| use crate::{ |
| element::{Drawable, PointCollection}, |
| style::{IntoFont, RGBColor, TextStyle, BLACK}, |
| }; |
| use plotters_backend::{BackendCoord, DrawingBackend, DrawingErrorKind}; |
| use std::{error::Error, f64::consts::PI, fmt::Display}; |
| |
| #[derive(Debug)] |
| enum PieError { |
| LengthMismatch, |
| } |
| impl Display for PieError { |
| fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result { |
| match self { |
| &PieError::LengthMismatch => write!(f, "Length Mismatch"), |
| } |
| } |
| } |
| |
| impl Error for PieError {} |
| |
| /// A Pie Graph |
| pub struct Pie<'a, Coord, Label: Display> { |
| center: &'a Coord, // cartesian coord |
| radius: &'a f64, |
| sizes: &'a [f64], |
| colors: &'a [RGBColor], |
| labels: &'a [Label], |
| total: f64, |
| start_radian: f64, |
| label_style: TextStyle<'a>, |
| label_offset: f64, |
| percentage_style: Option<TextStyle<'a>>, |
| donut_hole: f64, // radius of the hole in case of a donut chart |
| } |
| |
| impl<'a, Label: Display> Pie<'a, (i32, i32), Label> { |
| /// Build a Pie object. |
| /// Assumes a start angle at 0.0, which is aligned to the horizontal axis. |
| pub fn new( |
| center: &'a (i32, i32), |
| radius: &'a f64, |
| sizes: &'a [f64], |
| colors: &'a [RGBColor], |
| labels: &'a [Label], |
| ) -> Self { |
| // fold iterator to pre-calculate total from given slice sizes |
| let total = sizes.iter().sum(); |
| |
| // default label style and offset as 5% of the radius |
| let radius_5pct = radius * 0.05; |
| |
| // strong assumption that the background is white for legibility. |
| let label_style = TextStyle::from(("sans-serif", radius_5pct).into_font()).color(&BLACK); |
| Self { |
| center, |
| radius, |
| sizes, |
| colors, |
| labels, |
| total, |
| start_radian: 0.0, |
| label_style, |
| label_offset: radius_5pct, |
| percentage_style: None, |
| donut_hole: 0.0, |
| } |
| } |
| |
| /// Pass an angle in degrees to change the default. |
| /// Default is set to start at 0, which is aligned on the x axis. |
| /// ``` |
| /// use plotters::prelude::*; |
| /// let mut pie = Pie::new(&(50,50), &10.0, &[50.0, 25.25, 20.0, 5.5], &[RED, BLUE, GREEN, WHITE], &["Red", "Blue", "Green", "White"]); |
| /// pie.start_angle(-90.0); // retract to a right angle, so it starts aligned to a vertical Y axis. |
| /// ``` |
| pub fn start_angle(&mut self, start_angle: f64) { |
| // angle is more intuitive in degrees as an API, but we use it as radian offset internally. |
| self.start_radian = start_angle.to_radians(); |
| } |
| |
| /// Set the label style. |
| pub fn label_style<T: Into<TextStyle<'a>>>(&mut self, label_style: T) { |
| self.label_style = label_style.into(); |
| } |
| |
| /// Sets the offset to labels, to distanciate them further/closer from the center. |
| pub fn label_offset(&mut self, offset_to_radius: f64) { |
| self.label_offset = offset_to_radius |
| } |
| |
| /// enables drawing the wedge's percentage in the middle of the wedge, with the given style |
| pub fn percentages<T: Into<TextStyle<'a>>>(&mut self, label_style: T) { |
| self.percentage_style = Some(label_style.into()); |
| } |
| |
| /// Enables creating a donut chart with a hole of the specified radius. |
| /// |
| /// The passed value must be greater than zero and lower than the chart overall radius, otherwise it'll be ignored. |
| pub fn donut_hole(&mut self, hole_radius: f64) { |
| if hole_radius > 0.0 && hole_radius < *self.radius { |
| self.donut_hole = hole_radius; |
| } |
| } |
| } |
| |
| impl<'a, DB: DrawingBackend, Label: Display> Drawable<DB> for Pie<'a, (i32, i32), Label> { |
| fn draw<I: Iterator<Item = BackendCoord>>( |
| &self, |
| _pos: I, |
| backend: &mut DB, |
| _parent_dim: (u32, u32), |
| ) -> Result<(), DrawingErrorKind<DB::ErrorType>> { |
| let mut offset_theta = self.start_radian; |
| |
| // const reused for every radian calculation |
| // the bigger the radius, the more fine-grained it should calculate |
| // to avoid being aliasing from being too noticeable. |
| // this all could be avoided if backend could draw a curve/bezier line as part of a polygon. |
| let radian_increment = PI / 180.0 / self.radius.sqrt() * 2.0; |
| let mut perc_labels = Vec::new(); |
| for (index, slice) in self.sizes.iter().enumerate() { |
| let slice_style = self |
| .colors |
| .get(index) |
| .ok_or_else(|| DrawingErrorKind::FontError(Box::new(PieError::LengthMismatch)))?; |
| let label = self |
| .labels |
| .get(index) |
| .ok_or_else(|| DrawingErrorKind::FontError(Box::new(PieError::LengthMismatch)))?; |
| // start building wedge line against the previous edge |
| let mut points = if self.donut_hole == 0.0 { |
| vec![*self.center] |
| } else { |
| vec![] |
| }; |
| let ratio = slice / self.total; |
| let theta_final = ratio * 2.0 * PI + offset_theta; // end radian for the wedge |
| |
| // calculate middle for labels before mutating offset |
| let middle_theta = ratio * PI + offset_theta; |
| |
| let slice_start = offset_theta; |
| |
| // calculate every fraction of radian for the wedge, offsetting for every iteration, clockwise |
| // |
| // a custom Range such as `for theta in offset_theta..=theta_final` would be more elegant |
| // but f64 doesn't implement the Range trait, and it would requires the Step trait (increment by 1.0 or 0.0001?) |
| // which is unstable therefore cannot be implemented outside of std, even as a newtype for radians. |
| while offset_theta <= theta_final { |
| let coord = theta_to_ordinal_coord(*self.radius, offset_theta, self.center); |
| points.push(coord); |
| offset_theta += radian_increment; |
| } |
| // final point of the wedge may not fall exactly on a radian, so add it extra |
| let final_coord = theta_to_ordinal_coord(*self.radius, theta_final, self.center); |
| points.push(final_coord); |
| |
| if self.donut_hole > 0.0 { |
| while offset_theta >= slice_start { |
| let coord = theta_to_ordinal_coord(self.donut_hole, offset_theta, self.center); |
| points.push(coord); |
| offset_theta -= radian_increment; |
| } |
| // final point of the wedge may not fall exactly on a radian, so add it extra |
| let final_coord_inner = |
| theta_to_ordinal_coord(self.donut_hole, slice_start, self.center); |
| points.push(final_coord_inner); |
| } |
| |
| // next wedge calculation will start from previous wedges's last radian |
| offset_theta = theta_final; |
| |
| // draw wedge |
| // TODO: Currently the backend doesn't have API to draw an arc. We need add that in the |
| // future |
| backend.fill_polygon(points, slice_style)?; |
| |
| // label coords from the middle |
| let mut mid_coord = |
| theta_to_ordinal_coord(self.radius + self.label_offset, middle_theta, self.center); |
| |
| // ensure label's doesn't fall in the circle |
| let label_size = backend.estimate_text_size(&label.to_string(), &self.label_style)?; |
| // if on the left hand side of the pie, offset whole label to the left |
| if mid_coord.0 <= self.center.0 { |
| mid_coord.0 -= label_size.0 as i32; |
| } |
| // put label |
| backend.draw_text(&label.to_string(), &self.label_style, mid_coord)?; |
| if let Some(percentage_style) = &self.percentage_style { |
| let perc_label = format!("{:.1}%", (ratio * 100.0)); |
| let label_size = backend.estimate_text_size(&perc_label, percentage_style)?; |
| let text_x_mid = (label_size.0 as f64 / 2.0).round() as i32; |
| let text_y_mid = (label_size.1 as f64 / 2.0).round() as i32; |
| let perc_radius = (self.radius + self.donut_hole) / 2.0; |
| let perc_coord = theta_to_ordinal_coord( |
| perc_radius, |
| middle_theta, |
| &(self.center.0 - text_x_mid, self.center.1 - text_y_mid), |
| ); |
| // perc_coord.0 -= middle_label_size.0.round() as i32; |
| perc_labels.push((perc_label, perc_coord)); |
| } |
| } |
| // while percentages are generated during the first main iterations, |
| // they have to go on top of the already drawn wedges, so require a new iteration. |
| for (label, coord) in perc_labels { |
| let style = self.percentage_style.as_ref().unwrap(); |
| backend.draw_text(&label, style, coord)?; |
| } |
| Ok(()) |
| } |
| } |
| |
| impl<'a, Label: Display> PointCollection<'a, (i32, i32)> for &'a Pie<'a, (i32, i32), Label> { |
| type Point = &'a (i32, i32); |
| type IntoIter = std::iter::Once<&'a (i32, i32)>; |
| fn point_iter(self) -> std::iter::Once<&'a (i32, i32)> { |
| std::iter::once(self.center) |
| } |
| } |
| |
| fn theta_to_ordinal_coord(radius: f64, theta: f64, ordinal_offset: &(i32, i32)) -> (i32, i32) { |
| // polar coordinates are (r, theta) |
| // convert to (x, y) coord, with center as offset |
| |
| let (sin, cos) = theta.sin_cos(); |
| ( |
| // casting f64 to discrete i32 pixels coordinates is inevitably going to lose precision |
| // if plotters can support float coordinates, this place would surely benefit, especially for small sizes. |
| // so far, the result isn't so bad though |
| (radius * cos + ordinal_offset.0 as f64).round() as i32, // x |
| (radius * sin + ordinal_offset.1 as f64).round() as i32, // y |
| ) |
| } |
| #[cfg(test)] |
| mod test { |
| use super::*; |
| // use crate::prelude::*; |
| |
| #[test] |
| fn polar_coord_to_cartestian_coord() { |
| let coord = theta_to_ordinal_coord(800.0, 1.5_f64.to_radians(), &(5, 5)); |
| // rounded tends to be more accurate. this gets truncated to (804, 25) without rounding. |
| assert_eq!(coord, (805, 26)); //coord calculated from theta |
| } |
| #[test] |
| fn pie_calculations() { |
| let mut center = (5, 5); |
| let mut radius = 800.0; |
| |
| let sizes = vec![50.0, 25.0]; |
| // length isn't validated in new() |
| let colors = vec![]; |
| let labels: Vec<&str> = vec![]; |
| let pie = Pie::new(¢er, &radius, &sizes, &colors, &labels); |
| assert_eq!(pie.total, 75.0); // total calculated from sizes |
| |
| // not ownership greedy |
| center.1 += 1; |
| radius += 1.0; |
| assert!(colors.get(0).is_none()); |
| assert!(labels.first().is_none()); |
| assert_eq!(radius, 801.0); |
| } |
| } |