blob: b96910f920601a0233b78648ee0f36949e58904e [file] [log] [blame]
#![allow(dead_code, unused_imports)]
use crate::leading_zeros::leading_zeros_u16;
use core::mem;
macro_rules! convert_fn {
(fn $name:ident($($var:ident : $vartype:ty),+) -> $restype:ty {
if feature("f16c") { $f16c:expr }
else { $fallback:expr }}) => {
#[inline]
pub(crate) fn $name($($var: $vartype),+) -> $restype {
// Use CPU feature detection if using std
#[cfg(all(
feature = "use-intrinsics",
feature = "std",
any(target_arch = "x86", target_arch = "x86_64"),
not(target_feature = "f16c")
))]
{
if is_x86_feature_detected!("f16c") {
$f16c
} else {
$fallback
}
}
// Use intrinsics directly when a compile target or using no_std
#[cfg(all(
feature = "use-intrinsics",
any(target_arch = "x86", target_arch = "x86_64"),
target_feature = "f16c"
))]
{
$f16c
}
// Fallback to software
#[cfg(any(
not(feature = "use-intrinsics"),
not(any(target_arch = "x86", target_arch = "x86_64")),
all(not(feature = "std"), not(target_feature = "f16c"))
))]
{
$fallback
}
}
};
}
convert_fn! {
fn f32_to_f16(f: f32) -> u16 {
if feature("f16c") {
unsafe { x86::f32_to_f16_x86_f16c(f) }
} else {
f32_to_f16_fallback(f)
}
}
}
convert_fn! {
fn f64_to_f16(f: f64) -> u16 {
if feature("f16c") {
unsafe { x86::f32_to_f16_x86_f16c(f as f32) }
} else {
f64_to_f16_fallback(f)
}
}
}
convert_fn! {
fn f16_to_f32(i: u16) -> f32 {
if feature("f16c") {
unsafe { x86::f16_to_f32_x86_f16c(i) }
} else {
f16_to_f32_fallback(i)
}
}
}
convert_fn! {
fn f16_to_f64(i: u16) -> f64 {
if feature("f16c") {
unsafe { x86::f16_to_f32_x86_f16c(i) as f64 }
} else {
f16_to_f64_fallback(i)
}
}
}
convert_fn! {
fn f32x4_to_f16x4(f: &[f32; 4]) -> [u16; 4] {
if feature("f16c") {
unsafe { x86::f32x4_to_f16x4_x86_f16c(f) }
} else {
f32x4_to_f16x4_fallback(f)
}
}
}
convert_fn! {
fn f16x4_to_f32x4(i: &[u16; 4]) -> [f32; 4] {
if feature("f16c") {
unsafe { x86::f16x4_to_f32x4_x86_f16c(i) }
} else {
f16x4_to_f32x4_fallback(i)
}
}
}
convert_fn! {
fn f64x4_to_f16x4(f: &[f64; 4]) -> [u16; 4] {
if feature("f16c") {
unsafe { x86::f64x4_to_f16x4_x86_f16c(f) }
} else {
f64x4_to_f16x4_fallback(f)
}
}
}
convert_fn! {
fn f16x4_to_f64x4(i: &[u16; 4]) -> [f64; 4] {
if feature("f16c") {
unsafe { x86::f16x4_to_f64x4_x86_f16c(i) }
} else {
f16x4_to_f64x4_fallback(i)
}
}
}
convert_fn! {
fn f32x8_to_f16x8(f: &[f32; 8]) -> [u16; 8] {
if feature("f16c") {
unsafe { x86::f32x8_to_f16x8_x86_f16c(f) }
} else {
f32x8_to_f16x8_fallback(f)
}
}
}
convert_fn! {
fn f16x8_to_f32x8(i: &[u16; 8]) -> [f32; 8] {
if feature("f16c") {
unsafe { x86::f16x8_to_f32x8_x86_f16c(i) }
} else {
f16x8_to_f32x8_fallback(i)
}
}
}
convert_fn! {
fn f64x8_to_f16x8(f: &[f64; 8]) -> [u16; 8] {
if feature("f16c") {
unsafe { x86::f64x8_to_f16x8_x86_f16c(f) }
} else {
f64x8_to_f16x8_fallback(f)
}
}
}
convert_fn! {
fn f16x8_to_f64x8(i: &[u16; 8]) -> [f64; 8] {
if feature("f16c") {
unsafe { x86::f16x8_to_f64x8_x86_f16c(i) }
} else {
f16x8_to_f64x8_fallback(i)
}
}
}
convert_fn! {
fn f32_to_f16_slice(src: &[f32], dst: &mut [u16]) -> () {
if feature("f16c") {
convert_chunked_slice_8(src, dst, x86::f32x8_to_f16x8_x86_f16c,
x86::f32x4_to_f16x4_x86_f16c)
} else {
slice_fallback(src, dst, f32_to_f16_fallback)
}
}
}
convert_fn! {
fn f16_to_f32_slice(src: &[u16], dst: &mut [f32]) -> () {
if feature("f16c") {
convert_chunked_slice_8(src, dst, x86::f16x8_to_f32x8_x86_f16c,
x86::f16x4_to_f32x4_x86_f16c)
} else {
slice_fallback(src, dst, f16_to_f32_fallback)
}
}
}
convert_fn! {
fn f64_to_f16_slice(src: &[f64], dst: &mut [u16]) -> () {
if feature("f16c") {
convert_chunked_slice_8(src, dst, x86::f64x8_to_f16x8_x86_f16c,
x86::f64x4_to_f16x4_x86_f16c)
} else {
slice_fallback(src, dst, f64_to_f16_fallback)
}
}
}
convert_fn! {
fn f16_to_f64_slice(src: &[u16], dst: &mut [f64]) -> () {
if feature("f16c") {
convert_chunked_slice_8(src, dst, x86::f16x8_to_f64x8_x86_f16c,
x86::f16x4_to_f64x4_x86_f16c)
} else {
slice_fallback(src, dst, f16_to_f64_fallback)
}
}
}
/// Chunks sliced into x8 or x4 arrays
#[inline]
fn convert_chunked_slice_8<S: Copy + Default, D: Copy>(
src: &[S],
dst: &mut [D],
fn8: unsafe fn(&[S; 8]) -> [D; 8],
fn4: unsafe fn(&[S; 4]) -> [D; 4],
) {
assert_eq!(src.len(), dst.len());
// TODO: Can be further optimized with array_chunks when it becomes stabilized
let src_chunks = src.chunks_exact(8);
let mut dst_chunks = dst.chunks_exact_mut(8);
let src_remainder = src_chunks.remainder();
for (s, d) in src_chunks.zip(&mut dst_chunks) {
let chunk: &[S; 8] = s.try_into().unwrap();
d.copy_from_slice(unsafe { &fn8(chunk) });
}
// Process remainder
if src_remainder.len() > 4 {
let mut buf: [S; 8] = Default::default();
buf[..src_remainder.len()].copy_from_slice(src_remainder);
let vec = unsafe { fn8(&buf) };
let dst_remainder = dst_chunks.into_remainder();
dst_remainder.copy_from_slice(&vec[..dst_remainder.len()]);
} else if !src_remainder.is_empty() {
let mut buf: [S; 4] = Default::default();
buf[..src_remainder.len()].copy_from_slice(src_remainder);
let vec = unsafe { fn4(&buf) };
let dst_remainder = dst_chunks.into_remainder();
dst_remainder.copy_from_slice(&vec[..dst_remainder.len()]);
}
}
/// Chunks sliced into x4 arrays
#[inline]
fn convert_chunked_slice_4<S: Copy + Default, D: Copy>(
src: &[S],
dst: &mut [D],
f: unsafe fn(&[S; 4]) -> [D; 4],
) {
assert_eq!(src.len(), dst.len());
// TODO: Can be further optimized with array_chunks when it becomes stabilized
let src_chunks = src.chunks_exact(4);
let mut dst_chunks = dst.chunks_exact_mut(4);
let src_remainder = src_chunks.remainder();
for (s, d) in src_chunks.zip(&mut dst_chunks) {
let chunk: &[S; 4] = s.try_into().unwrap();
d.copy_from_slice(unsafe { &f(chunk) });
}
// Process remainder
if !src_remainder.is_empty() {
let mut buf: [S; 4] = Default::default();
buf[..src_remainder.len()].copy_from_slice(src_remainder);
let vec = unsafe { f(&buf) };
let dst_remainder = dst_chunks.into_remainder();
dst_remainder.copy_from_slice(&vec[..dst_remainder.len()]);
}
}
/////////////// Fallbacks ////////////////
// In the below functions, round to nearest, with ties to even.
// Let us call the most significant bit that will be shifted out the round_bit.
//
// Round up if either
// a) Removed part > tie.
// (mantissa & round_bit) != 0 && (mantissa & (round_bit - 1)) != 0
// b) Removed part == tie, and retained part is odd.
// (mantissa & round_bit) != 0 && (mantissa & (2 * round_bit)) != 0
// (If removed part == tie and retained part is even, do not round up.)
// These two conditions can be combined into one:
// (mantissa & round_bit) != 0 && (mantissa & ((round_bit - 1) | (2 * round_bit))) != 0
// which can be simplified into
// (mantissa & round_bit) != 0 && (mantissa & (3 * round_bit - 1)) != 0
#[inline]
pub(crate) const fn f32_to_f16_fallback(value: f32) -> u16 {
// TODO: Replace mem::transmute with to_bits() once to_bits is const-stabilized
// Convert to raw bytes
let x: u32 = unsafe { mem::transmute(value) };
// Extract IEEE754 components
let sign = x & 0x8000_0000u32;
let exp = x & 0x7F80_0000u32;
let man = x & 0x007F_FFFFu32;
// Check for all exponent bits being set, which is Infinity or NaN
if exp == 0x7F80_0000u32 {
// Set mantissa MSB for NaN (and also keep shifted mantissa bits)
let nan_bit = if man == 0 { 0 } else { 0x0200u32 };
return ((sign >> 16) | 0x7C00u32 | nan_bit | (man >> 13)) as u16;
}
// The number is normalized, start assembling half precision version
let half_sign = sign >> 16;
// Unbias the exponent, then bias for half precision
let unbiased_exp = ((exp >> 23) as i32) - 127;
let half_exp = unbiased_exp + 15;
// Check for exponent overflow, return +infinity
if half_exp >= 0x1F {
return (half_sign | 0x7C00u32) as u16;
}
// Check for underflow
if half_exp <= 0 {
// Check mantissa for what we can do
if 14 - half_exp > 24 {
// No rounding possibility, so this is a full underflow, return signed zero
return half_sign as u16;
}
// Don't forget about hidden leading mantissa bit when assembling mantissa
let man = man | 0x0080_0000u32;
let mut half_man = man >> (14 - half_exp);
// Check for rounding (see comment above functions)
let round_bit = 1 << (13 - half_exp);
if (man & round_bit) != 0 && (man & (3 * round_bit - 1)) != 0 {
half_man += 1;
}
// No exponent for subnormals
return (half_sign | half_man) as u16;
}
// Rebias the exponent
let half_exp = (half_exp as u32) << 10;
let half_man = man >> 13;
// Check for rounding (see comment above functions)
let round_bit = 0x0000_1000u32;
if (man & round_bit) != 0 && (man & (3 * round_bit - 1)) != 0 {
// Round it
((half_sign | half_exp | half_man) + 1) as u16
} else {
(half_sign | half_exp | half_man) as u16
}
}
#[inline]
pub(crate) const fn f64_to_f16_fallback(value: f64) -> u16 {
// Convert to raw bytes, truncating the last 32-bits of mantissa; that precision will always
// be lost on half-precision.
// TODO: Replace mem::transmute with to_bits() once to_bits is const-stabilized
let val: u64 = unsafe { mem::transmute(value) };
let x = (val >> 32) as u32;
// Extract IEEE754 components
let sign = x & 0x8000_0000u32;
let exp = x & 0x7FF0_0000u32;
let man = x & 0x000F_FFFFu32;
// Check for all exponent bits being set, which is Infinity or NaN
if exp == 0x7FF0_0000u32 {
// Set mantissa MSB for NaN (and also keep shifted mantissa bits).
// We also have to check the last 32 bits.
let nan_bit = if man == 0 && (val as u32 == 0) {
0
} else {
0x0200u32
};
return ((sign >> 16) | 0x7C00u32 | nan_bit | (man >> 10)) as u16;
}
// The number is normalized, start assembling half precision version
let half_sign = sign >> 16;
// Unbias the exponent, then bias for half precision
let unbiased_exp = ((exp >> 20) as i64) - 1023;
let half_exp = unbiased_exp + 15;
// Check for exponent overflow, return +infinity
if half_exp >= 0x1F {
return (half_sign | 0x7C00u32) as u16;
}
// Check for underflow
if half_exp <= 0 {
// Check mantissa for what we can do
if 10 - half_exp > 21 {
// No rounding possibility, so this is a full underflow, return signed zero
return half_sign as u16;
}
// Don't forget about hidden leading mantissa bit when assembling mantissa
let man = man | 0x0010_0000u32;
let mut half_man = man >> (11 - half_exp);
// Check for rounding (see comment above functions)
let round_bit = 1 << (10 - half_exp);
if (man & round_bit) != 0 && (man & (3 * round_bit - 1)) != 0 {
half_man += 1;
}
// No exponent for subnormals
return (half_sign | half_man) as u16;
}
// Rebias the exponent
let half_exp = (half_exp as u32) << 10;
let half_man = man >> 10;
// Check for rounding (see comment above functions)
let round_bit = 0x0000_0200u32;
if (man & round_bit) != 0 && (man & (3 * round_bit - 1)) != 0 {
// Round it
((half_sign | half_exp | half_man) + 1) as u16
} else {
(half_sign | half_exp | half_man) as u16
}
}
#[inline]
pub(crate) const fn f16_to_f32_fallback(i: u16) -> f32 {
// Check for signed zero
// TODO: Replace mem::transmute with from_bits() once from_bits is const-stabilized
if i & 0x7FFFu16 == 0 {
return unsafe { mem::transmute((i as u32) << 16) };
}
let half_sign = (i & 0x8000u16) as u32;
let half_exp = (i & 0x7C00u16) as u32;
let half_man = (i & 0x03FFu16) as u32;
// Check for an infinity or NaN when all exponent bits set
if half_exp == 0x7C00u32 {
// Check for signed infinity if mantissa is zero
if half_man == 0 {
return unsafe { mem::transmute((half_sign << 16) | 0x7F80_0000u32) };
} else {
// NaN, keep current mantissa but also set most significiant mantissa bit
return unsafe {
mem::transmute((half_sign << 16) | 0x7FC0_0000u32 | (half_man << 13))
};
}
}
// Calculate single-precision components with adjusted exponent
let sign = half_sign << 16;
// Unbias exponent
let unbiased_exp = ((half_exp as i32) >> 10) - 15;
// Check for subnormals, which will be normalized by adjusting exponent
if half_exp == 0 {
// Calculate how much to adjust the exponent by
let e = leading_zeros_u16(half_man as u16) - 6;
// Rebias and adjust exponent
let exp = (127 - 15 - e) << 23;
let man = (half_man << (14 + e)) & 0x7F_FF_FFu32;
return unsafe { mem::transmute(sign | exp | man) };
}
// Rebias exponent for a normalized normal
let exp = ((unbiased_exp + 127) as u32) << 23;
let man = (half_man & 0x03FFu32) << 13;
unsafe { mem::transmute(sign | exp | man) }
}
#[inline]
pub(crate) const fn f16_to_f64_fallback(i: u16) -> f64 {
// Check for signed zero
// TODO: Replace mem::transmute with from_bits() once from_bits is const-stabilized
if i & 0x7FFFu16 == 0 {
return unsafe { mem::transmute((i as u64) << 48) };
}
let half_sign = (i & 0x8000u16) as u64;
let half_exp = (i & 0x7C00u16) as u64;
let half_man = (i & 0x03FFu16) as u64;
// Check for an infinity or NaN when all exponent bits set
if half_exp == 0x7C00u64 {
// Check for signed infinity if mantissa is zero
if half_man == 0 {
return unsafe { mem::transmute((half_sign << 48) | 0x7FF0_0000_0000_0000u64) };
} else {
// NaN, keep current mantissa but also set most significiant mantissa bit
return unsafe {
mem::transmute((half_sign << 48) | 0x7FF8_0000_0000_0000u64 | (half_man << 42))
};
}
}
// Calculate double-precision components with adjusted exponent
let sign = half_sign << 48;
// Unbias exponent
let unbiased_exp = ((half_exp as i64) >> 10) - 15;
// Check for subnormals, which will be normalized by adjusting exponent
if half_exp == 0 {
// Calculate how much to adjust the exponent by
let e = leading_zeros_u16(half_man as u16) - 6;
// Rebias and adjust exponent
let exp = ((1023 - 15 - e) as u64) << 52;
let man = (half_man << (43 + e)) & 0xF_FFFF_FFFF_FFFFu64;
return unsafe { mem::transmute(sign | exp | man) };
}
// Rebias exponent for a normalized normal
let exp = ((unbiased_exp + 1023) as u64) << 52;
let man = (half_man & 0x03FFu64) << 42;
unsafe { mem::transmute(sign | exp | man) }
}
#[inline]
fn f16x4_to_f32x4_fallback(v: &[u16; 4]) -> [f32; 4] {
[
f16_to_f32_fallback(v[0]),
f16_to_f32_fallback(v[1]),
f16_to_f32_fallback(v[2]),
f16_to_f32_fallback(v[3]),
]
}
#[inline]
fn f32x4_to_f16x4_fallback(v: &[f32; 4]) -> [u16; 4] {
[
f32_to_f16_fallback(v[0]),
f32_to_f16_fallback(v[1]),
f32_to_f16_fallback(v[2]),
f32_to_f16_fallback(v[3]),
]
}
#[inline]
fn f16x4_to_f64x4_fallback(v: &[u16; 4]) -> [f64; 4] {
[
f16_to_f64_fallback(v[0]),
f16_to_f64_fallback(v[1]),
f16_to_f64_fallback(v[2]),
f16_to_f64_fallback(v[3]),
]
}
#[inline]
fn f64x4_to_f16x4_fallback(v: &[f64; 4]) -> [u16; 4] {
[
f64_to_f16_fallback(v[0]),
f64_to_f16_fallback(v[1]),
f64_to_f16_fallback(v[2]),
f64_to_f16_fallback(v[3]),
]
}
#[inline]
fn f16x8_to_f32x8_fallback(v: &[u16; 8]) -> [f32; 8] {
[
f16_to_f32_fallback(v[0]),
f16_to_f32_fallback(v[1]),
f16_to_f32_fallback(v[2]),
f16_to_f32_fallback(v[3]),
f16_to_f32_fallback(v[4]),
f16_to_f32_fallback(v[5]),
f16_to_f32_fallback(v[6]),
f16_to_f32_fallback(v[7]),
]
}
#[inline]
fn f32x8_to_f16x8_fallback(v: &[f32; 8]) -> [u16; 8] {
[
f32_to_f16_fallback(v[0]),
f32_to_f16_fallback(v[1]),
f32_to_f16_fallback(v[2]),
f32_to_f16_fallback(v[3]),
f32_to_f16_fallback(v[4]),
f32_to_f16_fallback(v[5]),
f32_to_f16_fallback(v[6]),
f32_to_f16_fallback(v[7]),
]
}
#[inline]
fn f16x8_to_f64x8_fallback(v: &[u16; 8]) -> [f64; 8] {
[
f16_to_f64_fallback(v[0]),
f16_to_f64_fallback(v[1]),
f16_to_f64_fallback(v[2]),
f16_to_f64_fallback(v[3]),
f16_to_f64_fallback(v[4]),
f16_to_f64_fallback(v[5]),
f16_to_f64_fallback(v[6]),
f16_to_f64_fallback(v[7]),
]
}
#[inline]
fn f64x8_to_f16x8_fallback(v: &[f64; 8]) -> [u16; 8] {
[
f64_to_f16_fallback(v[0]),
f64_to_f16_fallback(v[1]),
f64_to_f16_fallback(v[2]),
f64_to_f16_fallback(v[3]),
f64_to_f16_fallback(v[4]),
f64_to_f16_fallback(v[5]),
f64_to_f16_fallback(v[6]),
f64_to_f16_fallback(v[7]),
]
}
#[inline]
fn slice_fallback<S: Copy, D>(src: &[S], dst: &mut [D], f: fn(S) -> D) {
assert_eq!(src.len(), dst.len());
for (s, d) in src.iter().copied().zip(dst.iter_mut()) {
*d = f(s);
}
}
/////////////// x86/x86_64 f16c ////////////////
#[cfg(all(
feature = "use-intrinsics",
any(target_arch = "x86", target_arch = "x86_64")
))]
mod x86 {
use core::{mem::MaybeUninit, ptr};
#[cfg(target_arch = "x86")]
use core::arch::x86::{
__m128, __m128i, __m256, _mm256_cvtph_ps, _mm256_cvtps_ph, _mm_cvtph_ps,
_MM_FROUND_TO_NEAREST_INT,
};
#[cfg(target_arch = "x86_64")]
use core::arch::x86_64::{
__m128, __m128i, __m256, _mm256_cvtph_ps, _mm256_cvtps_ph, _mm_cvtph_ps, _mm_cvtps_ph,
_MM_FROUND_TO_NEAREST_INT,
};
use super::convert_chunked_slice_8;
#[target_feature(enable = "f16c")]
#[inline]
pub(super) unsafe fn f16_to_f32_x86_f16c(i: u16) -> f32 {
let mut vec = MaybeUninit::<__m128i>::zeroed();
vec.as_mut_ptr().cast::<u16>().write(i);
let retval = _mm_cvtph_ps(vec.assume_init());
*(&retval as *const __m128).cast()
}
#[target_feature(enable = "f16c")]
#[inline]
pub(super) unsafe fn f32_to_f16_x86_f16c(f: f32) -> u16 {
let mut vec = MaybeUninit::<__m128>::zeroed();
vec.as_mut_ptr().cast::<f32>().write(f);
let retval = _mm_cvtps_ph(vec.assume_init(), _MM_FROUND_TO_NEAREST_INT);
*(&retval as *const __m128i).cast()
}
#[target_feature(enable = "f16c")]
#[inline]
pub(super) unsafe fn f16x4_to_f32x4_x86_f16c(v: &[u16; 4]) -> [f32; 4] {
let mut vec = MaybeUninit::<__m128i>::zeroed();
ptr::copy_nonoverlapping(v.as_ptr(), vec.as_mut_ptr().cast(), 4);
let retval = _mm_cvtph_ps(vec.assume_init());
*(&retval as *const __m128).cast()
}
#[target_feature(enable = "f16c")]
#[inline]
pub(super) unsafe fn f32x4_to_f16x4_x86_f16c(v: &[f32; 4]) -> [u16; 4] {
let mut vec = MaybeUninit::<__m128>::uninit();
ptr::copy_nonoverlapping(v.as_ptr(), vec.as_mut_ptr().cast(), 4);
let retval = _mm_cvtps_ph(vec.assume_init(), _MM_FROUND_TO_NEAREST_INT);
*(&retval as *const __m128i).cast()
}
#[target_feature(enable = "f16c")]
#[inline]
pub(super) unsafe fn f16x4_to_f64x4_x86_f16c(v: &[u16; 4]) -> [f64; 4] {
let array = f16x4_to_f32x4_x86_f16c(v);
// Let compiler vectorize this regular cast for now.
// TODO: investigate auto-detecting sse2/avx convert features
[
array[0] as f64,
array[1] as f64,
array[2] as f64,
array[3] as f64,
]
}
#[target_feature(enable = "f16c")]
#[inline]
pub(super) unsafe fn f64x4_to_f16x4_x86_f16c(v: &[f64; 4]) -> [u16; 4] {
// Let compiler vectorize this regular cast for now.
// TODO: investigate auto-detecting sse2/avx convert features
let v = [v[0] as f32, v[1] as f32, v[2] as f32, v[3] as f32];
f32x4_to_f16x4_x86_f16c(&v)
}
#[target_feature(enable = "f16c")]
#[inline]
pub(super) unsafe fn f16x8_to_f32x8_x86_f16c(v: &[u16; 8]) -> [f32; 8] {
let mut vec = MaybeUninit::<__m128i>::zeroed();
ptr::copy_nonoverlapping(v.as_ptr(), vec.as_mut_ptr().cast(), 8);
let retval = _mm256_cvtph_ps(vec.assume_init());
*(&retval as *const __m256).cast()
}
#[target_feature(enable = "f16c")]
#[inline]
pub(super) unsafe fn f32x8_to_f16x8_x86_f16c(v: &[f32; 8]) -> [u16; 8] {
let mut vec = MaybeUninit::<__m256>::uninit();
ptr::copy_nonoverlapping(v.as_ptr(), vec.as_mut_ptr().cast(), 8);
let retval = _mm256_cvtps_ph(vec.assume_init(), _MM_FROUND_TO_NEAREST_INT);
*(&retval as *const __m128i).cast()
}
#[target_feature(enable = "f16c")]
#[inline]
pub(super) unsafe fn f16x8_to_f64x8_x86_f16c(v: &[u16; 8]) -> [f64; 8] {
let array = f16x8_to_f32x8_x86_f16c(v);
// Let compiler vectorize this regular cast for now.
// TODO: investigate auto-detecting sse2/avx convert features
[
array[0] as f64,
array[1] as f64,
array[2] as f64,
array[3] as f64,
array[4] as f64,
array[5] as f64,
array[6] as f64,
array[7] as f64,
]
}
#[target_feature(enable = "f16c")]
#[inline]
pub(super) unsafe fn f64x8_to_f16x8_x86_f16c(v: &[f64; 8]) -> [u16; 8] {
// Let compiler vectorize this regular cast for now.
// TODO: investigate auto-detecting sse2/avx convert features
let v = [
v[0] as f32,
v[1] as f32,
v[2] as f32,
v[3] as f32,
v[4] as f32,
v[5] as f32,
v[6] as f32,
v[7] as f32,
];
f32x8_to_f16x8_x86_f16c(&v)
}
}