blob: bfe4d7eff89785e2b867950571a80ab299d1fd11 [file] [log] [blame]
use std::collections::HashMap;
use std::hash::Hash;
use crate::algo::{BoundedMeasure, NegativeCycle};
use crate::visit::{
EdgeRef, GraphProp, IntoEdgeReferences, IntoNodeIdentifiers, NodeCompactIndexable,
};
#[allow(clippy::type_complexity, clippy::needless_range_loop)]
/// \[Generic\] [Floyd–Warshall algorithm](https://en.wikipedia.org/wiki/Floyd%E2%80%93Warshall_algorithm) is an algorithm for all pairs shortest path problem
///
/// Compute shortest paths in a weighted graph with positive or negative edge weights (but with no negative cycles)
///
/// # Arguments
/// * `graph`: graph with no negative cycle
/// * `edge_cost`: closure that returns cost of a particular edge
///
/// # Returns
/// * `Ok`: (if graph contains no negative cycle) a hashmap containing all pairs shortest paths
/// * `Err`: if graph contains negative cycle.
///
/// # Examples
/// ```rust
/// use petgraph::{prelude::*, Graph, Directed};
/// use petgraph::algo::floyd_warshall;
/// use std::collections::HashMap;
///
/// let mut graph: Graph<(), (), Directed> = Graph::new();
/// let a = graph.add_node(());
/// let b = graph.add_node(());
/// let c = graph.add_node(());
/// let d = graph.add_node(());
///
/// graph.extend_with_edges(&[
/// (a, b),
/// (a, c),
/// (a, d),
/// (b, c),
/// (b, d),
/// (c, d)
/// ]);
///
/// let weight_map: HashMap<(NodeIndex, NodeIndex), i32> = [
/// ((a, a), 0), ((a, b), 1), ((a, c), 4), ((a, d), 10),
/// ((b, b), 0), ((b, c), 2), ((b, d), 2),
/// ((c, c), 0), ((c, d), 2)
/// ].iter().cloned().collect();
/// // ----- b --------
/// // | ^ | 2
/// // | 1 | 4 v
/// // 2 | a ------> c
/// // | 10 | | 2
/// // | v v
/// // ---> d <-------
///
/// let inf = std::i32::MAX;
/// let expected_res: HashMap<(NodeIndex, NodeIndex), i32> = [
/// ((a, a), 0), ((a, b), 1), ((a, c), 3), ((a, d), 3),
/// ((b, a), inf), ((b, b), 0), ((b, c), 2), ((b, d), 2),
/// ((c, a), inf), ((c, b), inf), ((c, c), 0), ((c, d), 2),
/// ((d, a), inf), ((d, b), inf), ((d, c), inf), ((d, d), 0),
/// ].iter().cloned().collect();
///
///
/// let res = floyd_warshall(&graph, |edge| {
/// if let Some(weight) = weight_map.get(&(edge.source(), edge.target())) {
/// *weight
/// } else {
/// inf
/// }
/// }).unwrap();
///
/// let nodes = [a, b, c, d];
/// for node1 in &nodes {
/// for node2 in &nodes {
/// assert_eq!(res.get(&(*node1, *node2)).unwrap(), expected_res.get(&(*node1, *node2)).unwrap());
/// }
/// }
/// ```
pub fn floyd_warshall<G, F, K>(
graph: G,
mut edge_cost: F,
) -> Result<HashMap<(G::NodeId, G::NodeId), K>, NegativeCycle>
where
G: NodeCompactIndexable + IntoEdgeReferences + IntoNodeIdentifiers + GraphProp,
G::NodeId: Eq + Hash,
F: FnMut(G::EdgeRef) -> K,
K: BoundedMeasure + Copy,
{
let num_of_nodes = graph.node_count();
// |V|x|V| matrix
let mut dist = vec![vec![K::max(); num_of_nodes]; num_of_nodes];
// init distances of paths with no intermediate nodes
for edge in graph.edge_references() {
dist[graph.to_index(edge.source())][graph.to_index(edge.target())] = edge_cost(edge);
if !graph.is_directed() {
dist[graph.to_index(edge.target())][graph.to_index(edge.source())] = edge_cost(edge);
}
}
// distance of each node to itself is 0(default value)
for node in graph.node_identifiers() {
dist[graph.to_index(node)][graph.to_index(node)] = K::default();
}
for k in 0..num_of_nodes {
for i in 0..num_of_nodes {
for j in 0..num_of_nodes {
let (result, overflow) = dist[i][k].overflowing_add(dist[k][j]);
if !overflow && dist[i][j] > result {
dist[i][j] = result;
}
}
}
}
// value less than 0(default value) indicates a negative cycle
for i in 0..num_of_nodes {
if dist[i][i] < K::default() {
return Err(NegativeCycle(()));
}
}
let mut distance_map: HashMap<(G::NodeId, G::NodeId), K> =
HashMap::with_capacity(num_of_nodes * num_of_nodes);
for i in 0..num_of_nodes {
for j in 0..num_of_nodes {
distance_map.insert((graph.from_index(i), graph.from_index(j)), dist[i][j]);
}
}
Ok(distance_map)
}