| use crate::{ |
| address::{AccessSize, AddressSpace, GenericAddress, RawGenericAddress}, |
| sdt::{ExtendedField, SdtHeader, Signature}, |
| AcpiError, |
| AcpiTable, |
| }; |
| use bit_field::BitField; |
| |
| #[derive(Debug, Clone, Copy, PartialEq, Eq)] |
| pub enum PowerProfile { |
| Unspecified, |
| Desktop, |
| Mobile, |
| Workstation, |
| EnterpriseServer, |
| SohoServer, |
| AppliancePc, |
| PerformanceServer, |
| Tablet, |
| Reserved(u8), |
| } |
| |
| /// Represents the Fixed ACPI Description Table (FADT). This table contains various fixed hardware |
| /// details, such as the addresses of the hardware register blocks. It also contains a pointer to |
| /// the Differentiated Definition Block (DSDT). |
| /// |
| /// In cases where the FADT contains both a 32-bit and 64-bit field for the same address, we should |
| /// always prefer the 64-bit one. Only if it's zero or the CPU will not allow us to access that |
| /// address should the 32-bit one be used. |
| #[repr(C, packed)] |
| #[derive(Debug, Clone, Copy)] |
| pub struct Fadt { |
| header: SdtHeader, |
| |
| firmware_ctrl: u32, |
| dsdt_address: u32, |
| |
| // Used in acpi 1.0; compatibility only, should be zero |
| _reserved: u8, |
| |
| preferred_pm_profile: u8, |
| /// On systems with an i8259 PIC, this is the vector the System Control Interrupt (SCI) is wired to. On other systems, this is |
| /// the Global System Interrupt (GSI) number of the SCI. |
| /// |
| /// The SCI should be treated as a sharable, level, active-low interrupt. |
| pub sci_interrupt: u16, |
| /// The system port address of the SMI Command Port. This port should only be accessed from the boot processor. |
| /// A value of `0` indicates that System Management Mode is not supported. |
| /// |
| /// - Writing the value in `acpi_enable` to this port will transfer control of the ACPI hardware registers |
| /// from the firmware to the OS. You must synchronously wait for the transfer to complete, indicated by the |
| /// setting of `SCI_EN`. |
| /// - Writing the value in `acpi_disable` will relinquish ownership of the hardware registers to the |
| /// firmware. This should only be done if you've previously acquired ownership. Before writing this value, |
| /// the OS should mask all SCI interrupts and clear the `SCI_EN` bit. |
| /// - Writing the value in `s4bios_req` requests that the firmware enter the S4 state through the S4BIOS |
| /// feature. This is only supported if the `S4BIOS_F` flag in the FACS is set. |
| /// - Writing the value in `pstate_control` yields control of the processor performance state to the OS. |
| /// If this field is `0`, this feature is not supported. |
| /// - Writing the value in `c_state_control` tells the firmware that the OS supports `_CST` AML objects and |
| /// notifications of C State changes. |
| pub smi_cmd_port: u32, |
| pub acpi_enable: u8, |
| pub acpi_disable: u8, |
| pub s4bios_req: u8, |
| pub pstate_control: u8, |
| pm1a_event_block: u32, |
| pm1b_event_block: u32, |
| pm1a_control_block: u32, |
| pm1b_control_block: u32, |
| pm2_control_block: u32, |
| pm_timer_block: u32, |
| gpe0_block: u32, |
| gpe1_block: u32, |
| pm1_event_length: u8, |
| pm1_control_length: u8, |
| pm2_control_length: u8, |
| pm_timer_length: u8, |
| gpe0_block_length: u8, |
| gpe1_block_length: u8, |
| pub gpe1_base: u8, |
| pub c_state_control: u8, |
| /// The worst-case latency to enter and exit the C2 state, in microseconds. A value `>100` indicates that the |
| /// system does not support the C2 state. |
| pub worst_c2_latency: u16, |
| /// The worst-case latency to enter and exit the C3 state, in microseconds. A value `>1000` indicates that the |
| /// system does not support the C3 state. |
| pub worst_c3_latency: u16, |
| pub flush_size: u16, |
| pub flush_stride: u16, |
| pub duty_offset: u8, |
| pub duty_width: u8, |
| pub day_alarm: u8, |
| pub month_alarm: u8, |
| pub century: u8, |
| pub iapc_boot_arch: IaPcBootArchFlags, |
| _reserved2: u8, // must be 0 |
| pub flags: FixedFeatureFlags, |
| reset_reg: RawGenericAddress, |
| pub reset_value: u8, |
| pub arm_boot_arch: ArmBootArchFlags, |
| fadt_minor_version: u8, |
| x_firmware_ctrl: ExtendedField<u64, 2>, |
| x_dsdt_address: ExtendedField<u64, 2>, |
| x_pm1a_event_block: ExtendedField<RawGenericAddress, 2>, |
| x_pm1b_event_block: ExtendedField<RawGenericAddress, 2>, |
| x_pm1a_control_block: ExtendedField<RawGenericAddress, 2>, |
| x_pm1b_control_block: ExtendedField<RawGenericAddress, 2>, |
| x_pm2_control_block: ExtendedField<RawGenericAddress, 2>, |
| x_pm_timer_block: ExtendedField<RawGenericAddress, 2>, |
| x_gpe0_block: ExtendedField<RawGenericAddress, 2>, |
| x_gpe1_block: ExtendedField<RawGenericAddress, 2>, |
| sleep_control_reg: ExtendedField<RawGenericAddress, 2>, |
| sleep_status_reg: ExtendedField<RawGenericAddress, 2>, |
| hypervisor_vendor_id: ExtendedField<u64, 2>, |
| } |
| |
| /// ### Safety: Implementation properly represents a valid FADT. |
| unsafe impl AcpiTable for Fadt { |
| const SIGNATURE: Signature = Signature::FADT; |
| |
| fn header(&self) -> &SdtHeader { |
| &self.header |
| } |
| } |
| |
| impl Fadt { |
| pub fn validate(&self) -> Result<(), AcpiError> { |
| self.header.validate(crate::sdt::Signature::FADT) |
| } |
| |
| pub fn facs_address(&self) -> Result<usize, AcpiError> { |
| unsafe { |
| { self.x_firmware_ctrl } |
| .access(self.header.revision) |
| .filter(|&p| p != 0) |
| .or(Some(self.firmware_ctrl as u64)) |
| .filter(|&p| p != 0) |
| .map(|p| p as usize) |
| .ok_or(AcpiError::InvalidFacsAddress) |
| } |
| } |
| |
| pub fn dsdt_address(&self) -> Result<usize, AcpiError> { |
| unsafe { |
| { self.x_dsdt_address } |
| .access(self.header.revision) |
| .filter(|&p| p != 0) |
| .or(Some(self.dsdt_address as u64)) |
| .filter(|&p| p != 0) |
| .map(|p| p as usize) |
| .ok_or(AcpiError::InvalidDsdtAddress) |
| } |
| } |
| |
| pub fn power_profile(&self) -> PowerProfile { |
| match self.preferred_pm_profile { |
| 0 => PowerProfile::Unspecified, |
| 1 => PowerProfile::Desktop, |
| 2 => PowerProfile::Mobile, |
| 3 => PowerProfile::Workstation, |
| 4 => PowerProfile::EnterpriseServer, |
| 5 => PowerProfile::SohoServer, |
| 6 => PowerProfile::AppliancePc, |
| 7 => PowerProfile::PerformanceServer, |
| 8 => PowerProfile::Tablet, |
| other => PowerProfile::Reserved(other), |
| } |
| } |
| |
| pub fn pm1a_event_block(&self) -> Result<GenericAddress, AcpiError> { |
| if let Some(raw) = unsafe { self.x_pm1a_event_block.access(self.header().revision) } { |
| if raw.address != 0x0 { |
| return GenericAddress::from_raw(raw); |
| } |
| } |
| |
| Ok(GenericAddress { |
| address_space: AddressSpace::SystemIo, |
| bit_width: self.pm1_event_length * 8, |
| bit_offset: 0, |
| access_size: AccessSize::Undefined, |
| address: self.pm1a_event_block.into(), |
| }) |
| } |
| |
| pub fn pm1b_event_block(&self) -> Result<Option<GenericAddress>, AcpiError> { |
| if let Some(raw) = unsafe { self.x_pm1b_event_block.access(self.header().revision) } { |
| if raw.address != 0x0 { |
| return Ok(Some(GenericAddress::from_raw(raw)?)); |
| } |
| } |
| |
| if self.pm1b_event_block != 0 { |
| Ok(Some(GenericAddress { |
| address_space: AddressSpace::SystemIo, |
| bit_width: self.pm1_event_length * 8, |
| bit_offset: 0, |
| access_size: AccessSize::Undefined, |
| address: self.pm1b_event_block.into(), |
| })) |
| } else { |
| Ok(None) |
| } |
| } |
| |
| pub fn pm1a_control_block(&self) -> Result<GenericAddress, AcpiError> { |
| if let Some(raw) = unsafe { self.x_pm1a_control_block.access(self.header().revision) } { |
| if raw.address != 0x0 { |
| return GenericAddress::from_raw(raw); |
| } |
| } |
| |
| Ok(GenericAddress { |
| address_space: AddressSpace::SystemIo, |
| bit_width: self.pm1_control_length * 8, |
| bit_offset: 0, |
| access_size: AccessSize::Undefined, |
| address: self.pm1a_control_block.into(), |
| }) |
| } |
| |
| pub fn pm1b_control_block(&self) -> Result<Option<GenericAddress>, AcpiError> { |
| if let Some(raw) = unsafe { self.x_pm1b_control_block.access(self.header().revision) } { |
| if raw.address != 0x0 { |
| return Ok(Some(GenericAddress::from_raw(raw)?)); |
| } |
| } |
| |
| if self.pm1b_control_block != 0 { |
| Ok(Some(GenericAddress { |
| address_space: AddressSpace::SystemIo, |
| bit_width: self.pm1_control_length * 8, |
| bit_offset: 0, |
| access_size: AccessSize::Undefined, |
| address: self.pm1b_control_block.into(), |
| })) |
| } else { |
| Ok(None) |
| } |
| } |
| |
| pub fn pm2_control_block(&self) -> Result<Option<GenericAddress>, AcpiError> { |
| if let Some(raw) = unsafe { self.x_pm2_control_block.access(self.header().revision) } { |
| if raw.address != 0x0 { |
| return Ok(Some(GenericAddress::from_raw(raw)?)); |
| } |
| } |
| |
| if self.pm2_control_block != 0 { |
| Ok(Some(GenericAddress { |
| address_space: AddressSpace::SystemIo, |
| bit_width: self.pm2_control_length * 8, |
| bit_offset: 0, |
| access_size: AccessSize::Undefined, |
| address: self.pm2_control_block.into(), |
| })) |
| } else { |
| Ok(None) |
| } |
| } |
| |
| /// Attempts to parse the FADT's PWM timer blocks, first returning the extended block, and falling back to |
| /// parsing the legacy block into a `GenericAddress`. |
| pub fn pm_timer_block(&self) -> Result<Option<GenericAddress>, AcpiError> { |
| // ACPI spec indicates `PM_TMR_LEN` should be 4, or otherwise the PM_TMR is not supported. |
| if self.pm_timer_length != 4 { |
| return Ok(None); |
| } |
| |
| if let Some(raw) = unsafe { self.x_pm_timer_block.access(self.header().revision) } { |
| if raw.address != 0x0 { |
| return Ok(Some(GenericAddress::from_raw(raw)?)); |
| } |
| } |
| |
| if self.pm_timer_block != 0 { |
| Ok(Some(GenericAddress { |
| address_space: AddressSpace::SystemIo, |
| bit_width: 32, |
| bit_offset: 0, |
| access_size: AccessSize::Undefined, |
| address: self.pm_timer_block.into(), |
| })) |
| } else { |
| Ok(None) |
| } |
| } |
| |
| pub fn gpe0_block(&self) -> Result<Option<GenericAddress>, AcpiError> { |
| if let Some(raw) = unsafe { self.x_gpe0_block.access(self.header().revision) } { |
| if raw.address != 0x0 { |
| return Ok(Some(GenericAddress::from_raw(raw)?)); |
| } |
| } |
| |
| if self.gpe0_block != 0 { |
| Ok(Some(GenericAddress { |
| address_space: AddressSpace::SystemIo, |
| bit_width: self.gpe0_block_length * 8, |
| bit_offset: 0, |
| access_size: AccessSize::Undefined, |
| address: self.gpe0_block.into(), |
| })) |
| } else { |
| Ok(None) |
| } |
| } |
| |
| pub fn gpe1_block(&self) -> Result<Option<GenericAddress>, AcpiError> { |
| if let Some(raw) = unsafe { self.x_gpe1_block.access(self.header().revision) } { |
| if raw.address != 0x0 { |
| return Ok(Some(GenericAddress::from_raw(raw)?)); |
| } |
| } |
| |
| if self.gpe1_block != 0 { |
| Ok(Some(GenericAddress { |
| address_space: AddressSpace::SystemIo, |
| bit_width: self.gpe1_block_length * 8, |
| bit_offset: 0, |
| access_size: AccessSize::Undefined, |
| address: self.gpe1_block.into(), |
| })) |
| } else { |
| Ok(None) |
| } |
| } |
| |
| pub fn reset_register(&self) -> Result<GenericAddress, AcpiError> { |
| GenericAddress::from_raw(self.reset_reg) |
| } |
| |
| pub fn sleep_control_register(&self) -> Result<Option<GenericAddress>, AcpiError> { |
| if let Some(raw) = unsafe { self.sleep_control_reg.access(self.header().revision) } { |
| Ok(Some(GenericAddress::from_raw(raw)?)) |
| } else { |
| Ok(None) |
| } |
| } |
| |
| pub fn sleep_status_register(&self) -> Result<Option<GenericAddress>, AcpiError> { |
| if let Some(raw) = unsafe { self.sleep_status_reg.access(self.header().revision) } { |
| Ok(Some(GenericAddress::from_raw(raw)?)) |
| } else { |
| Ok(None) |
| } |
| } |
| } |
| |
| #[derive(Clone, Copy, Debug)] |
| pub struct FixedFeatureFlags(u32); |
| |
| impl FixedFeatureFlags { |
| /// If true, an equivalent to the x86 [WBINVD](https://www.felixcloutier.com/x86/wbinvd) instruction is supported. |
| /// All caches will be flushed and invalidated upon completion of this instruction, |
| /// and memory coherency is properly maintained. The cache *SHALL* only contain what OSPM references or allows to be cached. |
| pub fn supports_equivalent_to_wbinvd(&self) -> bool { |
| self.0.get_bit(0) |
| } |
| |
| /// If true, [WBINVD](https://www.felixcloutier.com/x86/wbinvd) properly flushes all caches and memory coherency is maintained, but caches may not be invalidated. |
| pub fn wbinvd_flushes_all_caches(&self) -> bool { |
| self.0.get_bit(1) |
| } |
| |
| /// If true, all processors implement the C1 power state. |
| pub fn all_procs_support_c1_power_state(&self) -> bool { |
| self.0.get_bit(2) |
| } |
| |
| /// If true, the C2 power state is configured to work on a uniprocessor and multiprocessor system. |
| pub fn c2_configured_for_mp_system(&self) -> bool { |
| self.0.get_bit(3) |
| } |
| |
| /// If true, the power button is handled as a control method device. |
| /// If false, the power button is handled as a fixed-feature programming model. |
| pub fn power_button_is_control_method(&self) -> bool { |
| self.0.get_bit(4) |
| } |
| |
| /// If true, the sleep button is handled as a control method device. |
| /// If false, the sleep button is handled as a fixed-feature programming model. |
| pub fn sleep_button_is_control_method(&self) -> bool { |
| self.0.get_bit(5) |
| } |
| |
| /// If true, the RTC wake status is not supported in fixed register space. |
| pub fn no_rtc_wake_in_fixed_register_space(&self) -> bool { |
| self.0.get_bit(6) |
| } |
| |
| /// If true, the RTC alarm function can wake the system from an S4 sleep state. |
| pub fn rtc_wakes_system_from_s4(&self) -> bool { |
| self.0.get_bit(7) |
| } |
| |
| /// If true, indicates that the PM timer is a 32-bit value. |
| /// If false, the PM timer is a 24-bit value and the remaining 8 bits are clear. |
| pub fn pm_timer_is_32_bit(&self) -> bool { |
| self.0.get_bit(8) |
| } |
| |
| /// If true, the system supports docking. |
| pub fn supports_docking(&self) -> bool { |
| self.0.get_bit(9) |
| } |
| |
| /// If true, the system supports system reset via the reset_reg field of the FADT. |
| pub fn supports_system_reset_via_fadt(&self) -> bool { |
| self.0.get_bit(10) |
| } |
| |
| /// If true, the system supports no expansion capabilities and the case is sealed. |
| pub fn case_is_sealed(&self) -> bool { |
| self.0.get_bit(11) |
| } |
| |
| /// If true, the system cannot detect the monitor or keyboard/mouse devices. |
| pub fn system_is_headless(&self) -> bool { |
| self.0.get_bit(12) |
| } |
| |
| /// If true, OSPM must use a processor instruction after writing to the SLP_TYPx register. |
| pub fn use_instr_after_write_to_slp_typx(&self) -> bool { |
| self.0.get_bit(13) |
| } |
| |
| /// If set, the platform supports the `PCIEXP_WAKE_STS` and `PCIEXP_WAKE_EN` bits in the PM1 status and enable registers. |
| pub fn supports_pciexp_wake_in_pm1(&self) -> bool { |
| self.0.get_bit(14) |
| } |
| |
| /// If true, OSPM should use the ACPI power management timer or HPET for monotonically-decreasing timers. |
| pub fn use_pm_or_hpet_for_monotonically_decreasing_timers(&self) -> bool { |
| self.0.get_bit(15) |
| } |
| |
| /// If true, the contents of the `RTC_STS` register are valid after wakeup from S4. |
| pub fn rtc_sts_is_valid_after_wakeup_from_s4(&self) -> bool { |
| self.0.get_bit(16) |
| } |
| |
| /// If true, the platform supports OSPM leaving GPE wake events armed prior to an S5 transition. |
| pub fn ospm_may_leave_gpe_wake_events_armed_before_s5(&self) -> bool { |
| self.0.get_bit(17) |
| } |
| |
| /// If true, all LAPICs must be configured using the cluster destination model when delivering interrupts in logical mode. |
| pub fn lapics_must_use_cluster_model_for_logical_mode(&self) -> bool { |
| self.0.get_bit(18) |
| } |
| |
| /// If true, all LXAPICs must be configured using physical destination mode. |
| pub fn local_xapics_must_use_physical_destination_mode(&self) -> bool { |
| self.0.get_bit(19) |
| } |
| |
| /// If true, this system is a hardware-reduced ACPI platform, and software methods are used for fixed-feature functions defined in chapter 4 of the ACPI specification. |
| pub fn system_is_hw_reduced_acpi(&self) -> bool { |
| self.0.get_bit(20) |
| } |
| |
| /// If true, the system can achieve equal or better power savings in an S0 power state, making an S3 transition useless. |
| pub fn no_benefit_to_s3(&self) -> bool { |
| self.0.get_bit(21) |
| } |
| } |
| |
| #[derive(Clone, Copy, Debug)] |
| pub struct IaPcBootArchFlags(u16); |
| |
| impl IaPcBootArchFlags { |
| /// If true, legacy user-accessible devices are available on the LPC and/or ISA buses. |
| pub fn legacy_devices_are_accessible(&self) -> bool { |
| self.0.get_bit(0) |
| } |
| |
| /// If true, the motherboard exposes an IO port 60/64 keyboard controller, typically implemented as an 8042 microcontroller. |
| pub fn motherboard_implements_8042(&self) -> bool { |
| self.0.get_bit(1) |
| } |
| |
| /// If true, OSPM *must not* blindly probe VGA hardware. |
| /// VGA hardware is at MMIO addresses A0000h-BFFFFh and IO ports 3B0h-3BBh and 3C0h-3DFh. |
| pub fn dont_probe_vga(&self) -> bool { |
| self.0.get_bit(2) |
| } |
| |
| /// If true, OSPM *must not* enable message-signaled interrupts. |
| pub fn dont_enable_msi(&self) -> bool { |
| self.0.get_bit(3) |
| } |
| |
| /// If true, OSPM *must not* enable PCIe ASPM control. |
| pub fn dont_enable_pcie_aspm(&self) -> bool { |
| self.0.get_bit(4) |
| } |
| |
| /// If true, OSPM *must not* use the RTC via its IO ports, either because it isn't implemented or is at other addresses; |
| /// instead, OSPM *MUST* use the time and alarm namespace device control method. |
| pub fn use_time_and_alarm_namespace_for_rtc(&self) -> bool { |
| self.0.get_bit(5) |
| } |
| } |
| |
| #[derive(Clone, Copy, Debug)] |
| pub struct ArmBootArchFlags(u16); |
| |
| impl ArmBootArchFlags { |
| /// If true, the system implements PSCI. |
| pub fn implements_psci(&self) -> bool { |
| self.0.get_bit(0) |
| } |
| |
| /// If true, OSPM must use HVC instead of SMC as the PSCI conduit. |
| pub fn use_hvc_as_psci_conduit(&self) -> bool { |
| self.0.get_bit(1) |
| } |
| } |