| use alloc::boxed::Box; |
| use alloc::vec::Vec; |
| use std::fmt; |
| use std::iter::FusedIterator; |
| |
| use super::lazy_buffer::LazyBuffer; |
| use crate::adaptors::checked_binomial; |
| |
| /// An iterator to iterate through all the `n`-length combinations in an iterator, with replacement. |
| /// |
| /// See [`.combinations_with_replacement()`](crate::Itertools::combinations_with_replacement) |
| /// for more information. |
| #[derive(Clone)] |
| #[must_use = "iterator adaptors are lazy and do nothing unless consumed"] |
| pub struct CombinationsWithReplacement<I> |
| where |
| I: Iterator, |
| I::Item: Clone, |
| { |
| indices: Box<[usize]>, |
| pool: LazyBuffer<I>, |
| first: bool, |
| } |
| |
| impl<I> fmt::Debug for CombinationsWithReplacement<I> |
| where |
| I: Iterator + fmt::Debug, |
| I::Item: fmt::Debug + Clone, |
| { |
| debug_fmt_fields!(CombinationsWithReplacement, indices, pool, first); |
| } |
| |
| /// Create a new `CombinationsWithReplacement` from a clonable iterator. |
| pub fn combinations_with_replacement<I>(iter: I, k: usize) -> CombinationsWithReplacement<I> |
| where |
| I: Iterator, |
| I::Item: Clone, |
| { |
| let indices = alloc::vec![0; k].into_boxed_slice(); |
| let pool: LazyBuffer<I> = LazyBuffer::new(iter); |
| |
| CombinationsWithReplacement { |
| indices, |
| pool, |
| first: true, |
| } |
| } |
| |
| impl<I> CombinationsWithReplacement<I> |
| where |
| I: Iterator, |
| I::Item: Clone, |
| { |
| /// Increments indices representing the combination to advance to the next |
| /// (in lexicographic order by increasing sequence) combination. |
| /// |
| /// Returns true if we've run out of combinations, false otherwise. |
| fn increment_indices(&mut self) -> bool { |
| // Check if we need to consume more from the iterator |
| // This will run while we increment our first index digit |
| self.pool.get_next(); |
| |
| // Work out where we need to update our indices |
| let mut increment = None; |
| for (i, indices_int) in self.indices.iter().enumerate().rev() { |
| if *indices_int < self.pool.len() - 1 { |
| increment = Some((i, indices_int + 1)); |
| break; |
| } |
| } |
| match increment { |
| // If we can update the indices further |
| Some((increment_from, increment_value)) => { |
| // We need to update the rightmost non-max value |
| // and all those to the right |
| self.indices[increment_from..].fill(increment_value); |
| false |
| } |
| // Otherwise, we're done |
| None => true, |
| } |
| } |
| } |
| |
| impl<I> Iterator for CombinationsWithReplacement<I> |
| where |
| I: Iterator, |
| I::Item: Clone, |
| { |
| type Item = Vec<I::Item>; |
| |
| fn next(&mut self) -> Option<Self::Item> { |
| if self.first { |
| // In empty edge cases, stop iterating immediately |
| if !(self.indices.is_empty() || self.pool.get_next()) { |
| return None; |
| } |
| self.first = false; |
| } else if self.increment_indices() { |
| return None; |
| } |
| Some(self.pool.get_at(&self.indices)) |
| } |
| |
| fn nth(&mut self, n: usize) -> Option<Self::Item> { |
| if self.first { |
| // In empty edge cases, stop iterating immediately |
| if !(self.indices.is_empty() || self.pool.get_next()) { |
| return None; |
| } |
| self.first = false; |
| } else if self.increment_indices() { |
| return None; |
| } |
| for _ in 0..n { |
| if self.increment_indices() { |
| return None; |
| } |
| } |
| Some(self.pool.get_at(&self.indices)) |
| } |
| |
| fn size_hint(&self) -> (usize, Option<usize>) { |
| let (mut low, mut upp) = self.pool.size_hint(); |
| low = remaining_for(low, self.first, &self.indices).unwrap_or(usize::MAX); |
| upp = upp.and_then(|upp| remaining_for(upp, self.first, &self.indices)); |
| (low, upp) |
| } |
| |
| fn count(self) -> usize { |
| let Self { |
| indices, |
| pool, |
| first, |
| } = self; |
| let n = pool.count(); |
| remaining_for(n, first, &indices).unwrap() |
| } |
| } |
| |
| impl<I> FusedIterator for CombinationsWithReplacement<I> |
| where |
| I: Iterator, |
| I::Item: Clone, |
| { |
| } |
| |
| /// For a given size `n`, return the count of remaining combinations with replacement or None if it would overflow. |
| fn remaining_for(n: usize, first: bool, indices: &[usize]) -> Option<usize> { |
| // With a "stars and bars" representation, choose k values with replacement from n values is |
| // like choosing k out of k + n − 1 positions (hence binomial(k + n - 1, k) possibilities) |
| // to place k stars and therefore n - 1 bars. |
| // Example (n=4, k=6): ***|*||** represents [0,0,0,1,3,3]. |
| let count = |n: usize, k: usize| { |
| let positions = if n == 0 { |
| k.saturating_sub(1) |
| } else { |
| (n - 1).checked_add(k)? |
| }; |
| checked_binomial(positions, k) |
| }; |
| let k = indices.len(); |
| if first { |
| count(n, k) |
| } else { |
| // The algorithm is similar to the one for combinations *without replacement*, |
| // except we choose values *with replacement* and indices are *non-strictly* monotonically sorted. |
| |
| // The combinations generated after the current one can be counted by counting as follows: |
| // - The subsequent combinations that differ in indices[0]: |
| // If subsequent combinations differ in indices[0], then their value for indices[0] |
| // must be at least 1 greater than the current indices[0]. |
| // As indices is monotonically sorted, this means we can effectively choose k values with |
| // replacement from (n - 1 - indices[0]), leading to count(n - 1 - indices[0], k) possibilities. |
| // - The subsequent combinations with same indices[0], but differing indices[1]: |
| // Here we can choose k - 1 values with replacement from (n - 1 - indices[1]) values, |
| // leading to count(n - 1 - indices[1], k - 1) possibilities. |
| // - (...) |
| // - The subsequent combinations with same indices[0..=i], but differing indices[i]: |
| // Here we can choose k - i values with replacement from (n - 1 - indices[i]) values: count(n - 1 - indices[i], k - i). |
| // Since subsequent combinations can in any index, we must sum up the aforementioned binomial coefficients. |
| |
| // Below, `n0` resembles indices[i]. |
| indices.iter().enumerate().try_fold(0usize, |sum, (i, n0)| { |
| sum.checked_add(count(n - 1 - *n0, k - i)?) |
| }) |
| } |
| } |