| use crate::leading_zeros::leading_zeros_u16; |
| use core::mem; |
| |
| #[inline] |
| pub(crate) const fn f32_to_bf16(value: f32) -> u16 { |
| // TODO: Replace mem::transmute with to_bits() once to_bits is const-stabilized |
| // Convert to raw bytes |
| let x: u32 = unsafe { mem::transmute(value) }; |
| |
| // check for NaN |
| if x & 0x7FFF_FFFFu32 > 0x7F80_0000u32 { |
| // Keep high part of current mantissa but also set most significiant mantissa bit |
| return ((x >> 16) | 0x0040u32) as u16; |
| } |
| |
| // round and shift |
| let round_bit = 0x0000_8000u32; |
| if (x & round_bit) != 0 && (x & (3 * round_bit - 1)) != 0 { |
| (x >> 16) as u16 + 1 |
| } else { |
| (x >> 16) as u16 |
| } |
| } |
| |
| #[inline] |
| pub(crate) const fn f64_to_bf16(value: f64) -> u16 { |
| // TODO: Replace mem::transmute with to_bits() once to_bits is const-stabilized |
| // Convert to raw bytes, truncating the last 32-bits of mantissa; that precision will always |
| // be lost on half-precision. |
| let val: u64 = unsafe { mem::transmute(value) }; |
| let x = (val >> 32) as u32; |
| |
| // Extract IEEE754 components |
| let sign = x & 0x8000_0000u32; |
| let exp = x & 0x7FF0_0000u32; |
| let man = x & 0x000F_FFFFu32; |
| |
| // Check for all exponent bits being set, which is Infinity or NaN |
| if exp == 0x7FF0_0000u32 { |
| // Set mantissa MSB for NaN (and also keep shifted mantissa bits). |
| // We also have to check the last 32 bits. |
| let nan_bit = if man == 0 && (val as u32 == 0) { |
| 0 |
| } else { |
| 0x0040u32 |
| }; |
| return ((sign >> 16) | 0x7F80u32 | nan_bit | (man >> 13)) as u16; |
| } |
| |
| // The number is normalized, start assembling half precision version |
| let half_sign = sign >> 16; |
| // Unbias the exponent, then bias for bfloat16 precision |
| let unbiased_exp = ((exp >> 20) as i64) - 1023; |
| let half_exp = unbiased_exp + 127; |
| |
| // Check for exponent overflow, return +infinity |
| if half_exp >= 0xFF { |
| return (half_sign | 0x7F80u32) as u16; |
| } |
| |
| // Check for underflow |
| if half_exp <= 0 { |
| // Check mantissa for what we can do |
| if 7 - half_exp > 21 { |
| // No rounding possibility, so this is a full underflow, return signed zero |
| return half_sign as u16; |
| } |
| // Don't forget about hidden leading mantissa bit when assembling mantissa |
| let man = man | 0x0010_0000u32; |
| let mut half_man = man >> (14 - half_exp); |
| // Check for rounding |
| let round_bit = 1 << (13 - half_exp); |
| if (man & round_bit) != 0 && (man & (3 * round_bit - 1)) != 0 { |
| half_man += 1; |
| } |
| // No exponent for subnormals |
| return (half_sign | half_man) as u16; |
| } |
| |
| // Rebias the exponent |
| let half_exp = (half_exp as u32) << 7; |
| let half_man = man >> 13; |
| // Check for rounding |
| let round_bit = 0x0000_1000u32; |
| if (man & round_bit) != 0 && (man & (3 * round_bit - 1)) != 0 { |
| // Round it |
| ((half_sign | half_exp | half_man) + 1) as u16 |
| } else { |
| (half_sign | half_exp | half_man) as u16 |
| } |
| } |
| |
| #[inline] |
| pub(crate) const fn bf16_to_f32(i: u16) -> f32 { |
| // TODO: Replace mem::transmute with from_bits() once from_bits is const-stabilized |
| // If NaN, keep current mantissa but also set most significiant mantissa bit |
| if i & 0x7FFFu16 > 0x7F80u16 { |
| unsafe { mem::transmute((i as u32 | 0x0040u32) << 16) } |
| } else { |
| unsafe { mem::transmute((i as u32) << 16) } |
| } |
| } |
| |
| #[inline] |
| pub(crate) const fn bf16_to_f64(i: u16) -> f64 { |
| // TODO: Replace mem::transmute with from_bits() once from_bits is const-stabilized |
| // Check for signed zero |
| if i & 0x7FFFu16 == 0 { |
| return unsafe { mem::transmute((i as u64) << 48) }; |
| } |
| |
| let half_sign = (i & 0x8000u16) as u64; |
| let half_exp = (i & 0x7F80u16) as u64; |
| let half_man = (i & 0x007Fu16) as u64; |
| |
| // Check for an infinity or NaN when all exponent bits set |
| if half_exp == 0x7F80u64 { |
| // Check for signed infinity if mantissa is zero |
| if half_man == 0 { |
| return unsafe { mem::transmute((half_sign << 48) | 0x7FF0_0000_0000_0000u64) }; |
| } else { |
| // NaN, keep current mantissa but also set most significiant mantissa bit |
| return unsafe { |
| mem::transmute((half_sign << 48) | 0x7FF8_0000_0000_0000u64 | (half_man << 45)) |
| }; |
| } |
| } |
| |
| // Calculate double-precision components with adjusted exponent |
| let sign = half_sign << 48; |
| // Unbias exponent |
| let unbiased_exp = ((half_exp as i64) >> 7) - 127; |
| |
| // Check for subnormals, which will be normalized by adjusting exponent |
| if half_exp == 0 { |
| // Calculate how much to adjust the exponent by |
| let e = leading_zeros_u16(half_man as u16) - 9; |
| |
| // Rebias and adjust exponent |
| let exp = ((1023 - 127 - e) as u64) << 52; |
| let man = (half_man << (46 + e)) & 0xF_FFFF_FFFF_FFFFu64; |
| return unsafe { mem::transmute(sign | exp | man) }; |
| } |
| // Rebias exponent for a normalized normal |
| let exp = ((unbiased_exp + 1023) as u64) << 52; |
| let man = (half_man & 0x007Fu64) << 45; |
| unsafe { mem::transmute(sign | exp | man) } |
| } |