| //! Adaptors from `AsyncRead`/`AsyncWrite` to Stream/Sink |
| //! |
| //! Raw I/O objects work with byte sequences, but higher-level code usually |
| //! wants to batch these into meaningful chunks, called "frames". |
| //! |
| //! This module contains adapters to go from streams of bytes, [`AsyncRead`] and |
| //! [`AsyncWrite`], to framed streams implementing [`Sink`] and [`Stream`]. |
| //! Framed streams are also known as transports. |
| //! |
| //! # Example encoding using `LinesCodec` |
| //! |
| //! The following example demonstrates how to use a codec such as [`LinesCodec`] to |
| //! write framed data. [`FramedWrite`] can be used to achieve this. Data sent to |
| //! [`FramedWrite`] are first framed according to a specific codec, and then sent to |
| //! an implementor of [`AsyncWrite`]. |
| //! |
| //! ``` |
| //! use futures::sink::SinkExt; |
| //! use tokio_util::codec::LinesCodec; |
| //! use tokio_util::codec::FramedWrite; |
| //! |
| //! #[tokio::main] |
| //! async fn main() { |
| //! let buffer = Vec::new(); |
| //! let messages = vec!["Hello", "World"]; |
| //! let encoder = LinesCodec::new(); |
| //! |
| //! // FramedWrite is a sink which means you can send values into it |
| //! // asynchronously. |
| //! let mut writer = FramedWrite::new(buffer, encoder); |
| //! |
| //! // To be able to send values into a FramedWrite, you need to bring the |
| //! // `SinkExt` trait into scope. |
| //! writer.send(messages[0]).await.unwrap(); |
| //! writer.send(messages[1]).await.unwrap(); |
| //! |
| //! let buffer = writer.get_ref(); |
| //! |
| //! assert_eq!(buffer.as_slice(), "Hello\nWorld\n".as_bytes()); |
| //! } |
| //!``` |
| //! |
| //! # Example decoding using `LinesCodec` |
| //! The following example demonstrates how to use a codec such as [`LinesCodec`] to |
| //! read a stream of framed data. [`FramedRead`] can be used to achieve this. [`FramedRead`] |
| //! will keep reading from an [`AsyncRead`] implementor until a whole frame, according to a codec, |
| //! can be parsed. |
| //! |
| //!``` |
| //! use tokio_stream::StreamExt; |
| //! use tokio_util::codec::LinesCodec; |
| //! use tokio_util::codec::FramedRead; |
| //! |
| //! #[tokio::main] |
| //! async fn main() { |
| //! let message = "Hello\nWorld".as_bytes(); |
| //! let decoder = LinesCodec::new(); |
| //! |
| //! // FramedRead can be used to read a stream of values that are framed according to |
| //! // a codec. FramedRead will read from its input (here `buffer`) until a whole frame |
| //! // can be parsed. |
| //! let mut reader = FramedRead::new(message, decoder); |
| //! |
| //! // To read values from a FramedRead, you need to bring the |
| //! // `StreamExt` trait into scope. |
| //! let frame1 = reader.next().await.unwrap().unwrap(); |
| //! let frame2 = reader.next().await.unwrap().unwrap(); |
| //! |
| //! assert!(reader.next().await.is_none()); |
| //! assert_eq!(frame1, "Hello"); |
| //! assert_eq!(frame2, "World"); |
| //! } |
| //! ``` |
| //! |
| //! # The Decoder trait |
| //! |
| //! A [`Decoder`] is used together with [`FramedRead`] or [`Framed`] to turn an |
| //! [`AsyncRead`] into a [`Stream`]. The job of the decoder trait is to specify |
| //! how sequences of bytes are turned into a sequence of frames, and to |
| //! determine where the boundaries between frames are. The job of the |
| //! `FramedRead` is to repeatedly switch between reading more data from the IO |
| //! resource, and asking the decoder whether we have received enough data to |
| //! decode another frame of data. |
| //! |
| //! The main method on the `Decoder` trait is the [`decode`] method. This method |
| //! takes as argument the data that has been read so far, and when it is called, |
| //! it will be in one of the following situations: |
| //! |
| //! 1. The buffer contains less than a full frame. |
| //! 2. The buffer contains exactly a full frame. |
| //! 3. The buffer contains more than a full frame. |
| //! |
| //! In the first situation, the decoder should return `Ok(None)`. |
| //! |
| //! In the second situation, the decoder should clear the provided buffer and |
| //! return `Ok(Some(the_decoded_frame))`. |
| //! |
| //! In the third situation, the decoder should use a method such as [`split_to`] |
| //! or [`advance`] to modify the buffer such that the frame is removed from the |
| //! buffer, but any data in the buffer after that frame should still remain in |
| //! the buffer. The decoder should also return `Ok(Some(the_decoded_frame))` in |
| //! this case. |
| //! |
| //! Finally the decoder may return an error if the data is invalid in some way. |
| //! The decoder should _not_ return an error just because it has yet to receive |
| //! a full frame. |
| //! |
| //! It is guaranteed that, from one call to `decode` to another, the provided |
| //! buffer will contain the exact same data as before, except that if more data |
| //! has arrived through the IO resource, that data will have been appended to |
| //! the buffer. This means that reading frames from a `FramedRead` is |
| //! essentially equivalent to the following loop: |
| //! |
| //! ```no_run |
| //! use tokio::io::AsyncReadExt; |
| //! # // This uses async_stream to create an example that compiles. |
| //! # fn foo() -> impl futures_core::Stream<Item = std::io::Result<bytes::BytesMut>> { async_stream::try_stream! { |
| //! # use tokio_util::codec::Decoder; |
| //! # let mut decoder = tokio_util::codec::BytesCodec::new(); |
| //! # let io_resource = &mut &[0u8, 1, 2, 3][..]; |
| //! |
| //! let mut buf = bytes::BytesMut::new(); |
| //! loop { |
| //! // The read_buf call will append to buf rather than overwrite existing data. |
| //! let len = io_resource.read_buf(&mut buf).await?; |
| //! |
| //! if len == 0 { |
| //! while let Some(frame) = decoder.decode_eof(&mut buf)? { |
| //! yield frame; |
| //! } |
| //! break; |
| //! } |
| //! |
| //! while let Some(frame) = decoder.decode(&mut buf)? { |
| //! yield frame; |
| //! } |
| //! } |
| //! # }} |
| //! ``` |
| //! The example above uses `yield` whenever the `Stream` produces an item. |
| //! |
| //! ## Example decoder |
| //! |
| //! As an example, consider a protocol that can be used to send strings where |
| //! each frame is a four byte integer that contains the length of the frame, |
| //! followed by that many bytes of string data. The decoder fails with an error |
| //! if the string data is not valid utf-8 or too long. |
| //! |
| //! Such a decoder can be written like this: |
| //! ``` |
| //! use tokio_util::codec::Decoder; |
| //! use bytes::{BytesMut, Buf}; |
| //! |
| //! struct MyStringDecoder {} |
| //! |
| //! const MAX: usize = 8 * 1024 * 1024; |
| //! |
| //! impl Decoder for MyStringDecoder { |
| //! type Item = String; |
| //! type Error = std::io::Error; |
| //! |
| //! fn decode( |
| //! &mut self, |
| //! src: &mut BytesMut |
| //! ) -> Result<Option<Self::Item>, Self::Error> { |
| //! if src.len() < 4 { |
| //! // Not enough data to read length marker. |
| //! return Ok(None); |
| //! } |
| //! |
| //! // Read length marker. |
| //! let mut length_bytes = [0u8; 4]; |
| //! length_bytes.copy_from_slice(&src[..4]); |
| //! let length = u32::from_le_bytes(length_bytes) as usize; |
| //! |
| //! // Check that the length is not too large to avoid a denial of |
| //! // service attack where the server runs out of memory. |
| //! if length > MAX { |
| //! return Err(std::io::Error::new( |
| //! std::io::ErrorKind::InvalidData, |
| //! format!("Frame of length {} is too large.", length) |
| //! )); |
| //! } |
| //! |
| //! if src.len() < 4 + length { |
| //! // The full string has not yet arrived. |
| //! // |
| //! // We reserve more space in the buffer. This is not strictly |
| //! // necessary, but is a good idea performance-wise. |
| //! src.reserve(4 + length - src.len()); |
| //! |
| //! // We inform the Framed that we need more bytes to form the next |
| //! // frame. |
| //! return Ok(None); |
| //! } |
| //! |
| //! // Use advance to modify src such that it no longer contains |
| //! // this frame. |
| //! let data = src[4..4 + length].to_vec(); |
| //! src.advance(4 + length); |
| //! |
| //! // Convert the data to a string, or fail if it is not valid utf-8. |
| //! match String::from_utf8(data) { |
| //! Ok(string) => Ok(Some(string)), |
| //! Err(utf8_error) => { |
| //! Err(std::io::Error::new( |
| //! std::io::ErrorKind::InvalidData, |
| //! utf8_error.utf8_error(), |
| //! )) |
| //! }, |
| //! } |
| //! } |
| //! } |
| //! ``` |
| //! |
| //! # The Encoder trait |
| //! |
| //! An [`Encoder`] is used together with [`FramedWrite`] or [`Framed`] to turn |
| //! an [`AsyncWrite`] into a [`Sink`]. The job of the encoder trait is to |
| //! specify how frames are turned into a sequences of bytes. The job of the |
| //! `FramedWrite` is to take the resulting sequence of bytes and write it to the |
| //! IO resource. |
| //! |
| //! The main method on the `Encoder` trait is the [`encode`] method. This method |
| //! takes an item that is being written, and a buffer to write the item to. The |
| //! buffer may already contain data, and in this case, the encoder should append |
| //! the new frame the to buffer rather than overwrite the existing data. |
| //! |
| //! It is guaranteed that, from one call to `encode` to another, the provided |
| //! buffer will contain the exact same data as before, except that some of the |
| //! data may have been removed from the front of the buffer. Writing to a |
| //! `FramedWrite` is essentially equivalent to the following loop: |
| //! |
| //! ```no_run |
| //! use tokio::io::AsyncWriteExt; |
| //! use bytes::Buf; // for advance |
| //! # use tokio_util::codec::Encoder; |
| //! # async fn next_frame() -> bytes::Bytes { bytes::Bytes::new() } |
| //! # async fn no_more_frames() { } |
| //! # #[tokio::main] async fn main() -> std::io::Result<()> { |
| //! # let mut io_resource = tokio::io::sink(); |
| //! # let mut encoder = tokio_util::codec::BytesCodec::new(); |
| //! |
| //! const MAX: usize = 8192; |
| //! |
| //! let mut buf = bytes::BytesMut::new(); |
| //! loop { |
| //! tokio::select! { |
| //! num_written = io_resource.write(&buf), if !buf.is_empty() => { |
| //! buf.advance(num_written?); |
| //! }, |
| //! frame = next_frame(), if buf.len() < MAX => { |
| //! encoder.encode(frame, &mut buf)?; |
| //! }, |
| //! _ = no_more_frames() => { |
| //! io_resource.write_all(&buf).await?; |
| //! io_resource.shutdown().await?; |
| //! return Ok(()); |
| //! }, |
| //! } |
| //! } |
| //! # } |
| //! ``` |
| //! Here the `next_frame` method corresponds to any frames you write to the |
| //! `FramedWrite`. The `no_more_frames` method corresponds to closing the |
| //! `FramedWrite` with [`SinkExt::close`]. |
| //! |
| //! ## Example encoder |
| //! |
| //! As an example, consider a protocol that can be used to send strings where |
| //! each frame is a four byte integer that contains the length of the frame, |
| //! followed by that many bytes of string data. The encoder will fail if the |
| //! string is too long. |
| //! |
| //! Such an encoder can be written like this: |
| //! ``` |
| //! use tokio_util::codec::Encoder; |
| //! use bytes::BytesMut; |
| //! |
| //! struct MyStringEncoder {} |
| //! |
| //! const MAX: usize = 8 * 1024 * 1024; |
| //! |
| //! impl Encoder<String> for MyStringEncoder { |
| //! type Error = std::io::Error; |
| //! |
| //! fn encode(&mut self, item: String, dst: &mut BytesMut) -> Result<(), Self::Error> { |
| //! // Don't send a string if it is longer than the other end will |
| //! // accept. |
| //! if item.len() > MAX { |
| //! return Err(std::io::Error::new( |
| //! std::io::ErrorKind::InvalidData, |
| //! format!("Frame of length {} is too large.", item.len()) |
| //! )); |
| //! } |
| //! |
| //! // Convert the length into a byte array. |
| //! // The cast to u32 cannot overflow due to the length check above. |
| //! let len_slice = u32::to_le_bytes(item.len() as u32); |
| //! |
| //! // Reserve space in the buffer. |
| //! dst.reserve(4 + item.len()); |
| //! |
| //! // Write the length and string to the buffer. |
| //! dst.extend_from_slice(&len_slice); |
| //! dst.extend_from_slice(item.as_bytes()); |
| //! Ok(()) |
| //! } |
| //! } |
| //! ``` |
| //! |
| //! [`AsyncRead`]: tokio::io::AsyncRead |
| //! [`AsyncWrite`]: tokio::io::AsyncWrite |
| //! [`Stream`]: futures_core::Stream |
| //! [`Sink`]: futures_sink::Sink |
| //! [`SinkExt`]: futures::sink::SinkExt |
| //! [`SinkExt::close`]: https://docs.rs/futures/0.3/futures/sink/trait.SinkExt.html#method.close |
| //! [`FramedRead`]: struct@crate::codec::FramedRead |
| //! [`FramedWrite`]: struct@crate::codec::FramedWrite |
| //! [`Framed`]: struct@crate::codec::Framed |
| //! [`Decoder`]: trait@crate::codec::Decoder |
| //! [`decode`]: fn@crate::codec::Decoder::decode |
| //! [`encode`]: fn@crate::codec::Encoder::encode |
| //! [`split_to`]: fn@bytes::BytesMut::split_to |
| //! [`advance`]: fn@bytes::Buf::advance |
| |
| mod bytes_codec; |
| pub use self::bytes_codec::BytesCodec; |
| |
| mod decoder; |
| pub use self::decoder::Decoder; |
| |
| mod encoder; |
| pub use self::encoder::Encoder; |
| |
| mod framed_impl; |
| #[allow(unused_imports)] |
| pub(crate) use self::framed_impl::{FramedImpl, RWFrames, ReadFrame, WriteFrame}; |
| |
| mod framed; |
| pub use self::framed::{Framed, FramedParts}; |
| |
| mod framed_read; |
| pub use self::framed_read::FramedRead; |
| |
| mod framed_write; |
| pub use self::framed_write::FramedWrite; |
| |
| pub mod length_delimited; |
| pub use self::length_delimited::{LengthDelimitedCodec, LengthDelimitedCodecError}; |
| |
| mod lines_codec; |
| pub use self::lines_codec::{LinesCodec, LinesCodecError}; |
| |
| mod any_delimiter_codec; |
| pub use self::any_delimiter_codec::{AnyDelimiterCodec, AnyDelimiterCodecError}; |