| use tracing_core::{metadata::Metadata, span, Dispatch, Event, Interest, LevelFilter, Subscriber}; |
| |
| use crate::{ |
| filter, |
| layer::{Context, Layer}, |
| registry::LookupSpan, |
| }; |
| #[cfg(all(feature = "registry", feature = "std"))] |
| use crate::{filter::FilterId, registry::Registry}; |
| use core::{ |
| any::{Any, TypeId}, |
| cmp, fmt, |
| marker::PhantomData, |
| }; |
| |
| /// A [`Subscriber`] composed of a `Subscriber` wrapped by one or more |
| /// [`Layer`]s. |
| /// |
| /// [`Layer`]: crate::Layer |
| /// [`Subscriber`]: tracing_core::Subscriber |
| #[derive(Clone)] |
| pub struct Layered<L, I, S = I> { |
| /// The layer. |
| layer: L, |
| |
| /// The inner value that `self.layer` was layered onto. |
| /// |
| /// If this is also a `Layer`, then this `Layered` will implement `Layer`. |
| /// If this is a `Subscriber`, then this `Layered` will implement |
| /// `Subscriber` instead. |
| inner: I, |
| |
| // These booleans are used to determine how to combine `Interest`s and max |
| // level hints when per-layer filters are in use. |
| /// Is `self.inner` a `Registry`? |
| /// |
| /// If so, when combining `Interest`s, we want to "bubble up" its |
| /// `Interest`. |
| inner_is_registry: bool, |
| |
| /// Does `self.layer` have per-layer filters? |
| /// |
| /// This will be true if: |
| /// - `self.inner` is a `Filtered`. |
| /// - `self.inner` is a tree of `Layered`s where _all_ arms of those |
| /// `Layered`s have per-layer filters. |
| /// |
| /// Otherwise, if it's a `Layered` with one per-layer filter in one branch, |
| /// but a non-per-layer-filtered layer in the other branch, this will be |
| /// _false_, because the `Layered` is already handling the combining of |
| /// per-layer filter `Interest`s and max level hints with its non-filtered |
| /// `Layer`. |
| has_layer_filter: bool, |
| |
| /// Does `self.inner` have per-layer filters? |
| /// |
| /// This is determined according to the same rules as |
| /// `has_layer_filter` above. |
| inner_has_layer_filter: bool, |
| _s: PhantomData<fn(S)>, |
| } |
| |
| // === impl Layered === |
| |
| impl<L, S> Layered<L, S> |
| where |
| L: Layer<S>, |
| S: Subscriber, |
| { |
| /// Returns `true` if this [`Subscriber`] is the same type as `T`. |
| pub fn is<T: Any>(&self) -> bool { |
| self.downcast_ref::<T>().is_some() |
| } |
| |
| /// Returns some reference to this [`Subscriber`] value if it is of type `T`, |
| /// or `None` if it isn't. |
| pub fn downcast_ref<T: Any>(&self) -> Option<&T> { |
| unsafe { |
| let raw = self.downcast_raw(TypeId::of::<T>())?; |
| if raw.is_null() { |
| None |
| } else { |
| Some(&*(raw as *const T)) |
| } |
| } |
| } |
| } |
| |
| impl<L, S> Subscriber for Layered<L, S> |
| where |
| L: Layer<S>, |
| S: Subscriber, |
| { |
| fn register_callsite(&self, metadata: &'static Metadata<'static>) -> Interest { |
| self.pick_interest(self.layer.register_callsite(metadata), || { |
| self.inner.register_callsite(metadata) |
| }) |
| } |
| |
| fn enabled(&self, metadata: &Metadata<'_>) -> bool { |
| if self.layer.enabled(metadata, self.ctx()) { |
| // if the outer layer enables the callsite metadata, ask the subscriber. |
| self.inner.enabled(metadata) |
| } else { |
| // otherwise, the callsite is disabled by the layer |
| |
| // If per-layer filters are in use, and we are short-circuiting |
| // (rather than calling into the inner type), clear the current |
| // per-layer filter `enabled` state. |
| #[cfg(feature = "registry")] |
| filter::FilterState::clear_enabled(); |
| |
| false |
| } |
| } |
| |
| fn max_level_hint(&self) -> Option<LevelFilter> { |
| self.pick_level_hint( |
| self.layer.max_level_hint(), |
| self.inner.max_level_hint(), |
| super::subscriber_is_none(&self.inner), |
| ) |
| } |
| |
| fn new_span(&self, span: &span::Attributes<'_>) -> span::Id { |
| let id = self.inner.new_span(span); |
| self.layer.on_new_span(span, &id, self.ctx()); |
| id |
| } |
| |
| fn record(&self, span: &span::Id, values: &span::Record<'_>) { |
| self.inner.record(span, values); |
| self.layer.on_record(span, values, self.ctx()); |
| } |
| |
| fn record_follows_from(&self, span: &span::Id, follows: &span::Id) { |
| self.inner.record_follows_from(span, follows); |
| self.layer.on_follows_from(span, follows, self.ctx()); |
| } |
| |
| fn event_enabled(&self, event: &Event<'_>) -> bool { |
| if self.layer.event_enabled(event, self.ctx()) { |
| // if the outer layer enables the event, ask the inner subscriber. |
| self.inner.event_enabled(event) |
| } else { |
| // otherwise, the event is disabled by this layer |
| false |
| } |
| } |
| |
| fn event(&self, event: &Event<'_>) { |
| self.inner.event(event); |
| self.layer.on_event(event, self.ctx()); |
| } |
| |
| fn enter(&self, span: &span::Id) { |
| self.inner.enter(span); |
| self.layer.on_enter(span, self.ctx()); |
| } |
| |
| fn exit(&self, span: &span::Id) { |
| self.inner.exit(span); |
| self.layer.on_exit(span, self.ctx()); |
| } |
| |
| fn clone_span(&self, old: &span::Id) -> span::Id { |
| let new = self.inner.clone_span(old); |
| if &new != old { |
| self.layer.on_id_change(old, &new, self.ctx()) |
| }; |
| new |
| } |
| |
| #[inline] |
| fn drop_span(&self, id: span::Id) { |
| self.try_close(id); |
| } |
| |
| fn try_close(&self, id: span::Id) -> bool { |
| #[cfg(all(feature = "registry", feature = "std"))] |
| let subscriber = &self.inner as &dyn Subscriber; |
| #[cfg(all(feature = "registry", feature = "std"))] |
| let mut guard = subscriber |
| .downcast_ref::<Registry>() |
| .map(|registry| registry.start_close(id.clone())); |
| if self.inner.try_close(id.clone()) { |
| // If we have a registry's close guard, indicate that the span is |
| // closing. |
| #[cfg(all(feature = "registry", feature = "std"))] |
| { |
| if let Some(g) = guard.as_mut() { |
| g.set_closing() |
| }; |
| } |
| |
| self.layer.on_close(id, self.ctx()); |
| true |
| } else { |
| false |
| } |
| } |
| |
| #[inline] |
| fn current_span(&self) -> span::Current { |
| self.inner.current_span() |
| } |
| |
| #[doc(hidden)] |
| unsafe fn downcast_raw(&self, id: TypeId) -> Option<*const ()> { |
| // Unlike the implementation of `Layer` for `Layered`, we don't have to |
| // handle the "magic PLF downcast marker" here. If a `Layered` |
| // implements `Subscriber`, we already know that the `inner` branch is |
| // going to contain something that doesn't have per-layer filters (the |
| // actual root `Subscriber`). Thus, a `Layered` that implements |
| // `Subscriber` will always be propagating the root subscriber's |
| // `Interest`/level hint, even if it includes a `Layer` that has |
| // per-layer filters, because it will only ever contain layers where |
| // _one_ child has per-layer filters. |
| // |
| // The complex per-layer filter detection logic is only relevant to |
| // *trees* of layers, which involve the `Layer` implementation for |
| // `Layered`, not *lists* of layers, where every `Layered` implements |
| // `Subscriber`. Of course, a linked list can be thought of as a |
| // degenerate tree...but luckily, we are able to make a type-level |
| // distinction between individual `Layered`s that are definitely |
| // list-shaped (their inner child implements `Subscriber`), and |
| // `Layered`s that might be tree-shaped (the inner child is also a |
| // `Layer`). |
| |
| // If downcasting to `Self`, return a pointer to `self`. |
| if id == TypeId::of::<Self>() { |
| return Some(self as *const _ as *const ()); |
| } |
| |
| self.layer |
| .downcast_raw(id) |
| .or_else(|| self.inner.downcast_raw(id)) |
| } |
| } |
| |
| impl<S, A, B> Layer<S> for Layered<A, B, S> |
| where |
| A: Layer<S>, |
| B: Layer<S>, |
| S: Subscriber, |
| { |
| fn on_register_dispatch(&self, subscriber: &Dispatch) { |
| self.layer.on_register_dispatch(subscriber); |
| self.inner.on_register_dispatch(subscriber); |
| } |
| |
| fn on_layer(&mut self, subscriber: &mut S) { |
| self.layer.on_layer(subscriber); |
| self.inner.on_layer(subscriber); |
| } |
| |
| fn register_callsite(&self, metadata: &'static Metadata<'static>) -> Interest { |
| self.pick_interest(self.layer.register_callsite(metadata), || { |
| self.inner.register_callsite(metadata) |
| }) |
| } |
| |
| fn enabled(&self, metadata: &Metadata<'_>, ctx: Context<'_, S>) -> bool { |
| if self.layer.enabled(metadata, ctx.clone()) { |
| // if the outer subscriber enables the callsite metadata, ask the inner layer. |
| self.inner.enabled(metadata, ctx) |
| } else { |
| // otherwise, the callsite is disabled by this layer |
| false |
| } |
| } |
| |
| fn max_level_hint(&self) -> Option<LevelFilter> { |
| self.pick_level_hint( |
| self.layer.max_level_hint(), |
| self.inner.max_level_hint(), |
| super::layer_is_none(&self.inner), |
| ) |
| } |
| |
| #[inline] |
| fn on_new_span(&self, attrs: &span::Attributes<'_>, id: &span::Id, ctx: Context<'_, S>) { |
| self.inner.on_new_span(attrs, id, ctx.clone()); |
| self.layer.on_new_span(attrs, id, ctx); |
| } |
| |
| #[inline] |
| fn on_record(&self, span: &span::Id, values: &span::Record<'_>, ctx: Context<'_, S>) { |
| self.inner.on_record(span, values, ctx.clone()); |
| self.layer.on_record(span, values, ctx); |
| } |
| |
| #[inline] |
| fn on_follows_from(&self, span: &span::Id, follows: &span::Id, ctx: Context<'_, S>) { |
| self.inner.on_follows_from(span, follows, ctx.clone()); |
| self.layer.on_follows_from(span, follows, ctx); |
| } |
| |
| #[inline] |
| fn event_enabled(&self, event: &Event<'_>, ctx: Context<'_, S>) -> bool { |
| if self.layer.event_enabled(event, ctx.clone()) { |
| // if the outer layer enables the event, ask the inner subscriber. |
| self.inner.event_enabled(event, ctx) |
| } else { |
| // otherwise, the event is disabled by this layer |
| false |
| } |
| } |
| |
| #[inline] |
| fn on_event(&self, event: &Event<'_>, ctx: Context<'_, S>) { |
| self.inner.on_event(event, ctx.clone()); |
| self.layer.on_event(event, ctx); |
| } |
| |
| #[inline] |
| fn on_enter(&self, id: &span::Id, ctx: Context<'_, S>) { |
| self.inner.on_enter(id, ctx.clone()); |
| self.layer.on_enter(id, ctx); |
| } |
| |
| #[inline] |
| fn on_exit(&self, id: &span::Id, ctx: Context<'_, S>) { |
| self.inner.on_exit(id, ctx.clone()); |
| self.layer.on_exit(id, ctx); |
| } |
| |
| #[inline] |
| fn on_close(&self, id: span::Id, ctx: Context<'_, S>) { |
| self.inner.on_close(id.clone(), ctx.clone()); |
| self.layer.on_close(id, ctx); |
| } |
| |
| #[inline] |
| fn on_id_change(&self, old: &span::Id, new: &span::Id, ctx: Context<'_, S>) { |
| self.inner.on_id_change(old, new, ctx.clone()); |
| self.layer.on_id_change(old, new, ctx); |
| } |
| |
| #[doc(hidden)] |
| unsafe fn downcast_raw(&self, id: TypeId) -> Option<*const ()> { |
| match id { |
| // If downcasting to `Self`, return a pointer to `self`. |
| id if id == TypeId::of::<Self>() => Some(self as *const _ as *const ()), |
| |
| // Oh, we're looking for per-layer filters! |
| // |
| // This should only happen if we are inside of another `Layered`, |
| // and it's trying to determine how it should combine `Interest`s |
| // and max level hints. |
| // |
| // In that case, this `Layered` should be considered to be |
| // "per-layer filtered" if *both* the outer layer and the inner |
| // layer/subscriber have per-layer filters. Otherwise, this `Layered |
| // should *not* be considered per-layer filtered (even if one or the |
| // other has per layer filters). If only one `Layer` is per-layer |
| // filtered, *this* `Layered` will handle aggregating the `Interest` |
| // and level hints on behalf of its children, returning the |
| // aggregate (which is the value from the &non-per-layer-filtered* |
| // child). |
| // |
| // Yes, this rule *is* slightly counter-intuitive, but it's |
| // necessary due to a weird edge case that can occur when two |
| // `Layered`s where one side is per-layer filtered and the other |
| // isn't are `Layered` together to form a tree. If we didn't have |
| // this rule, we would actually end up *ignoring* `Interest`s from |
| // the non-per-layer-filtered layers, since both branches would |
| // claim to have PLF. |
| // |
| // If you don't understand this...that's fine, just don't mess with |
| // it. :) |
| id if filter::is_plf_downcast_marker(id) => { |
| self.layer.downcast_raw(id).and(self.inner.downcast_raw(id)) |
| } |
| |
| // Otherwise, try to downcast both branches normally... |
| _ => self |
| .layer |
| .downcast_raw(id) |
| .or_else(|| self.inner.downcast_raw(id)), |
| } |
| } |
| } |
| |
| impl<'a, L, S> LookupSpan<'a> for Layered<L, S> |
| where |
| S: Subscriber + LookupSpan<'a>, |
| { |
| type Data = S::Data; |
| |
| fn span_data(&'a self, id: &span::Id) -> Option<Self::Data> { |
| self.inner.span_data(id) |
| } |
| |
| #[cfg(all(feature = "registry", feature = "std"))] |
| fn register_filter(&mut self) -> FilterId { |
| self.inner.register_filter() |
| } |
| } |
| |
| impl<L, S> Layered<L, S> |
| where |
| S: Subscriber, |
| { |
| fn ctx(&self) -> Context<'_, S> { |
| Context::new(&self.inner) |
| } |
| } |
| |
| impl<A, B, S> Layered<A, B, S> |
| where |
| A: Layer<S>, |
| S: Subscriber, |
| { |
| pub(super) fn new(layer: A, inner: B, inner_has_layer_filter: bool) -> Self { |
| #[cfg(all(feature = "registry", feature = "std"))] |
| let inner_is_registry = TypeId::of::<S>() == TypeId::of::<crate::registry::Registry>(); |
| |
| #[cfg(not(all(feature = "registry", feature = "std")))] |
| let inner_is_registry = false; |
| |
| let inner_has_layer_filter = inner_has_layer_filter || inner_is_registry; |
| let has_layer_filter = filter::layer_has_plf(&layer); |
| Self { |
| layer, |
| inner, |
| has_layer_filter, |
| inner_has_layer_filter, |
| inner_is_registry, |
| _s: PhantomData, |
| } |
| } |
| |
| fn pick_interest(&self, outer: Interest, inner: impl FnOnce() -> Interest) -> Interest { |
| if self.has_layer_filter { |
| return inner(); |
| } |
| |
| // If the outer layer has disabled the callsite, return now so that |
| // the inner layer/subscriber doesn't get its hopes up. |
| if outer.is_never() { |
| // If per-layer filters are in use, and we are short-circuiting |
| // (rather than calling into the inner type), clear the current |
| // per-layer filter interest state. |
| #[cfg(feature = "registry")] |
| filter::FilterState::take_interest(); |
| |
| return outer; |
| } |
| |
| // The `inner` closure will call `inner.register_callsite()`. We do this |
| // before the `if` statement to ensure that the inner subscriber is |
| // informed that the callsite exists regardless of the outer layer's |
| // filtering decision. |
| let inner = inner(); |
| if outer.is_sometimes() { |
| // if this interest is "sometimes", return "sometimes" to ensure that |
| // filters are reevaluated. |
| return outer; |
| } |
| |
| // If there is a per-layer filter in the `inner` stack, and it returns |
| // `never`, change the interest to `sometimes`, because the `outer` |
| // layer didn't return `never`. This means that _some_ layer still wants |
| // to see that callsite, even though the inner stack's per-layer filter |
| // didn't want it. Therefore, returning `sometimes` will ensure |
| // `enabled` is called so that the per-layer filter can skip that |
| // span/event, while the `outer` layer still gets to see it. |
| if inner.is_never() && self.inner_has_layer_filter { |
| return Interest::sometimes(); |
| } |
| |
| // otherwise, allow the inner subscriber or subscriber to weigh in. |
| inner |
| } |
| |
| fn pick_level_hint( |
| &self, |
| outer_hint: Option<LevelFilter>, |
| inner_hint: Option<LevelFilter>, |
| inner_is_none: bool, |
| ) -> Option<LevelFilter> { |
| if self.inner_is_registry { |
| return outer_hint; |
| } |
| |
| if self.has_layer_filter && self.inner_has_layer_filter { |
| return Some(cmp::max(outer_hint?, inner_hint?)); |
| } |
| |
| if self.has_layer_filter && inner_hint.is_none() { |
| return None; |
| } |
| |
| if self.inner_has_layer_filter && outer_hint.is_none() { |
| return None; |
| } |
| |
| // If the layer is `Option::None`, then we |
| // want to short-circuit the layer underneath, if it |
| // returns `None`, to override the `None` layer returning |
| // `Some(OFF)`, which should ONLY apply when there are |
| // no other layers that return `None`. Note this |
| // `None` does not == `Some(TRACE)`, it means |
| // something more like: "whatever all the other |
| // layers agree on, default to `TRACE` if none |
| // have an opinion". We also choose do this AFTER |
| // we check for per-layer filters, which |
| // have their own logic. |
| // |
| // Also note that this does come at some perf cost, but |
| // this function is only called on initialization and |
| // subscriber reloading. |
| if super::layer_is_none(&self.layer) { |
| return cmp::max(outer_hint, Some(inner_hint?)); |
| } |
| |
| // Similarly, if the layer on the inside is `None` and it returned an |
| // `Off` hint, we want to override that with the outer hint. |
| if inner_is_none && inner_hint == Some(LevelFilter::OFF) { |
| return outer_hint; |
| } |
| |
| cmp::max(outer_hint, inner_hint) |
| } |
| } |
| |
| impl<A, B, S> fmt::Debug for Layered<A, B, S> |
| where |
| A: fmt::Debug, |
| B: fmt::Debug, |
| { |
| fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| #[cfg(all(feature = "registry", feature = "std"))] |
| let alt = f.alternate(); |
| let mut s = f.debug_struct("Layered"); |
| // These additional fields are more verbose and usually only necessary |
| // for internal debugging purposes, so only print them if alternate mode |
| // is enabled. |
| |
| #[cfg(all(feature = "registry", feature = "std"))] |
| { |
| if alt { |
| s.field("inner_is_registry", &self.inner_is_registry) |
| .field("has_layer_filter", &self.has_layer_filter) |
| .field("inner_has_layer_filter", &self.inner_has_layer_filter); |
| } |
| } |
| |
| s.field("layer", &self.layer) |
| .field("inner", &self.inner) |
| .finish() |
| } |
| } |