| use core::mem::{self, MaybeUninit}; |
| |
| /// An array of at most `N` elements. |
| struct ArrayBuilder<T, const N: usize> { |
| /// The (possibly uninitialized) elements of the `ArrayBuilder`. |
| /// |
| /// # Safety |
| /// |
| /// The elements of `arr[..len]` are valid `T`s. |
| arr: [MaybeUninit<T>; N], |
| |
| /// The number of leading elements of `arr` that are valid `T`s, len <= N. |
| len: usize, |
| } |
| |
| impl<T, const N: usize> ArrayBuilder<T, N> { |
| /// Initializes a new, empty `ArrayBuilder`. |
| pub fn new() -> Self { |
| // SAFETY: The safety invariant of `arr` trivially holds for `len = 0`. |
| Self { |
| arr: [(); N].map(|_| MaybeUninit::uninit()), |
| len: 0, |
| } |
| } |
| |
| /// Pushes `value` onto the end of the array. |
| /// |
| /// # Panics |
| /// |
| /// This panics if `self.len >= N`. |
| #[inline(always)] |
| pub fn push(&mut self, value: T) { |
| // PANICS: This will panic if `self.len >= N`. |
| let place = &mut self.arr[self.len]; |
| // SAFETY: The safety invariant of `self.arr` applies to elements at |
| // indices `0..self.len` — not to the element at `self.len`. Writing to |
| // the element at index `self.len` therefore does not violate the safety |
| // invariant of `self.arr`. Even if this line panics, we have not |
| // created any intermediate invalid state. |
| *place = MaybeUninit::new(value); |
| // Lemma: `self.len < N`. By invariant, `self.len <= N`. Above, we index |
| // into `self.arr`, which has size `N`, at index `self.len`. If `self.len == N` |
| // at that point, that index would be out-of-bounds, and the index |
| // operation would panic. Thus, `self.len != N`, and since `self.len <= N`, |
| // that means that `self.len < N`. |
| // |
| // PANICS: Since `self.len < N`, and since `N <= usize::MAX`, |
| // `self.len + 1 <= usize::MAX`, and so `self.len += 1` will not |
| // overflow. Overflow is the only panic condition of `+=`. |
| // |
| // SAFETY: |
| // - We are required to uphold the invariant that `self.len <= N`. |
| // Since, by the preceding lemma, `self.len < N` at this point in the |
| // code, `self.len += 1` results in `self.len <= N`. |
| // - We are required to uphold the invariant that `self.arr[..self.len]` |
| // are valid instances of `T`. Since this invariant already held when |
| // this method was called, and since we only increment `self.len` |
| // by 1 here, we only need to prove that the element at |
| // `self.arr[self.len]` (using the value of `self.len` before incrementing) |
| // is valid. Above, we construct `place` to point to `self.arr[self.len]`, |
| // and then initialize `*place` to `MaybeUninit::new(value)`, which is |
| // a valid `T` by construction. |
| self.len += 1; |
| } |
| |
| /// Consumes the elements in the `ArrayBuilder` and returns them as an array |
| /// `[T; N]`. |
| /// |
| /// If `self.len() < N`, this returns `None`. |
| pub fn take(&mut self) -> Option<[T; N]> { |
| if self.len == N { |
| // SAFETY: Decreasing the value of `self.len` cannot violate the |
| // safety invariant on `self.arr`. |
| self.len = 0; |
| |
| // SAFETY: Since `self.len` is 0, `self.arr` may safely contain |
| // uninitialized elements. |
| let arr = mem::replace(&mut self.arr, [(); N].map(|_| MaybeUninit::uninit())); |
| |
| Some(arr.map(|v| { |
| // SAFETY: We know that all elements of `arr` are valid because |
| // we checked that `len == N`. |
| unsafe { v.assume_init() } |
| })) |
| } else { |
| None |
| } |
| } |
| } |
| |
| impl<T, const N: usize> AsMut<[T]> for ArrayBuilder<T, N> { |
| fn as_mut(&mut self) -> &mut [T] { |
| let valid = &mut self.arr[..self.len]; |
| // SAFETY: By invariant on `self.arr`, the elements of `self.arr` at |
| // indices `0..self.len` are in a valid state. Since `valid` references |
| // only these elements, the safety precondition of |
| // `slice_assume_init_mut` is satisfied. |
| unsafe { slice_assume_init_mut(valid) } |
| } |
| } |
| |
| impl<T, const N: usize> Drop for ArrayBuilder<T, N> { |
| // We provide a non-trivial `Drop` impl, because the trivial impl would be a |
| // no-op; `MaybeUninit<T>` has no innate awareness of its own validity, and |
| // so it can only forget its contents. By leveraging the safety invariant of |
| // `self.arr`, we do know which elements of `self.arr` are valid, and can |
| // selectively run their destructors. |
| fn drop(&mut self) { |
| // SAFETY: |
| // - by invariant on `&mut [T]`, `self.as_mut()` is: |
| // - valid for reads and writes |
| // - properly aligned |
| // - non-null |
| // - the dropped `T` are valid for dropping; they do not have any |
| // additional library invariants that we've violated |
| // - no other pointers to `valid` exist (since we're in the context of |
| // `drop`) |
| unsafe { core::ptr::drop_in_place(self.as_mut()) } |
| } |
| } |
| |
| /// Assuming all the elements are initialized, get a mutable slice to them. |
| /// |
| /// # Safety |
| /// |
| /// The caller guarantees that the elements `T` referenced by `slice` are in a |
| /// valid state. |
| unsafe fn slice_assume_init_mut<T>(slice: &mut [MaybeUninit<T>]) -> &mut [T] { |
| // SAFETY: Casting `&mut [MaybeUninit<T>]` to `&mut [T]` is sound, because |
| // `MaybeUninit<T>` is guaranteed to have the same size, alignment and ABI |
| // as `T`, and because the caller has guaranteed that `slice` is in the |
| // valid state. |
| unsafe { &mut *(slice as *mut [MaybeUninit<T>] as *mut [T]) } |
| } |
| |
| /// Equivalent to `it.next_array()`. |
| pub(crate) fn next_array<I, const N: usize>(it: &mut I) -> Option<[I::Item; N]> |
| where |
| I: Iterator, |
| { |
| let mut builder = ArrayBuilder::new(); |
| for _ in 0..N { |
| builder.push(it.next()?); |
| } |
| builder.take() |
| } |
| |
| #[cfg(test)] |
| mod test { |
| use super::ArrayBuilder; |
| |
| #[test] |
| fn zero_len_take() { |
| let mut builder = ArrayBuilder::<(), 0>::new(); |
| let taken = builder.take(); |
| assert_eq!(taken, Some([(); 0])); |
| } |
| |
| #[test] |
| #[should_panic] |
| fn zero_len_push() { |
| let mut builder = ArrayBuilder::<(), 0>::new(); |
| builder.push(()); |
| } |
| |
| #[test] |
| fn push_4() { |
| let mut builder = ArrayBuilder::<(), 4>::new(); |
| assert_eq!(builder.take(), None); |
| |
| builder.push(()); |
| assert_eq!(builder.take(), None); |
| |
| builder.push(()); |
| assert_eq!(builder.take(), None); |
| |
| builder.push(()); |
| assert_eq!(builder.take(), None); |
| |
| builder.push(()); |
| assert_eq!(builder.take(), Some([(); 4])); |
| } |
| |
| #[test] |
| fn tracked_drop() { |
| use std::panic::{catch_unwind, AssertUnwindSafe}; |
| use std::sync::atomic::{AtomicU16, Ordering}; |
| |
| static DROPPED: AtomicU16 = AtomicU16::new(0); |
| |
| #[derive(Debug, PartialEq)] |
| struct TrackedDrop; |
| |
| impl Drop for TrackedDrop { |
| fn drop(&mut self) { |
| DROPPED.fetch_add(1, Ordering::Relaxed); |
| } |
| } |
| |
| { |
| let builder = ArrayBuilder::<TrackedDrop, 0>::new(); |
| assert_eq!(DROPPED.load(Ordering::Relaxed), 0); |
| drop(builder); |
| assert_eq!(DROPPED.load(Ordering::Relaxed), 0); |
| } |
| |
| { |
| let mut builder = ArrayBuilder::<TrackedDrop, 2>::new(); |
| builder.push(TrackedDrop); |
| assert_eq!(builder.take(), None); |
| assert_eq!(DROPPED.load(Ordering::Relaxed), 0); |
| drop(builder); |
| assert_eq!(DROPPED.swap(0, Ordering::Relaxed), 1); |
| } |
| |
| { |
| let mut builder = ArrayBuilder::<TrackedDrop, 2>::new(); |
| builder.push(TrackedDrop); |
| builder.push(TrackedDrop); |
| assert!(matches!(builder.take(), Some(_))); |
| assert_eq!(DROPPED.swap(0, Ordering::Relaxed), 2); |
| drop(builder); |
| assert_eq!(DROPPED.load(Ordering::Relaxed), 0); |
| } |
| |
| { |
| let mut builder = ArrayBuilder::<TrackedDrop, 2>::new(); |
| |
| builder.push(TrackedDrop); |
| builder.push(TrackedDrop); |
| |
| assert!(catch_unwind(AssertUnwindSafe(|| { |
| builder.push(TrackedDrop); |
| })) |
| .is_err()); |
| |
| assert_eq!(DROPPED.load(Ordering::Relaxed), 1); |
| |
| drop(builder); |
| |
| assert_eq!(DROPPED.swap(0, Ordering::Relaxed), 3); |
| } |
| |
| { |
| let mut builder = ArrayBuilder::<TrackedDrop, 2>::new(); |
| |
| builder.push(TrackedDrop); |
| builder.push(TrackedDrop); |
| |
| assert!(catch_unwind(AssertUnwindSafe(|| { |
| builder.push(TrackedDrop); |
| })) |
| .is_err()); |
| |
| assert_eq!(DROPPED.load(Ordering::Relaxed), 1); |
| |
| assert!(matches!(builder.take(), Some(_))); |
| |
| assert_eq!(DROPPED.load(Ordering::Relaxed), 3); |
| |
| builder.push(TrackedDrop); |
| builder.push(TrackedDrop); |
| |
| assert!(matches!(builder.take(), Some(_))); |
| |
| assert_eq!(DROPPED.swap(0, Ordering::Relaxed), 5); |
| } |
| } |
| } |