| #[macro_use] |
| mod support; |
| |
| macro_rules! impl_affine2_tests { |
| ($t:ident, $affine2:ident, $vec2:ident, $mat2:ident, $mat3:ident) => { |
| const MATRIX1D: [$t; 6] = [1.0, 2.0, 3.0, 4.0, 5.0, 6.0]; |
| const MATRIX2D: [[$t; 2]; 3] = [[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]]; |
| |
| glam_test!(test_affine2_identity, { |
| assert_eq!($affine2::IDENTITY, $affine2::IDENTITY * $affine2::IDENTITY); |
| assert_eq!($affine2::IDENTITY, $affine2::default()); |
| }); |
| |
| glam_test!(test_affine2_zero, { |
| assert_eq!( |
| $affine2::ZERO.transform_point2($vec2::new(1., 2.)), |
| $vec2::ZERO |
| ); |
| }); |
| |
| glam_test!(test_affine2_nan, { |
| assert!($affine2::NAN.is_nan()); |
| assert!(!$affine2::NAN.is_finite()); |
| }); |
| |
| glam_test!(test_affine2_from_cols, { |
| let a = $affine2::from_cols( |
| $vec2::from_array(MATRIX2D[0]), |
| $vec2::from_array(MATRIX2D[1]), |
| $vec2::from_array(MATRIX2D[2]), |
| ); |
| assert_eq!(MATRIX2D, a.to_cols_array_2d()); |
| |
| let a = $affine2::from_cols_array(&MATRIX1D); |
| assert_eq!(MATRIX1D, a.to_cols_array()); |
| |
| let a = $affine2::from_cols_array_2d(&MATRIX2D); |
| assert_eq!(MATRIX2D, a.to_cols_array_2d()); |
| }); |
| |
| glam_test!(test_affine2_deref, { |
| let a = $affine2::from_cols_array_2d(&MATRIX2D); |
| assert_eq!(MATRIX2D[0], a.x_axis.to_array()); |
| assert_eq!(MATRIX2D[1], a.y_axis.to_array()); |
| assert_eq!(MATRIX2D[2], a.z_axis.to_array()); |
| |
| let mut b = a; |
| b.x_axis *= 0.0; |
| b.y_axis *= 0.0; |
| b.z_axis *= 0.0; |
| assert_eq!($affine2::ZERO, b); |
| }); |
| |
| glam_test!(test_affine2_from_mat2, { |
| let m = $mat2::from_cols_array_2d(&[MATRIX2D[0], MATRIX2D[1]]); |
| let a = $affine2::from_mat2(m); |
| assert_eq!(m, a.matrix2); |
| assert_eq!($vec2::ZERO, a.translation); |
| |
| let t = $vec2::from_array(MATRIX2D[2]); |
| let a = $affine2::from_mat2_translation(m, t); |
| assert_eq!(MATRIX2D, a.to_cols_array_2d()); |
| }); |
| |
| glam_test!(test_affine2_from_mat3, { |
| let m = $mat3::from_cols_array_2d(&[[1.0, 2.0, 0.0], [3.0, 4.0, 0.0], [5.0, 6.0, 1.0]]); |
| let a = $affine2::from_mat3(m); |
| assert_eq!(MATRIX2D, a.to_cols_array_2d()); |
| |
| assert_eq!(m, $mat3::from(a)); |
| }); |
| |
| glam_test!(test_affine2_translation, { |
| let translate = $affine2::from_translation($vec2::new(1.0, 2.0)); |
| assert_eq!(translate.translation, $vec2::new(1.0, 2.0).into()); |
| assert_eq!( |
| translate.transform_point2($vec2::new(2.0, 3.0)), |
| $vec2::new(3.0, 5.0), |
| ); |
| }); |
| |
| glam_test!(test_affine2_mul, { |
| let m = $affine2::from_angle(deg(90.0)); |
| let result3 = m.transform_vector2($vec2::Y); |
| assert_approx_eq!($vec2::new(-1.0, 0.0), result3); |
| |
| let m = $affine2::from_angle_translation(deg(90.0), $vec2::new(1.0, 2.0)); |
| let result3 = m.transform_vector2($vec2::Y); |
| assert_approx_eq!($vec2::new(-1.0, 0.0), result3, 1.0e-6); |
| |
| let m = $affine2::from_scale_angle_translation( |
| $vec2::new(0.5, 1.5), |
| deg(90.0), |
| $vec2::new(1.0, 2.0), |
| ); |
| let result3 = m.transform_vector2($vec2::Y); |
| assert_approx_eq!($vec2::new(-1.5, 0.0), result3, 1.0e-6); |
| |
| let result3 = m.transform_point2($vec2::Y); |
| assert_approx_eq!($vec2::new(-0.5, 2.0), result3, 1.0e-6); |
| }); |
| |
| glam_test!(test_from_scale, { |
| let m = $affine2::from_scale($vec2::new(2.0, 4.0)); |
| assert_approx_eq!( |
| m.transform_point2($vec2::new(1.0, 1.0)), |
| $vec2::new(2.0, 4.0) |
| ); |
| }); |
| |
| glam_test!(test_affine2_inverse, { |
| let inv = $affine2::IDENTITY.inverse(); |
| assert_approx_eq!($affine2::IDENTITY, inv); |
| |
| let rot = $affine2::from_angle(deg(90.0)); |
| let rot_inv = rot.inverse(); |
| assert_approx_eq!($affine2::IDENTITY, rot * rot_inv); |
| assert_approx_eq!($affine2::IDENTITY, rot_inv * rot); |
| |
| let trans = $affine2::from_translation($vec2::new(1.0, 2.0)); |
| let trans_inv = trans.inverse(); |
| assert_approx_eq!($affine2::IDENTITY, trans * trans_inv); |
| assert_approx_eq!($affine2::IDENTITY, trans_inv * trans); |
| |
| let scale = $affine2::from_scale($vec2::new(4.0, 5.0)); |
| let scale_inv = scale.inverse(); |
| assert_approx_eq!($affine2::IDENTITY, scale * scale_inv); |
| assert_approx_eq!($affine2::IDENTITY, scale_inv * scale); |
| |
| let m = scale * rot * trans; |
| let m_inv = m.inverse(); |
| assert_approx_eq!($affine2::IDENTITY, m * m_inv, 1.0e-5); |
| assert_approx_eq!($affine2::IDENTITY, m_inv * m, 1.0e-5); |
| assert_approx_eq!(m_inv, trans_inv * rot_inv * scale_inv, 1.0e-6); |
| |
| // Make sure we can invert a shear matrix: |
| let m = $affine2::from_angle(0.5) |
| * $affine2::from_scale($vec2::new(1.0, 0.5)) |
| * $affine2::from_angle(-0.5); |
| let m_inv = m.inverse(); |
| assert_approx_eq!($affine2::IDENTITY, m * m_inv, 1.0e-5); |
| assert_approx_eq!($affine2::IDENTITY, m_inv * m, 1.0e-5); |
| |
| should_glam_assert!({ $affine2::ZERO.inverse() }); |
| }); |
| |
| glam_test!(test_affine2_decompose, { |
| // identity |
| let (out_scale, out_rotation, out_translation) = |
| $affine2::IDENTITY.to_scale_angle_translation(); |
| assert_approx_eq!($vec2::ONE, out_scale); |
| assert_eq!(out_rotation, 0.0); |
| assert_approx_eq!($vec2::ZERO, out_translation); |
| |
| // no scale |
| let in_scale = $vec2::ONE; |
| let in_translation = $vec2::new(-2.0, 4.0); |
| let in_rotation = $t::to_radians(-45.0); |
| let in_mat = |
| $affine2::from_scale_angle_translation(in_scale, in_rotation, in_translation); |
| let (out_scale, out_rotation, out_translation) = in_mat.to_scale_angle_translation(); |
| assert_approx_eq!(in_scale, out_scale, 1e-6); |
| assert_approx_eq!(in_rotation, out_rotation); |
| assert_approx_eq!(in_translation, out_translation); |
| assert_approx_eq!( |
| in_mat, |
| $affine2::from_scale_angle_translation(out_scale, out_rotation, out_translation), |
| 1e-6 |
| ); |
| |
| // positive scale |
| let in_scale = $vec2::new(1.0, 2.0); |
| let in_mat = |
| $affine2::from_scale_angle_translation(in_scale, in_rotation, in_translation); |
| let (out_scale, out_rotation, out_translation) = in_mat.to_scale_angle_translation(); |
| assert_approx_eq!(in_scale, out_scale, 1e-6); |
| assert_approx_eq!(in_rotation, out_rotation); |
| assert_approx_eq!(in_translation, out_translation); |
| assert_approx_eq!( |
| in_mat, |
| $affine2::from_scale_angle_translation(out_scale, out_rotation, out_translation), |
| 1e-5 |
| ); |
| |
| // negative scale |
| let in_scale = $vec2::new(-4.0, 1.0); |
| let in_mat = |
| $affine2::from_scale_angle_translation(in_scale, in_rotation, in_translation); |
| let (out_scale, out_rotation, out_translation) = in_mat.to_scale_angle_translation(); |
| assert_approx_eq!(in_scale, out_scale, 1e-6); |
| assert_approx_eq!(in_rotation, out_rotation); |
| assert_approx_eq!(in_translation, out_translation); |
| assert_approx_eq!( |
| in_mat, |
| $affine2::from_scale_angle_translation(out_scale, out_rotation, out_translation), |
| 1e-5 |
| ); |
| |
| // negative scale |
| let in_scale = $vec2::new(4.0, -1.0); |
| let in_mat = |
| $affine2::from_scale_angle_translation(in_scale, in_rotation, in_translation); |
| let (out_scale, out_rotation, out_translation) = in_mat.to_scale_angle_translation(); |
| // out_scale and out_rotation are different but they produce the same matrix |
| // assert_approx_eq!(in_scale, out_scale, 1e-6); |
| // assert_approx_eq!(in_rotation, out_rotation); |
| assert_approx_eq!(in_translation, out_translation); |
| assert_approx_eq!( |
| in_mat, |
| $affine2::from_scale_angle_translation(out_scale, out_rotation, out_translation), |
| 1e-6 |
| ); |
| }); |
| |
| glam_test!(test_affine2_ops, { |
| let m0 = $affine2::from_cols_array_2d(&MATRIX2D); |
| assert_approx_eq!(m0, m0 * $affine2::IDENTITY); |
| assert_approx_eq!(m0, $affine2::IDENTITY * m0); |
| |
| let mut m1 = m0; |
| m1 *= $affine2::IDENTITY; |
| assert_approx_eq!(m1, m0); |
| |
| let mat3 = $mat3::from(m0); |
| assert_approx_eq!(mat3, $affine2::IDENTITY * mat3); |
| assert_approx_eq!(mat3, mat3 * $affine2::IDENTITY); |
| }); |
| |
| glam_test!(test_affine2_fmt, { |
| let a = $affine2::from_cols_array_2d(&MATRIX2D); |
| assert_eq!(format!("{}", a), "[[1, 2], [3, 4], [5, 6]]"); |
| assert_eq!(format!("{:.1}", a), "[[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]]"); |
| }); |
| |
| glam_test!(test_affine2_to_from_slice, { |
| let m = $affine2::from_cols_slice(&MATRIX1D); |
| assert_eq!($affine2::from_cols_array(&MATRIX1D), m); |
| assert_eq!(MATRIX1D, m.to_cols_array()); |
| assert_eq!(MATRIX2D, m.to_cols_array_2d()); |
| let mut out: [$t; 6] = Default::default(); |
| m.write_cols_to_slice(&mut out); |
| assert_eq!(MATRIX1D, out); |
| assert_eq!( |
| m, |
| $affine2::from_cols(MATRIX2D[0].into(), MATRIX2D[1].into(), MATRIX2D[2].into()) |
| ); |
| |
| should_panic!({ $affine2::from_cols_slice(&[0.0; 5]) }); |
| should_panic!({ $affine2::IDENTITY.write_cols_to_slice(&mut [0.0; 5]) }); |
| }); |
| |
| glam_test!(test_product, { |
| let ident = $affine2::IDENTITY; |
| assert_eq!([ident, ident].iter().product::<$affine2>(), ident * ident); |
| }); |
| |
| glam_test!(test_affine2_is_finite, { |
| assert!($affine2::from_scale($vec2::new(1.0, 1.0)).is_finite()); |
| assert!($affine2::from_scale($vec2::new(0.0, 1.0)).is_finite()); |
| assert!(!$affine2::from_scale($vec2::new(1.0, $t::NAN)).is_finite()); |
| assert!(!$affine2::from_scale($vec2::new(1.0, $t::NEG_INFINITY)).is_finite()); |
| }); |
| }; |
| } |
| |
| mod affine2 { |
| use super::support::{deg, FloatCompare}; |
| use glam::{Affine2, Mat2, Mat3, Vec2}; |
| |
| impl FloatCompare for Affine2 { |
| #[inline] |
| fn approx_eq(&self, other: &Self, max_abs_diff: f32) -> bool { |
| self.abs_diff_eq(*other, max_abs_diff) |
| } |
| #[inline] |
| fn abs_diff(&self, other: &Self) -> Self { |
| Self { |
| matrix2: self.matrix2.abs_diff(&other.matrix2), |
| translation: self.translation.abs_diff(&other.translation), |
| } |
| } |
| } |
| |
| glam_test!(test_align, { |
| use std::mem; |
| if cfg!(not(feature = "scalar-math")) { |
| assert_eq!(32, mem::size_of::<Affine2>()); |
| assert_eq!(16, mem::align_of::<Affine2>()); |
| } else if cfg!(feature = "cuda") { |
| assert_eq!(24, mem::size_of::<Affine2>()); |
| assert_eq!(8, mem::align_of::<Affine2>()); |
| } else { |
| assert_eq!(24, mem::size_of::<Affine2>()); |
| assert_eq!(4, mem::align_of::<Affine2>()); |
| } |
| }); |
| |
| glam_test!(test_affine2_from_mat3a, { |
| use glam::Mat3A; |
| let m = Mat3A::from_cols_array_2d(&[[1.0, 2.0, 0.0], [3.0, 4.0, 0.0], [5.0, 6.0, 1.0]]); |
| let a = Affine2::from_mat3a(m); |
| assert_eq!(MATRIX2D, a.to_cols_array_2d()); |
| |
| assert_eq!(m, Mat3A::from(a)); |
| }); |
| |
| impl_affine2_tests!(f32, Affine2, Vec2, Mat2, Mat3); |
| } |
| |
| mod daffine2 { |
| use super::support::{deg, FloatCompare}; |
| use glam::{DAffine2, DMat2, DMat3, DVec2}; |
| |
| impl FloatCompare for DAffine2 { |
| #[inline] |
| fn approx_eq(&self, other: &Self, max_abs_diff: f32) -> bool { |
| self.abs_diff_eq(*other, max_abs_diff as f64) |
| } |
| #[inline] |
| fn abs_diff(&self, other: &Self) -> Self { |
| Self { |
| matrix2: self.matrix2.abs_diff(&other.matrix2), |
| translation: self.translation.abs_diff(&other.translation), |
| } |
| } |
| } |
| |
| #[cfg(not(feature = "cuda"))] |
| glam_test!(test_align, { |
| use std::mem; |
| assert_eq!(48, mem::size_of::<DAffine2>()); |
| assert_eq!(mem::align_of::<f64>(), mem::align_of::<DAffine2>()); |
| }); |
| |
| #[cfg(feature = "cuda")] |
| glam_test!(test_align, { |
| use std::mem; |
| assert_eq!(48, mem::size_of::<DAffine2>()); |
| assert_eq!(16, mem::align_of::<DAffine2>()); |
| }); |
| |
| impl_affine2_tests!(f64, DAffine2, DVec2, DMat2, DMat3); |
| } |