// Creates an affine transform from a `[[f64; 2]; 3]`
/// 2D array stored in column major order.
/// If your data is in row major order you will need to `transpose` the returned
/// matrix.
#[inline]
#[must_use]
pub fn from_cols_array_2d(m: &[[f64; 2]; 3]) -> Self {
Self {
matrix2: DMat2::from_cols(m[0].into(), m[1].into()),
translation: m[2].into(),
}
}
/// Creates a `[[f64; 2]; 3]` 2D array storing data in
/// column major order.
/// If you require data in row major order `transpose` the matrix first.
#[inline]
#[must_use]
pub fn to_cols_array_2d(&self) -> [[f64; 2]; 3] {
[
self.matrix2.x_axis.into(),
self.matrix2.y_axis.into(),
self.translation.into(),
]
}
/// Creates an affine transform from the first 6 values in `slice`.
///
/// # Panics
///
/// Panics if `slice` is less than 6 elements long.
#[inline]
#[must_use]
pub fn from_cols_slice(slice: &[f64]) -> Self {
Self {
matrix2: DMat2::from_cols_slice(&slice[0..4]),
translation: DVec2::from_slice(&slice[4..6]),
}
}
/// Writes the columns of `self` to the first 6 elements in `slice`.
///
/// # Panics
///
/// Panics if `slice` is less than 6 elements long.
#[inline]
pub fn write_cols_to_slice(self, slice: &mut [f64]) {
self.matrix2.write_cols_to_slice(&mut slice[0..4]);
self.translation.write_to_slice(&mut slice[4..6]);
}
/// Creates an affine transform that changes scale.
/// Note that if any scale is zero the transform will be non-invertible.
#[inline]
#[must_use]
pub fn from_scale(scale: DVec2) -> Self {
Self {
matrix2: DMat2::from_diagonal(scale),
translation: DVec2::ZERO,
}
}
/// Creates an affine transform from the given rotation `angle`.
#[inline]
#[must_use]
pub fn from_angle(angle: f64) -> Self {
Self {
matrix2: DMat2::from_angle(angle),
translation: DVec2::ZERO,
}
}
/// Creates an affine transformation from the given 2D `translation`.
#[inline]
#[must_use]
pub fn from_translation(translation: DVec2) -> Self {
Self {
matrix2: DMat2::IDENTITY,
translation,
}
}
/// Creates an affine transform from a 2x2 matrix (expressing scale, shear and rotation)
#[inline]
#[must_use]
pub fn from_mat2(matrix2: DMat2) -> Self {
Self {
matrix2,
translation: DVec2::ZERO,
}
}
/// Creates an affine transform from a 2x2 matrix (expressing scale, shear and rotation) and a
/// translation vector.
///
/// Equivalent to
/// `DAffine2::from_translation(translation) * DAffine2::from_mat2(mat2)`
#[inline]
#[must_use]
pub fn from_mat2_translation(matrix2: DMat2, translation: DVec2) -> Self {
Self {
matrix2,
translation,
}
}
/// Creates an affine transform from the given 2D `scale`, rotation `angle` (in radians) and
/// `translation`.
///
/// Equivalent to `DAffine2::from_translation(translation) *
/// DAffine2::from_angle(angle) * DAffine2::from_scale(scale)`
#[inline]
#[must_use]
pub fn from_scale_angle_translation(scale: DVec2, angle: f64, translation: DVec2) -> Self {
let rotation = DMat2::from_angle(angle);
Self {
matrix2: DMat2::from_cols(rotation.x_axis * scale.x, rotation.y_axis * scale.y),
translation,
}
}
/// Creates an affine transform from the given 2D rotation `angle` (in radians) and
/// `translation`.
///
/// Equivalent to `DAffine2::from_translation(translation) * DAffine2::from_angle(angle)`
#[inline]
#[must_use]
pub fn from_angle_translation(angle: f64, translation: DVec2) -> Self {
Self {
matrix2: DMat2::from_angle(angle),
translation,
}
}
/// The given `DMat3` must be an affine transform,
#[inline]
#[must_use]
pub fn from_mat3(m: DMat3) -> Self {
use crate::swizzles::Vec3Swizzles;
Self {
matrix2: DMat2::from_cols(m.x_axis.xy(), m.y_axis.xy()),
translation: m.z_axis.xy(),
}
}
/// Extracts `scale`, `angle` and `translation` from `self`.
///
/// The transform is expected to be non-degenerate and without shearing, or the output
/// will be invalid.
///
/// # Panics
///
/// Will panic if the determinant `self.matrix2` is zero or if the resulting scale
/// vector contains any zero elements when `glam_assert` is enabled.
#[inline]
#[must_use]
pub fn to_scale_angle_translation(self) -> (DVec2, f64, DVec2) {
use crate::f64::math;
let det = self.matrix2.determinant();
glam_assert!(det != 0.0);
let scale = DVec2::new(
self.matrix2.x_axis.length() * math::signum(det),
self.matrix2.y_axis.length(),
);
glam_assert!(scale.cmpne(DVec2::ZERO).all());
let angle = math::atan2(-self.matrix2.y_axis.x, self.matrix2.y_axis.y);
(scale, angle, self.translation)
}
/// Transforms the given 2D point, applying shear, scale, rotation and translation.
#[inline]
#[must_use]
pub fn transform_point2(&self, rhs: DVec2) -> DVec2 {
self.matrix2 * rhs + self.translation
}
/// Transforms the given 2D vector, applying shear, scale and rotation (but NOT
/// translation).
///
/// To also apply translation, use [`Self::transform_point2()`] instead.
#[inline]
pub fn transform_vector2(&self, rhs: DVec2) -> DVec2 {
self.matrix2 * rhs
}
/// Returns `true` if, and only if, all elements are finite.
///
/// If any element is either `NaN`, positive or negative infinity, this will return
/// `false`.
#[inline]
#[must_use]
pub fn is_finite(&self) -> bool {
self.matrix2.is_finite() && self.translation.is_finite()
}
/// Returns `true` if any elements are `NaN`.
#[inline]
#[must_use]
pub fn is_nan(&self) -> bool {
self.matrix2.is_nan() || self.translation.is_nan()
}
/// Returns true if the absolute difference of all elements between `self` and `rhs`
/// is less than or equal to `max_abs_diff`.
///
/// This can be used to compare if two 3x4 matrices contain similar elements. It works
/// best when comparing with a known value. The `max_abs_diff` that should be used used
/// depends on the values being compared against.
///
/// For more see
/// [comparing floating point numbers](https://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/).
#[inline]
#[must_use]
pub fn abs_diff_eq(&self, rhs: Self, max_abs_diff: f64) -> bool {
self.matrix2.abs_diff_eq(rhs.matrix2, max_abs_diff)
&& self.translation.abs_diff_eq(rhs.translation, max_abs_diff)
}
/// Return the inverse of this transform.
///
/// Note that if the transform is not invertible the result will be invalid.
#[inline]
#[must_use]
pub fn inverse(&self) -> Self {
let matrix2 = self.matrix2.inverse();
// transform negative translation by the matrix inverse:
let translation = -(matrix2 * self.translation);
Self {
matrix2,
translation,
}
}
}
impl Default for DAffine2 {
#[inline(always)]
fn default() -> Self {
Self::IDENTITY
}
}
impl Deref for DAffine2 {
type Target = crate::deref::Cols3<DVec2>;
#[inline(always)]
fn deref(&self) -> &Self::Target {
unsafe { &*(self as *const Self as *const Self::Target) }
}
}
impl DerefMut for DAffine2 {
#[inline(always)]
fn deref_mut(&mut self) -> &mut Self::Target {
unsafe { &mut *(self as *mut Self as *mut Self::Target) }
}
}
impl PartialEq for DAffine2 {
#[inline]
fn eq(&self, rhs: &Self) -> bool {
self.matrix2.eq(&rhs.matrix2) && self.translation.eq(&rhs.translation)
}
}
#[cfg(not(target_arch = "spirv"))]
impl core::fmt::Debug for DAffine2 {
fn fmt(&self, fmt: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
fmt.debug_struct(stringify!(DAffine2))
.field("matrix2", &self.matrix2)
.field("translation", &self.translation)
.finish()
}
}
#[cfg(not(target_arch = "spirv"))]
impl core::fmt::Display for DAffine2 {
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
write!(
f,
"[{}, {}, {}]",
self.matrix2.x_axis, self.matrix2.y_axis, self.translation
)
}
}
impl<'a> core::iter::Product<&'a Self> for DAffine2 {
fn product<I>(iter: I) -> Self
where
I: Iterator<Item = &'a Self>,
{
iter.fold(Self::IDENTITY, |a, &b| a * b)
}
}
impl Mul for DAffine2 {
type Output = DAffine2;
#[inline]
fn mul(self, rhs: DAffine2) -> Self::Output {
Self {
matrix2: self.matrix2 * rhs.matrix2,
translation: self.matrix2 * rhs.translation + self.translation,
}
}
}
impl MulAssign for DAffine2 {
#[inline]
fn mul_assign(&mut self, rhs: DAffine2) {
*self = self.mul(rhs);
}
}
impl From<DAffine2> for DMat3 {
#[inline]
fn from(m: DAffine2) -> DMat3 {
Self::from_cols(
m.matrix2.x_axis.extend(0.0),
m.matrix2.y_axis.extend(0.0),
m.translation.extend(1.0),
)
}
}
impl Mul<DMat3> for DAffine2 {
type Output = DMat3;
#[inline]
fn mul(self, rhs: DMat3) -> Self::Output {
DMat3::from(self) * rhs
}
}
impl Mul<DAffine2> for DMat3 {
type Output = DMat3;
#[inline]
fn mul(self, rhs: DAffine2) -> Self::Output {
self * DMat3::from(rhs)
}
}