blob: 964fe959cb3db5ab3fd1e49ee9376ba1c5c116e0 [file] [log] [blame]
use crate::{
element::{Drawable, PointCollection},
style::{IntoFont, RGBColor, TextStyle, BLACK},
};
use plotters_backend::{BackendCoord, DrawingBackend, DrawingErrorKind};
use std::{error::Error, f64::consts::PI, fmt::Display};
#[derive(Debug)]
enum PieError {
LengthMismatch,
}
impl Display for PieError {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
match self {
&PieError::LengthMismatch => write!(f, "Length Mismatch"),
}
}
}
impl Error for PieError {}
/// A Pie Graph
pub struct Pie<'a, Coord, Label: Display> {
center: &'a Coord, // cartesian coord
radius: &'a f64,
sizes: &'a [f64],
colors: &'a [RGBColor],
labels: &'a [Label],
total: f64,
start_radian: f64,
label_style: TextStyle<'a>,
label_offset: f64,
percentage_style: Option<TextStyle<'a>>,
donut_hole: f64, // radius of the hole in case of a donut chart
}
impl<'a, Label: Display> Pie<'a, (i32, i32), Label> {
/// Build a Pie object.
/// Assumes a start angle at 0.0, which is aligned to the horizontal axis.
pub fn new(
center: &'a (i32, i32),
radius: &'a f64,
sizes: &'a [f64],
colors: &'a [RGBColor],
labels: &'a [Label],
) -> Self {
// fold iterator to pre-calculate total from given slice sizes
let total = sizes.iter().sum();
// default label style and offset as 5% of the radius
let radius_5pct = radius * 0.05;
// strong assumption that the background is white for legibility.
let label_style = TextStyle::from(("sans-serif", radius_5pct).into_font()).color(&BLACK);
Self {
center,
radius,
sizes,
colors,
labels,
total,
start_radian: 0.0,
label_style,
label_offset: radius_5pct,
percentage_style: None,
donut_hole: 0.0,
}
}
/// Pass an angle in degrees to change the default.
/// Default is set to start at 0, which is aligned on the x axis.
/// ```
/// use plotters::prelude::*;
/// let mut pie = Pie::new(&(50,50), &10.0, &[50.0, 25.25, 20.0, 5.5], &[RED, BLUE, GREEN, WHITE], &["Red", "Blue", "Green", "White"]);
/// pie.start_angle(-90.0); // retract to a right angle, so it starts aligned to a vertical Y axis.
/// ```
pub fn start_angle(&mut self, start_angle: f64) {
// angle is more intuitive in degrees as an API, but we use it as radian offset internally.
self.start_radian = start_angle.to_radians();
}
/// Set the label style.
pub fn label_style<T: Into<TextStyle<'a>>>(&mut self, label_style: T) {
self.label_style = label_style.into();
}
/// Sets the offset to labels, to distanciate them further/closer from the center.
pub fn label_offset(&mut self, offset_to_radius: f64) {
self.label_offset = offset_to_radius
}
/// enables drawing the wedge's percentage in the middle of the wedge, with the given style
pub fn percentages<T: Into<TextStyle<'a>>>(&mut self, label_style: T) {
self.percentage_style = Some(label_style.into());
}
/// Enables creating a donut chart with a hole of the specified radius.
///
/// The passed value must be greater than zero and lower than the chart overall radius, otherwise it'll be ignored.
pub fn donut_hole(&mut self, hole_radius: f64) {
if hole_radius > 0.0 && hole_radius < *self.radius {
self.donut_hole = hole_radius;
}
}
}
impl<'a, DB: DrawingBackend, Label: Display> Drawable<DB> for Pie<'a, (i32, i32), Label> {
fn draw<I: Iterator<Item = BackendCoord>>(
&self,
_pos: I,
backend: &mut DB,
_parent_dim: (u32, u32),
) -> Result<(), DrawingErrorKind<DB::ErrorType>> {
let mut offset_theta = self.start_radian;
// const reused for every radian calculation
// the bigger the radius, the more fine-grained it should calculate
// to avoid being aliasing from being too noticeable.
// this all could be avoided if backend could draw a curve/bezier line as part of a polygon.
let radian_increment = PI / 180.0 / self.radius.sqrt() * 2.0;
let mut perc_labels = Vec::new();
for (index, slice) in self.sizes.iter().enumerate() {
let slice_style = self
.colors
.get(index)
.ok_or_else(|| DrawingErrorKind::FontError(Box::new(PieError::LengthMismatch)))?;
let label = self
.labels
.get(index)
.ok_or_else(|| DrawingErrorKind::FontError(Box::new(PieError::LengthMismatch)))?;
// start building wedge line against the previous edge
let mut points = if self.donut_hole == 0.0 {
vec![*self.center]
} else {
vec![]
};
let ratio = slice / self.total;
let theta_final = ratio * 2.0 * PI + offset_theta; // end radian for the wedge
// calculate middle for labels before mutating offset
let middle_theta = ratio * PI + offset_theta;
let slice_start = offset_theta;
// calculate every fraction of radian for the wedge, offsetting for every iteration, clockwise
//
// a custom Range such as `for theta in offset_theta..=theta_final` would be more elegant
// but f64 doesn't implement the Range trait, and it would requires the Step trait (increment by 1.0 or 0.0001?)
// which is unstable therefore cannot be implemented outside of std, even as a newtype for radians.
while offset_theta <= theta_final {
let coord = theta_to_ordinal_coord(*self.radius, offset_theta, self.center);
points.push(coord);
offset_theta += radian_increment;
}
// final point of the wedge may not fall exactly on a radian, so add it extra
let final_coord = theta_to_ordinal_coord(*self.radius, theta_final, self.center);
points.push(final_coord);
if self.donut_hole > 0.0 {
while offset_theta >= slice_start {
let coord = theta_to_ordinal_coord(self.donut_hole, offset_theta, self.center);
points.push(coord);
offset_theta -= radian_increment;
}
// final point of the wedge may not fall exactly on a radian, so add it extra
let final_coord_inner =
theta_to_ordinal_coord(self.donut_hole, slice_start, self.center);
points.push(final_coord_inner);
}
// next wedge calculation will start from previous wedges's last radian
offset_theta = theta_final;
// draw wedge
// TODO: Currently the backend doesn't have API to draw an arc. We need add that in the
// future
backend.fill_polygon(points, slice_style)?;
// label coords from the middle
let mut mid_coord =
theta_to_ordinal_coord(self.radius + self.label_offset, middle_theta, self.center);
// ensure label's doesn't fall in the circle
let label_size = backend.estimate_text_size(&label.to_string(), &self.label_style)?;
// if on the left hand side of the pie, offset whole label to the left
if mid_coord.0 <= self.center.0 {
mid_coord.0 -= label_size.0 as i32;
}
// put label
backend.draw_text(&label.to_string(), &self.label_style, mid_coord)?;
if let Some(percentage_style) = &self.percentage_style {
let perc_label = format!("{:.1}%", (ratio * 100.0));
let label_size = backend.estimate_text_size(&perc_label, percentage_style)?;
let text_x_mid = (label_size.0 as f64 / 2.0).round() as i32;
let text_y_mid = (label_size.1 as f64 / 2.0).round() as i32;
let perc_radius = (self.radius + self.donut_hole) / 2.0;
let perc_coord = theta_to_ordinal_coord(
perc_radius,
middle_theta,
&(self.center.0 - text_x_mid, self.center.1 - text_y_mid),
);
// perc_coord.0 -= middle_label_size.0.round() as i32;
perc_labels.push((perc_label, perc_coord));
}
}
// while percentages are generated during the first main iterations,
// they have to go on top of the already drawn wedges, so require a new iteration.
for (label, coord) in perc_labels {
let style = self.percentage_style.as_ref().unwrap();
backend.draw_text(&label, style, coord)?;
}
Ok(())
}
}
impl<'a, Label: Display> PointCollection<'a, (i32, i32)> for &'a Pie<'a, (i32, i32), Label> {
type Point = &'a (i32, i32);
type IntoIter = std::iter::Once<&'a (i32, i32)>;
fn point_iter(self) -> std::iter::Once<&'a (i32, i32)> {
std::iter::once(self.center)
}
}
fn theta_to_ordinal_coord(radius: f64, theta: f64, ordinal_offset: &(i32, i32)) -> (i32, i32) {
// polar coordinates are (r, theta)
// convert to (x, y) coord, with center as offset
let (sin, cos) = theta.sin_cos();
(
// casting f64 to discrete i32 pixels coordinates is inevitably going to lose precision
// if plotters can support float coordinates, this place would surely benefit, especially for small sizes.
// so far, the result isn't so bad though
(radius * cos + ordinal_offset.0 as f64).round() as i32, // x
(radius * sin + ordinal_offset.1 as f64).round() as i32, // y
)
}
#[cfg(test)]
mod test {
use super::*;
// use crate::prelude::*;
#[test]
fn polar_coord_to_cartestian_coord() {
let coord = theta_to_ordinal_coord(800.0, 1.5_f64.to_radians(), &(5, 5));
// rounded tends to be more accurate. this gets truncated to (804, 25) without rounding.
assert_eq!(coord, (805, 26)); //coord calculated from theta
}
#[test]
fn pie_calculations() {
let mut center = (5, 5);
let mut radius = 800.0;
let sizes = vec![50.0, 25.0];
// length isn't validated in new()
let colors = vec![];
let labels: Vec<&str> = vec![];
let pie = Pie::new(&center, &radius, &sizes, &colors, &labels);
assert_eq!(pie.total, 75.0); // total calculated from sizes
// not ownership greedy
center.1 += 1;
radius += 1.0;
assert!(colors.get(0).is_none());
assert!(labels.first().is_none());
assert_eq!(radius, 801.0);
}
}