| //! A queue of delayed elements. |
| //! |
| //! See [`DelayQueue`] for more details. |
| //! |
| //! [`DelayQueue`]: struct@DelayQueue |
| |
| use crate::time::wheel::{self, Wheel}; |
| |
| use tokio::time::{sleep_until, Duration, Instant, Sleep}; |
| |
| use core::ops::{Index, IndexMut}; |
| use slab::Slab; |
| use std::cmp; |
| use std::collections::HashMap; |
| use std::convert::From; |
| use std::fmt; |
| use std::fmt::Debug; |
| use std::future::Future; |
| use std::marker::PhantomData; |
| use std::pin::Pin; |
| use std::task::{self, ready, Poll, Waker}; |
| |
| /// A queue of delayed elements. |
| /// |
| /// Once an element is inserted into the `DelayQueue`, it is yielded once the |
| /// specified deadline has been reached. |
| /// |
| /// # Usage |
| /// |
| /// Elements are inserted into `DelayQueue` using the [`insert`] or |
| /// [`insert_at`] methods. A deadline is provided with the item and a [`Key`] is |
| /// returned. The key is used to remove the entry or to change the deadline at |
| /// which it should be yielded back. |
| /// |
| /// Once delays have been configured, the `DelayQueue` is used via its |
| /// [`Stream`] implementation. [`poll_expired`] is called. If an entry has reached its |
| /// deadline, it is returned. If not, `Poll::Pending` is returned indicating that the |
| /// current task will be notified once the deadline has been reached. |
| /// |
| /// # `Stream` implementation |
| /// |
| /// Items are retrieved from the queue via [`DelayQueue::poll_expired`]. If no delays have |
| /// expired, no items are returned. In this case, `Poll::Pending` is returned and the |
| /// current task is registered to be notified once the next item's delay has |
| /// expired. |
| /// |
| /// If no items are in the queue, i.e. `is_empty()` returns `true`, then `poll` |
| /// returns `Poll::Ready(None)`. This indicates that the stream has reached an end. |
| /// However, if a new item is inserted *after*, `poll` will once again start |
| /// returning items or `Poll::Pending`. |
| /// |
| /// Items are returned ordered by their expirations. Items that are configured |
| /// to expire first will be returned first. There are no ordering guarantees |
| /// for items configured to expire at the same instant. Also note that delays are |
| /// rounded to the closest millisecond. |
| /// |
| /// # Implementation |
| /// |
| /// The [`DelayQueue`] is backed by a separate instance of a timer wheel similar to that used internally |
| /// by Tokio's standalone timer utilities such as [`sleep`]. Because of this, it offers the same |
| /// performance and scalability benefits. |
| /// |
| /// State associated with each entry is stored in a [`slab`]. This amortizes the cost of allocation, |
| /// and allows reuse of the memory allocated for expired entries. |
| /// |
| /// Capacity can be checked using [`capacity`] and allocated preemptively by using |
| /// the [`reserve`] method. |
| /// |
| /// # Usage |
| /// |
| /// Using `DelayQueue` to manage cache entries. |
| /// |
| /// ```rust,no_run |
| /// use tokio_util::time::{DelayQueue, delay_queue}; |
| /// |
| /// use std::collections::HashMap; |
| /// use std::task::{ready, Context, Poll}; |
| /// use std::time::Duration; |
| /// # type CacheKey = String; |
| /// # type Value = String; |
| /// |
| /// struct Cache { |
| /// entries: HashMap<CacheKey, (Value, delay_queue::Key)>, |
| /// expirations: DelayQueue<CacheKey>, |
| /// } |
| /// |
| /// const TTL_SECS: u64 = 30; |
| /// |
| /// impl Cache { |
| /// fn insert(&mut self, key: CacheKey, value: Value) { |
| /// let delay = self.expirations |
| /// .insert(key.clone(), Duration::from_secs(TTL_SECS)); |
| /// |
| /// self.entries.insert(key, (value, delay)); |
| /// } |
| /// |
| /// fn get(&self, key: &CacheKey) -> Option<&Value> { |
| /// self.entries.get(key) |
| /// .map(|&(ref v, _)| v) |
| /// } |
| /// |
| /// fn remove(&mut self, key: &CacheKey) { |
| /// if let Some((_, cache_key)) = self.entries.remove(key) { |
| /// self.expirations.remove(&cache_key); |
| /// } |
| /// } |
| /// |
| /// fn poll_purge(&mut self, cx: &mut Context<'_>) -> Poll<()> { |
| /// while let Some(entry) = ready!(self.expirations.poll_expired(cx)) { |
| /// self.entries.remove(entry.get_ref()); |
| /// } |
| /// |
| /// Poll::Ready(()) |
| /// } |
| /// } |
| /// ``` |
| /// |
| /// [`insert`]: method@Self::insert |
| /// [`insert_at`]: method@Self::insert_at |
| /// [`Key`]: struct@Key |
| /// [`Stream`]: https://docs.rs/futures/0.1/futures/stream/trait.Stream.html |
| /// [`poll_expired`]: method@Self::poll_expired |
| /// [`Stream::poll_expired`]: method@Self::poll_expired |
| /// [`DelayQueue`]: struct@DelayQueue |
| /// [`sleep`]: fn@tokio::time::sleep |
| /// [`slab`]: slab |
| /// [`capacity`]: method@Self::capacity |
| /// [`reserve`]: method@Self::reserve |
| #[derive(Debug)] |
| pub struct DelayQueue<T> { |
| /// Stores data associated with entries |
| slab: SlabStorage<T>, |
| |
| /// Lookup structure tracking all delays in the queue |
| wheel: Wheel<Stack<T>>, |
| |
| /// Delays that were inserted when already expired. These cannot be stored |
| /// in the wheel |
| expired: Stack<T>, |
| |
| /// Delay expiring when the *first* item in the queue expires |
| delay: Option<Pin<Box<Sleep>>>, |
| |
| /// Wheel polling state |
| wheel_now: u64, |
| |
| /// Instant at which the timer starts |
| start: Instant, |
| |
| /// Waker that is invoked when we potentially need to reset the timer. |
| /// Because we lazily create the timer when the first entry is created, we |
| /// need to awaken any poller that polled us before that point. |
| waker: Option<Waker>, |
| } |
| |
| #[derive(Default)] |
| struct SlabStorage<T> { |
| inner: Slab<Data<T>>, |
| |
| // A `compact` call requires a re-mapping of the `Key`s that were changed |
| // during the `compact` call of the `slab`. Since the keys that were given out |
| // cannot be changed retroactively we need to keep track of these re-mappings. |
| // The keys of `key_map` correspond to the old keys that were given out and |
| // the values to the `Key`s that were re-mapped by the `compact` call. |
| key_map: HashMap<Key, KeyInternal>, |
| |
| // Index used to create new keys to hand out. |
| next_key_index: usize, |
| |
| // Whether `compact` has been called, necessary in order to decide whether |
| // to include keys in `key_map`. |
| compact_called: bool, |
| } |
| |
| impl<T> SlabStorage<T> { |
| pub(crate) fn with_capacity(capacity: usize) -> SlabStorage<T> { |
| SlabStorage { |
| inner: Slab::with_capacity(capacity), |
| key_map: HashMap::new(), |
| next_key_index: 0, |
| compact_called: false, |
| } |
| } |
| |
| // Inserts data into the inner slab and re-maps keys if necessary |
| pub(crate) fn insert(&mut self, val: Data<T>) -> Key { |
| let mut key = KeyInternal::new(self.inner.insert(val)); |
| let key_contained = self.key_map.contains_key(&key.into()); |
| |
| if key_contained { |
| // It's possible that a `compact` call creates capacity in `self.inner` in |
| // such a way that a `self.inner.insert` call creates a `key` which was |
| // previously given out during an `insert` call prior to the `compact` call. |
| // If `key` is contained in `self.key_map`, we have encountered this exact situation, |
| // We need to create a new key `key_to_give_out` and include the relation |
| // `key_to_give_out` -> `key` in `self.key_map`. |
| let key_to_give_out = self.create_new_key(); |
| assert!(!self.key_map.contains_key(&key_to_give_out.into())); |
| self.key_map.insert(key_to_give_out.into(), key); |
| key = key_to_give_out; |
| } else if self.compact_called { |
| // Include an identity mapping in `self.key_map` in order to allow us to |
| // panic if a key that was handed out is removed more than once. |
| self.key_map.insert(key.into(), key); |
| } |
| |
| key.into() |
| } |
| |
| // Re-map the key in case compact was previously called. |
| // Note: Since we include identity mappings in key_map after compact was called, |
| // we have information about all keys that were handed out. In the case in which |
| // compact was called and we try to remove a Key that was previously removed |
| // we can detect invalid keys if no key is found in `key_map`. This is necessary |
| // in order to prevent situations in which a previously removed key |
| // corresponds to a re-mapped key internally and which would then be incorrectly |
| // removed from the slab. |
| // |
| // Example to illuminate this problem: |
| // |
| // Let's assume our `key_map` is {1 -> 2, 2 -> 1} and we call remove(1). If we |
| // were to remove 1 again, we would not find it inside `key_map` anymore. |
| // If we were to imply from this that no re-mapping was necessary, we would |
| // incorrectly remove 1 from `self.slab.inner`, which corresponds to the |
| // handed-out key 2. |
| pub(crate) fn remove(&mut self, key: &Key) -> Data<T> { |
| let remapped_key = if self.compact_called { |
| match self.key_map.remove(key) { |
| Some(key_internal) => key_internal, |
| None => panic!("invalid key"), |
| } |
| } else { |
| (*key).into() |
| }; |
| |
| self.inner.remove(remapped_key.index) |
| } |
| |
| pub(crate) fn shrink_to_fit(&mut self) { |
| self.inner.shrink_to_fit(); |
| self.key_map.shrink_to_fit(); |
| } |
| |
| pub(crate) fn compact(&mut self) { |
| if !self.compact_called { |
| for (key, _) in self.inner.iter() { |
| self.key_map.insert(Key::new(key), KeyInternal::new(key)); |
| } |
| } |
| |
| let mut remapping = HashMap::new(); |
| self.inner.compact(|_, from, to| { |
| remapping.insert(from, to); |
| true |
| }); |
| |
| // At this point `key_map` contains a mapping for every element. |
| for internal_key in self.key_map.values_mut() { |
| if let Some(new_internal_key) = remapping.get(&internal_key.index) { |
| *internal_key = KeyInternal::new(*new_internal_key); |
| } |
| } |
| |
| if self.key_map.capacity() > 2 * self.key_map.len() { |
| self.key_map.shrink_to_fit(); |
| } |
| |
| self.compact_called = true; |
| } |
| |
| // Tries to re-map a `Key` that was given out to the user to its |
| // corresponding internal key. |
| fn remap_key(&self, key: &Key) -> Option<KeyInternal> { |
| let key_map = &self.key_map; |
| if self.compact_called { |
| key_map.get(key).copied() |
| } else { |
| Some((*key).into()) |
| } |
| } |
| |
| fn create_new_key(&mut self) -> KeyInternal { |
| while self.key_map.contains_key(&Key::new(self.next_key_index)) { |
| self.next_key_index = self.next_key_index.wrapping_add(1); |
| } |
| |
| KeyInternal::new(self.next_key_index) |
| } |
| |
| pub(crate) fn len(&self) -> usize { |
| self.inner.len() |
| } |
| |
| pub(crate) fn capacity(&self) -> usize { |
| self.inner.capacity() |
| } |
| |
| pub(crate) fn clear(&mut self) { |
| self.inner.clear(); |
| self.key_map.clear(); |
| self.compact_called = false; |
| } |
| |
| pub(crate) fn reserve(&mut self, additional: usize) { |
| self.inner.reserve(additional); |
| |
| if self.compact_called { |
| self.key_map.reserve(additional); |
| } |
| } |
| |
| pub(crate) fn is_empty(&self) -> bool { |
| self.inner.is_empty() |
| } |
| |
| pub(crate) fn contains(&self, key: &Key) -> bool { |
| let remapped_key = self.remap_key(key); |
| |
| match remapped_key { |
| Some(internal_key) => self.inner.contains(internal_key.index), |
| None => false, |
| } |
| } |
| } |
| |
| impl<T> fmt::Debug for SlabStorage<T> |
| where |
| T: fmt::Debug, |
| { |
| fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result { |
| if fmt.alternate() { |
| fmt.debug_map().entries(self.inner.iter()).finish() |
| } else { |
| fmt.debug_struct("Slab") |
| .field("len", &self.len()) |
| .field("cap", &self.capacity()) |
| .finish() |
| } |
| } |
| } |
| |
| impl<T> Index<Key> for SlabStorage<T> { |
| type Output = Data<T>; |
| |
| fn index(&self, key: Key) -> &Self::Output { |
| let remapped_key = self.remap_key(&key); |
| |
| match remapped_key { |
| Some(internal_key) => &self.inner[internal_key.index], |
| None => panic!("Invalid index {}", key.index), |
| } |
| } |
| } |
| |
| impl<T> IndexMut<Key> for SlabStorage<T> { |
| fn index_mut(&mut self, key: Key) -> &mut Data<T> { |
| let remapped_key = self.remap_key(&key); |
| |
| match remapped_key { |
| Some(internal_key) => &mut self.inner[internal_key.index], |
| None => panic!("Invalid index {}", key.index), |
| } |
| } |
| } |
| |
| /// An entry in `DelayQueue` that has expired and been removed. |
| /// |
| /// Values are returned by [`DelayQueue::poll_expired`]. |
| /// |
| /// [`DelayQueue::poll_expired`]: method@DelayQueue::poll_expired |
| #[derive(Debug)] |
| pub struct Expired<T> { |
| /// The data stored in the queue |
| data: T, |
| |
| /// The expiration time |
| deadline: Instant, |
| |
| /// The key associated with the entry |
| key: Key, |
| } |
| |
| /// Token to a value stored in a `DelayQueue`. |
| /// |
| /// Instances of `Key` are returned by [`DelayQueue::insert`]. See [`DelayQueue`] |
| /// documentation for more details. |
| /// |
| /// [`DelayQueue`]: struct@DelayQueue |
| /// [`DelayQueue::insert`]: method@DelayQueue::insert |
| #[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)] |
| pub struct Key { |
| index: usize, |
| } |
| |
| // Whereas `Key` is given out to users that use `DelayQueue`, internally we use |
| // `KeyInternal` as the key type in order to make the logic of mapping between keys |
| // as a result of `compact` calls clearer. |
| #[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)] |
| struct KeyInternal { |
| index: usize, |
| } |
| |
| #[derive(Debug)] |
| struct Stack<T> { |
| /// Head of the stack |
| head: Option<Key>, |
| _p: PhantomData<fn() -> T>, |
| } |
| |
| #[derive(Debug)] |
| struct Data<T> { |
| /// The data being stored in the queue and will be returned at the requested |
| /// instant. |
| inner: T, |
| |
| /// The instant at which the item is returned. |
| when: u64, |
| |
| /// Set to true when stored in the `expired` queue |
| expired: bool, |
| |
| /// Next entry in the stack |
| next: Option<Key>, |
| |
| /// Previous entry in the stack |
| prev: Option<Key>, |
| } |
| |
| /// Maximum number of entries the queue can handle |
| const MAX_ENTRIES: usize = (1 << 30) - 1; |
| |
| impl<T> DelayQueue<T> { |
| /// Creates a new, empty, `DelayQueue`. |
| /// |
| /// The queue will not allocate storage until items are inserted into it. |
| /// |
| /// # Examples |
| /// |
| /// ```rust |
| /// # use tokio_util::time::DelayQueue; |
| /// let delay_queue: DelayQueue<u32> = DelayQueue::new(); |
| /// ``` |
| pub fn new() -> DelayQueue<T> { |
| DelayQueue::with_capacity(0) |
| } |
| |
| /// Creates a new, empty, `DelayQueue` with the specified capacity. |
| /// |
| /// The queue will be able to hold at least `capacity` elements without |
| /// reallocating. If `capacity` is 0, the queue will not allocate for |
| /// storage. |
| /// |
| /// # Examples |
| /// |
| /// ```rust |
| /// # use tokio_util::time::DelayQueue; |
| /// # use std::time::Duration; |
| /// |
| /// # #[tokio::main] |
| /// # async fn main() { |
| /// let mut delay_queue = DelayQueue::with_capacity(10); |
| /// |
| /// // These insertions are done without further allocation |
| /// for i in 0..10 { |
| /// delay_queue.insert(i, Duration::from_secs(i)); |
| /// } |
| /// |
| /// // This will make the queue allocate additional storage |
| /// delay_queue.insert(11, Duration::from_secs(11)); |
| /// # } |
| /// ``` |
| pub fn with_capacity(capacity: usize) -> DelayQueue<T> { |
| DelayQueue { |
| wheel: Wheel::new(), |
| slab: SlabStorage::with_capacity(capacity), |
| expired: Stack::default(), |
| delay: None, |
| wheel_now: 0, |
| start: Instant::now(), |
| waker: None, |
| } |
| } |
| |
| /// Inserts `value` into the queue set to expire at a specific instant in |
| /// time. |
| /// |
| /// This function is identical to `insert`, but takes an `Instant` instead |
| /// of a `Duration`. |
| /// |
| /// `value` is stored in the queue until `when` is reached. At which point, |
| /// `value` will be returned from [`poll_expired`]. If `when` has already been |
| /// reached, then `value` is immediately made available to poll. |
| /// |
| /// The return value represents the insertion and is used as an argument to |
| /// [`remove`] and [`reset`]. Note that [`Key`] is a token and is reused once |
| /// `value` is removed from the queue either by calling [`poll_expired`] after |
| /// `when` is reached or by calling [`remove`]. At this point, the caller |
| /// must take care to not use the returned [`Key`] again as it may reference |
| /// a different item in the queue. |
| /// |
| /// See [type] level documentation for more details. |
| /// |
| /// # Panics |
| /// |
| /// This function panics if `when` is too far in the future. |
| /// |
| /// # Examples |
| /// |
| /// Basic usage |
| /// |
| /// ```rust |
| /// use tokio::time::{Duration, Instant}; |
| /// use tokio_util::time::DelayQueue; |
| /// |
| /// # #[tokio::main] |
| /// # async fn main() { |
| /// let mut delay_queue = DelayQueue::new(); |
| /// let key = delay_queue.insert_at( |
| /// "foo", Instant::now() + Duration::from_secs(5)); |
| /// |
| /// // Remove the entry |
| /// let item = delay_queue.remove(&key); |
| /// assert_eq!(*item.get_ref(), "foo"); |
| /// # } |
| /// ``` |
| /// |
| /// [`poll_expired`]: method@Self::poll_expired |
| /// [`remove`]: method@Self::remove |
| /// [`reset`]: method@Self::reset |
| /// [`Key`]: struct@Key |
| /// [type]: # |
| #[track_caller] |
| pub fn insert_at(&mut self, value: T, when: Instant) -> Key { |
| assert!(self.slab.len() < MAX_ENTRIES, "max entries exceeded"); |
| |
| // Normalize the deadline. Values cannot be set to expire in the past. |
| let when = self.normalize_deadline(when); |
| |
| // Insert the value in the store |
| let key = self.slab.insert(Data { |
| inner: value, |
| when, |
| expired: false, |
| next: None, |
| prev: None, |
| }); |
| |
| self.insert_idx(when, key); |
| |
| // Set a new delay if the current's deadline is later than the one of the new item |
| let should_set_delay = if let Some(ref delay) = self.delay { |
| let current_exp = self.normalize_deadline(delay.deadline()); |
| current_exp > when |
| } else { |
| true |
| }; |
| |
| if should_set_delay { |
| if let Some(waker) = self.waker.take() { |
| waker.wake(); |
| } |
| |
| let delay_time = self.start + Duration::from_millis(when); |
| if let Some(ref mut delay) = &mut self.delay { |
| delay.as_mut().reset(delay_time); |
| } else { |
| self.delay = Some(Box::pin(sleep_until(delay_time))); |
| } |
| } |
| |
| key |
| } |
| |
| /// Attempts to pull out the next value of the delay queue, registering the |
| /// current task for wakeup if the value is not yet available, and returning |
| /// `None` if the queue is exhausted. |
| pub fn poll_expired(&mut self, cx: &mut task::Context<'_>) -> Poll<Option<Expired<T>>> { |
| if !self |
| .waker |
| .as_ref() |
| .map(|w| w.will_wake(cx.waker())) |
| .unwrap_or(false) |
| { |
| self.waker = Some(cx.waker().clone()); |
| } |
| |
| let item = ready!(self.poll_idx(cx)); |
| Poll::Ready(item.map(|key| { |
| let data = self.slab.remove(&key); |
| debug_assert!(data.next.is_none()); |
| debug_assert!(data.prev.is_none()); |
| |
| Expired { |
| key, |
| data: data.inner, |
| deadline: self.start + Duration::from_millis(data.when), |
| } |
| })) |
| } |
| |
| /// Inserts `value` into the queue set to expire after the requested duration |
| /// elapses. |
| /// |
| /// This function is identical to `insert_at`, but takes a `Duration` |
| /// instead of an `Instant`. |
| /// |
| /// `value` is stored in the queue until `timeout` duration has |
| /// elapsed after `insert` was called. At that point, `value` will |
| /// be returned from [`poll_expired`]. If `timeout` is a `Duration` of |
| /// zero, then `value` is immediately made available to poll. |
| /// |
| /// The return value represents the insertion and is used as an |
| /// argument to [`remove`] and [`reset`]. Note that [`Key`] is a |
| /// token and is reused once `value` is removed from the queue |
| /// either by calling [`poll_expired`] after `timeout` has elapsed |
| /// or by calling [`remove`]. At this point, the caller must not |
| /// use the returned [`Key`] again as it may reference a different |
| /// item in the queue. |
| /// |
| /// See [type] level documentation for more details. |
| /// |
| /// # Panics |
| /// |
| /// This function panics if `timeout` is greater than the maximum |
| /// duration supported by the timer in the current `Runtime`. |
| /// |
| /// # Examples |
| /// |
| /// Basic usage |
| /// |
| /// ```rust |
| /// use tokio_util::time::DelayQueue; |
| /// use std::time::Duration; |
| /// |
| /// # #[tokio::main] |
| /// # async fn main() { |
| /// let mut delay_queue = DelayQueue::new(); |
| /// let key = delay_queue.insert("foo", Duration::from_secs(5)); |
| /// |
| /// // Remove the entry |
| /// let item = delay_queue.remove(&key); |
| /// assert_eq!(*item.get_ref(), "foo"); |
| /// # } |
| /// ``` |
| /// |
| /// [`poll_expired`]: method@Self::poll_expired |
| /// [`remove`]: method@Self::remove |
| /// [`reset`]: method@Self::reset |
| /// [`Key`]: struct@Key |
| /// [type]: # |
| #[track_caller] |
| pub fn insert(&mut self, value: T, timeout: Duration) -> Key { |
| self.insert_at(value, Instant::now() + timeout) |
| } |
| |
| #[track_caller] |
| fn insert_idx(&mut self, when: u64, key: Key) { |
| use self::wheel::{InsertError, Stack}; |
| |
| // Register the deadline with the timer wheel |
| match self.wheel.insert(when, key, &mut self.slab) { |
| Ok(_) => {} |
| Err((_, InsertError::Elapsed)) => { |
| self.slab[key].expired = true; |
| // The delay is already expired, store it in the expired queue |
| self.expired.push(key, &mut self.slab); |
| } |
| Err((_, err)) => panic!("invalid deadline; err={err:?}"), |
| } |
| } |
| |
| /// Returns the deadline of the item associated with `key`. |
| /// |
| /// Since the queue operates at millisecond granularity, the returned |
| /// deadline may not exactly match the value that was given when initially |
| /// inserting the item into the queue. |
| /// |
| /// # Panics |
| /// |
| /// This function panics if `key` is not contained by the queue. |
| /// |
| /// # Examples |
| /// |
| /// Basic usage |
| /// |
| /// ```rust |
| /// use tokio_util::time::DelayQueue; |
| /// use std::time::Duration; |
| /// |
| /// # #[tokio::main] |
| /// # async fn main() { |
| /// let mut delay_queue = DelayQueue::new(); |
| /// |
| /// let key1 = delay_queue.insert("foo", Duration::from_secs(5)); |
| /// let key2 = delay_queue.insert("bar", Duration::from_secs(10)); |
| /// |
| /// assert!(delay_queue.deadline(&key1) < delay_queue.deadline(&key2)); |
| /// # } |
| /// ``` |
| #[track_caller] |
| pub fn deadline(&self, key: &Key) -> Instant { |
| self.start + Duration::from_millis(self.slab[*key].when) |
| } |
| |
| /// Removes the key from the expired queue or the timer wheel |
| /// depending on its expiration status. |
| /// |
| /// # Panics |
| /// |
| /// Panics if the key is not contained in the expired queue or the wheel. |
| #[track_caller] |
| fn remove_key(&mut self, key: &Key) { |
| use crate::time::wheel::Stack; |
| |
| // Special case the `expired` queue |
| if self.slab[*key].expired { |
| self.expired.remove(key, &mut self.slab); |
| } else { |
| self.wheel.remove(key, &mut self.slab); |
| } |
| } |
| |
| /// Removes the item associated with `key` from the queue. |
| /// |
| /// There must be an item associated with `key`. The function returns the |
| /// removed item as well as the `Instant` at which it will the delay will |
| /// have expired. |
| /// |
| /// # Panics |
| /// |
| /// The function panics if `key` is not contained by the queue. |
| /// |
| /// # Examples |
| /// |
| /// Basic usage |
| /// |
| /// ```rust |
| /// use tokio_util::time::DelayQueue; |
| /// use std::time::Duration; |
| /// |
| /// # #[tokio::main] |
| /// # async fn main() { |
| /// let mut delay_queue = DelayQueue::new(); |
| /// let key = delay_queue.insert("foo", Duration::from_secs(5)); |
| /// |
| /// // Remove the entry |
| /// let item = delay_queue.remove(&key); |
| /// assert_eq!(*item.get_ref(), "foo"); |
| /// # } |
| /// ``` |
| #[track_caller] |
| pub fn remove(&mut self, key: &Key) -> Expired<T> { |
| let prev_deadline = self.next_deadline(); |
| |
| self.remove_key(key); |
| let data = self.slab.remove(key); |
| |
| let next_deadline = self.next_deadline(); |
| if prev_deadline != next_deadline { |
| match (next_deadline, &mut self.delay) { |
| (None, _) => self.delay = None, |
| (Some(deadline), Some(delay)) => delay.as_mut().reset(deadline), |
| (Some(deadline), None) => self.delay = Some(Box::pin(sleep_until(deadline))), |
| } |
| } |
| |
| if self.slab.is_empty() { |
| if let Some(waker) = self.waker.take() { |
| waker.wake(); |
| } |
| } |
| |
| Expired { |
| key: Key::new(key.index), |
| data: data.inner, |
| deadline: self.start + Duration::from_millis(data.when), |
| } |
| } |
| |
| /// Attempts to remove the item associated with `key` from the queue. |
| /// |
| /// Removes the item associated with `key`, and returns it along with the |
| /// `Instant` at which it would have expired, if it exists. |
| /// |
| /// Returns `None` if `key` is not in the queue. |
| /// |
| /// # Examples |
| /// |
| /// Basic usage |
| /// |
| /// ```rust |
| /// use tokio_util::time::DelayQueue; |
| /// use std::time::Duration; |
| /// |
| /// # #[tokio::main(flavor = "current_thread")] |
| /// # async fn main() { |
| /// let mut delay_queue = DelayQueue::new(); |
| /// let key = delay_queue.insert("foo", Duration::from_secs(5)); |
| /// |
| /// // The item is in the queue, `try_remove` returns `Some(Expired("foo"))`. |
| /// let item = delay_queue.try_remove(&key); |
| /// assert_eq!(item.unwrap().into_inner(), "foo"); |
| /// |
| /// // The item is not in the queue anymore, `try_remove` returns `None`. |
| /// let item = delay_queue.try_remove(&key); |
| /// assert!(item.is_none()); |
| /// # } |
| /// ``` |
| pub fn try_remove(&mut self, key: &Key) -> Option<Expired<T>> { |
| if self.slab.contains(key) { |
| Some(self.remove(key)) |
| } else { |
| None |
| } |
| } |
| |
| /// Sets the delay of the item associated with `key` to expire at `when`. |
| /// |
| /// This function is identical to `reset` but takes an `Instant` instead of |
| /// a `Duration`. |
| /// |
| /// The item remains in the queue but the delay is set to expire at `when`. |
| /// If `when` is in the past, then the item is immediately made available to |
| /// the caller. |
| /// |
| /// # Panics |
| /// |
| /// This function panics if `when` is too far in the future or if `key` is |
| /// not contained by the queue. |
| /// |
| /// # Examples |
| /// |
| /// Basic usage |
| /// |
| /// ```rust |
| /// use tokio::time::{Duration, Instant}; |
| /// use tokio_util::time::DelayQueue; |
| /// |
| /// # #[tokio::main] |
| /// # async fn main() { |
| /// let mut delay_queue = DelayQueue::new(); |
| /// let key = delay_queue.insert("foo", Duration::from_secs(5)); |
| /// |
| /// // "foo" is scheduled to be returned in 5 seconds |
| /// |
| /// delay_queue.reset_at(&key, Instant::now() + Duration::from_secs(10)); |
| /// |
| /// // "foo" is now scheduled to be returned in 10 seconds |
| /// # } |
| /// ``` |
| #[track_caller] |
| pub fn reset_at(&mut self, key: &Key, when: Instant) { |
| self.remove_key(key); |
| |
| // Normalize the deadline. Values cannot be set to expire in the past. |
| let when = self.normalize_deadline(when); |
| |
| self.slab[*key].when = when; |
| self.slab[*key].expired = false; |
| |
| self.insert_idx(when, *key); |
| |
| let next_deadline = self.next_deadline(); |
| if let (Some(ref mut delay), Some(deadline)) = (&mut self.delay, next_deadline) { |
| // This should awaken us if necessary (ie, if already expired) |
| delay.as_mut().reset(deadline); |
| } |
| } |
| |
| /// Shrink the capacity of the slab, which `DelayQueue` uses internally for storage allocation. |
| /// This function is not guaranteed to, and in most cases, won't decrease the capacity of the slab |
| /// to the number of elements still contained in it, because elements cannot be moved to a different |
| /// index. To decrease the capacity to the size of the slab use [`compact`]. |
| /// |
| /// This function can take O(n) time even when the capacity cannot be reduced or the allocation is |
| /// shrunk in place. Repeated calls run in O(1) though. |
| /// |
| /// [`compact`]: method@Self::compact |
| pub fn shrink_to_fit(&mut self) { |
| self.slab.shrink_to_fit(); |
| } |
| |
| /// Shrink the capacity of the slab, which `DelayQueue` uses internally for storage allocation, |
| /// to the number of elements that are contained in it. |
| /// |
| /// This methods runs in O(n). |
| /// |
| /// # Examples |
| /// |
| /// Basic usage |
| /// |
| /// ```rust |
| /// use tokio_util::time::DelayQueue; |
| /// use std::time::Duration; |
| /// |
| /// # #[tokio::main] |
| /// # async fn main() { |
| /// let mut delay_queue = DelayQueue::with_capacity(10); |
| /// |
| /// let key1 = delay_queue.insert(5, Duration::from_secs(5)); |
| /// let key2 = delay_queue.insert(10, Duration::from_secs(10)); |
| /// let key3 = delay_queue.insert(15, Duration::from_secs(15)); |
| /// |
| /// delay_queue.remove(&key2); |
| /// |
| /// delay_queue.compact(); |
| /// assert_eq!(delay_queue.capacity(), 2); |
| /// # } |
| /// ``` |
| pub fn compact(&mut self) { |
| self.slab.compact(); |
| } |
| |
| /// Gets the [`Key`] that [`poll_expired`] will pull out of the queue next, without |
| /// pulling it out or waiting for the deadline to expire. |
| /// |
| /// Entries that have already expired may be returned in any order, but it is |
| /// guaranteed that this method returns them in the same order as when items |
| /// are popped from the `DelayQueue`. |
| /// |
| /// # Examples |
| /// |
| /// Basic usage |
| /// |
| /// ```rust |
| /// use tokio_util::time::DelayQueue; |
| /// use std::time::Duration; |
| /// |
| /// # #[tokio::main] |
| /// # async fn main() { |
| /// let mut delay_queue = DelayQueue::new(); |
| /// |
| /// let key1 = delay_queue.insert("foo", Duration::from_secs(10)); |
| /// let key2 = delay_queue.insert("bar", Duration::from_secs(5)); |
| /// let key3 = delay_queue.insert("baz", Duration::from_secs(15)); |
| /// |
| /// assert_eq!(delay_queue.peek().unwrap(), key2); |
| /// # } |
| /// ``` |
| /// |
| /// [`Key`]: struct@Key |
| /// [`poll_expired`]: method@Self::poll_expired |
| pub fn peek(&self) -> Option<Key> { |
| use self::wheel::Stack; |
| |
| self.expired.peek().or_else(|| self.wheel.peek()) |
| } |
| |
| /// Returns the next time to poll as determined by the wheel. |
| /// |
| /// Note that this does not include deadlines in the `expired` queue. |
| fn next_deadline(&self) -> Option<Instant> { |
| self.wheel |
| .poll_at() |
| .map(|poll_at| self.start + Duration::from_millis(poll_at)) |
| } |
| |
| /// Sets the delay of the item associated with `key` to expire after |
| /// `timeout`. |
| /// |
| /// This function is identical to `reset_at` but takes a `Duration` instead |
| /// of an `Instant`. |
| /// |
| /// The item remains in the queue but the delay is set to expire after |
| /// `timeout`. If `timeout` is zero, then the item is immediately made |
| /// available to the caller. |
| /// |
| /// # Panics |
| /// |
| /// This function panics if `timeout` is greater than the maximum supported |
| /// duration or if `key` is not contained by the queue. |
| /// |
| /// # Examples |
| /// |
| /// Basic usage |
| /// |
| /// ```rust |
| /// use tokio_util::time::DelayQueue; |
| /// use std::time::Duration; |
| /// |
| /// # #[tokio::main] |
| /// # async fn main() { |
| /// let mut delay_queue = DelayQueue::new(); |
| /// let key = delay_queue.insert("foo", Duration::from_secs(5)); |
| /// |
| /// // "foo" is scheduled to be returned in 5 seconds |
| /// |
| /// delay_queue.reset(&key, Duration::from_secs(10)); |
| /// |
| /// // "foo"is now scheduled to be returned in 10 seconds |
| /// # } |
| /// ``` |
| #[track_caller] |
| pub fn reset(&mut self, key: &Key, timeout: Duration) { |
| self.reset_at(key, Instant::now() + timeout); |
| } |
| |
| /// Clears the queue, removing all items. |
| /// |
| /// After calling `clear`, [`poll_expired`] will return `Ok(Ready(None))`. |
| /// |
| /// Note that this method has no effect on the allocated capacity. |
| /// |
| /// [`poll_expired`]: method@Self::poll_expired |
| /// |
| /// # Examples |
| /// |
| /// ```rust |
| /// use tokio_util::time::DelayQueue; |
| /// use std::time::Duration; |
| /// |
| /// # #[tokio::main] |
| /// # async fn main() { |
| /// let mut delay_queue = DelayQueue::new(); |
| /// |
| /// delay_queue.insert("foo", Duration::from_secs(5)); |
| /// |
| /// assert!(!delay_queue.is_empty()); |
| /// |
| /// delay_queue.clear(); |
| /// |
| /// assert!(delay_queue.is_empty()); |
| /// # } |
| /// ``` |
| pub fn clear(&mut self) { |
| self.slab.clear(); |
| self.expired = Stack::default(); |
| self.wheel = Wheel::new(); |
| self.delay = None; |
| } |
| |
| /// Returns the number of elements the queue can hold without reallocating. |
| /// |
| /// # Examples |
| /// |
| /// ```rust |
| /// use tokio_util::time::DelayQueue; |
| /// |
| /// let delay_queue: DelayQueue<i32> = DelayQueue::with_capacity(10); |
| /// assert_eq!(delay_queue.capacity(), 10); |
| /// ``` |
| pub fn capacity(&self) -> usize { |
| self.slab.capacity() |
| } |
| |
| /// Returns the number of elements currently in the queue. |
| /// |
| /// # Examples |
| /// |
| /// ```rust |
| /// use tokio_util::time::DelayQueue; |
| /// use std::time::Duration; |
| /// |
| /// # #[tokio::main] |
| /// # async fn main() { |
| /// let mut delay_queue: DelayQueue<i32> = DelayQueue::with_capacity(10); |
| /// assert_eq!(delay_queue.len(), 0); |
| /// delay_queue.insert(3, Duration::from_secs(5)); |
| /// assert_eq!(delay_queue.len(), 1); |
| /// # } |
| /// ``` |
| pub fn len(&self) -> usize { |
| self.slab.len() |
| } |
| |
| /// Reserves capacity for at least `additional` more items to be queued |
| /// without allocating. |
| /// |
| /// `reserve` does nothing if the queue already has sufficient capacity for |
| /// `additional` more values. If more capacity is required, a new segment of |
| /// memory will be allocated and all existing values will be copied into it. |
| /// As such, if the queue is already very large, a call to `reserve` can end |
| /// up being expensive. |
| /// |
| /// The queue may reserve more than `additional` extra space in order to |
| /// avoid frequent reallocations. |
| /// |
| /// # Panics |
| /// |
| /// Panics if the new capacity exceeds the maximum number of entries the |
| /// queue can contain. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use tokio_util::time::DelayQueue; |
| /// use std::time::Duration; |
| /// |
| /// # #[tokio::main] |
| /// # async fn main() { |
| /// let mut delay_queue = DelayQueue::new(); |
| /// |
| /// delay_queue.insert("hello", Duration::from_secs(10)); |
| /// delay_queue.reserve(10); |
| /// |
| /// assert!(delay_queue.capacity() >= 11); |
| /// # } |
| /// ``` |
| #[track_caller] |
| pub fn reserve(&mut self, additional: usize) { |
| assert!( |
| self.slab.capacity() + additional <= MAX_ENTRIES, |
| "max queue capacity exceeded" |
| ); |
| self.slab.reserve(additional); |
| } |
| |
| /// Returns `true` if there are no items in the queue. |
| /// |
| /// Note that this function returns `false` even if all items have not yet |
| /// expired and a call to `poll` will return `Poll::Pending`. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use tokio_util::time::DelayQueue; |
| /// use std::time::Duration; |
| /// |
| /// # #[tokio::main] |
| /// # async fn main() { |
| /// let mut delay_queue = DelayQueue::new(); |
| /// assert!(delay_queue.is_empty()); |
| /// |
| /// delay_queue.insert("hello", Duration::from_secs(5)); |
| /// assert!(!delay_queue.is_empty()); |
| /// # } |
| /// ``` |
| pub fn is_empty(&self) -> bool { |
| self.slab.is_empty() |
| } |
| |
| /// Polls the queue, returning the index of the next slot in the slab that |
| /// should be returned. |
| /// |
| /// A slot should be returned when the associated deadline has been reached. |
| fn poll_idx(&mut self, cx: &mut task::Context<'_>) -> Poll<Option<Key>> { |
| use self::wheel::Stack; |
| |
| let expired = self.expired.pop(&mut self.slab); |
| |
| if expired.is_some() { |
| return Poll::Ready(expired); |
| } |
| |
| loop { |
| if let Some(ref mut delay) = self.delay { |
| if !delay.is_elapsed() { |
| ready!(Pin::new(&mut *delay).poll(cx)); |
| } |
| |
| let now = crate::time::ms(delay.deadline() - self.start, crate::time::Round::Down); |
| |
| self.wheel_now = now; |
| } |
| |
| // We poll the wheel to get the next value out before finding the next deadline. |
| let wheel_idx = self.wheel.poll(self.wheel_now, &mut self.slab); |
| |
| self.delay = self.next_deadline().map(|when| Box::pin(sleep_until(when))); |
| |
| if let Some(idx) = wheel_idx { |
| return Poll::Ready(Some(idx)); |
| } |
| |
| if self.delay.is_none() { |
| return Poll::Ready(None); |
| } |
| } |
| } |
| |
| fn normalize_deadline(&self, when: Instant) -> u64 { |
| let when = if when < self.start { |
| 0 |
| } else { |
| crate::time::ms(when - self.start, crate::time::Round::Up) |
| }; |
| |
| cmp::max(when, self.wheel.elapsed()) |
| } |
| } |
| |
| // We never put `T` in a `Pin`... |
| impl<T> Unpin for DelayQueue<T> {} |
| |
| impl<T> Default for DelayQueue<T> { |
| fn default() -> DelayQueue<T> { |
| DelayQueue::new() |
| } |
| } |
| |
| impl<T> futures_core::Stream for DelayQueue<T> { |
| // DelayQueue seems much more specific, where a user may care that it |
| // has reached capacity, so return those errors instead of panicking. |
| type Item = Expired<T>; |
| |
| fn poll_next(self: Pin<&mut Self>, cx: &mut task::Context<'_>) -> Poll<Option<Self::Item>> { |
| DelayQueue::poll_expired(self.get_mut(), cx) |
| } |
| } |
| |
| impl<T> wheel::Stack for Stack<T> { |
| type Owned = Key; |
| type Borrowed = Key; |
| type Store = SlabStorage<T>; |
| |
| fn is_empty(&self) -> bool { |
| self.head.is_none() |
| } |
| |
| fn push(&mut self, item: Self::Owned, store: &mut Self::Store) { |
| // Ensure the entry is not already in a stack. |
| debug_assert!(store[item].next.is_none()); |
| debug_assert!(store[item].prev.is_none()); |
| |
| // Remove the old head entry |
| let old = self.head.take(); |
| |
| if let Some(idx) = old { |
| store[idx].prev = Some(item); |
| } |
| |
| store[item].next = old; |
| self.head = Some(item); |
| } |
| |
| fn pop(&mut self, store: &mut Self::Store) -> Option<Self::Owned> { |
| if let Some(key) = self.head { |
| self.head = store[key].next; |
| |
| if let Some(idx) = self.head { |
| store[idx].prev = None; |
| } |
| |
| store[key].next = None; |
| debug_assert!(store[key].prev.is_none()); |
| |
| Some(key) |
| } else { |
| None |
| } |
| } |
| |
| fn peek(&self) -> Option<Self::Owned> { |
| self.head |
| } |
| |
| #[track_caller] |
| fn remove(&mut self, item: &Self::Borrowed, store: &mut Self::Store) { |
| let key = *item; |
| assert!(store.contains(item)); |
| |
| // Ensure that the entry is in fact contained by the stack |
| debug_assert!({ |
| // This walks the full linked list even if an entry is found. |
| let mut next = self.head; |
| let mut contains = false; |
| |
| while let Some(idx) = next { |
| let data = &store[idx]; |
| |
| if idx == *item { |
| debug_assert!(!contains); |
| contains = true; |
| } |
| |
| next = data.next; |
| } |
| |
| contains |
| }); |
| |
| if let Some(next) = store[key].next { |
| store[next].prev = store[key].prev; |
| } |
| |
| if let Some(prev) = store[key].prev { |
| store[prev].next = store[key].next; |
| } else { |
| self.head = store[key].next; |
| } |
| |
| store[key].next = None; |
| store[key].prev = None; |
| } |
| |
| fn when(item: &Self::Borrowed, store: &Self::Store) -> u64 { |
| store[*item].when |
| } |
| } |
| |
| impl<T> Default for Stack<T> { |
| fn default() -> Stack<T> { |
| Stack { |
| head: None, |
| _p: PhantomData, |
| } |
| } |
| } |
| |
| impl Key { |
| pub(crate) fn new(index: usize) -> Key { |
| Key { index } |
| } |
| } |
| |
| impl KeyInternal { |
| pub(crate) fn new(index: usize) -> KeyInternal { |
| KeyInternal { index } |
| } |
| } |
| |
| impl From<Key> for KeyInternal { |
| fn from(item: Key) -> Self { |
| KeyInternal::new(item.index) |
| } |
| } |
| |
| impl From<KeyInternal> for Key { |
| fn from(item: KeyInternal) -> Self { |
| Key::new(item.index) |
| } |
| } |
| |
| impl<T> Expired<T> { |
| /// Returns a reference to the inner value. |
| pub fn get_ref(&self) -> &T { |
| &self.data |
| } |
| |
| /// Returns a mutable reference to the inner value. |
| pub fn get_mut(&mut self) -> &mut T { |
| &mut self.data |
| } |
| |
| /// Consumes `self` and returns the inner value. |
| pub fn into_inner(self) -> T { |
| self.data |
| } |
| |
| /// Returns the deadline that the expiration was set to. |
| pub fn deadline(&self) -> Instant { |
| self.deadline |
| } |
| |
| /// Returns the key that the expiration is indexed by. |
| pub fn key(&self) -> Key { |
| self.key |
| } |
| } |