| // Copyright 2014 The Rust Project Developers. See the COPYRIGHT |
| // file at the top-level directory of this distribution and at |
| // http://rust-lang.org/COPYRIGHT. |
| // |
| // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or |
| // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license |
| // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your |
| // option. This file may not be copied, modified, or distributed |
| // except according to those terms. |
| |
| //! A typesafe bitmask flag generator useful for sets of C-style flags. |
| //! It can be used for creating ergonomic wrappers around C APIs. |
| //! |
| //! The `bitflags!` macro generates `struct`s that manage a set of flags. The |
| //! type of those flags must be some primitive integer. |
| //! |
| //! # Examples |
| //! |
| //! ``` |
| //! use bitflags::bitflags; |
| //! |
| //! bitflags! { |
| //! #[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)] |
| //! struct Flags: u32 { |
| //! const A = 0b00000001; |
| //! const B = 0b00000010; |
| //! const C = 0b00000100; |
| //! const ABC = Self::A.bits() | Self::B.bits() | Self::C.bits(); |
| //! } |
| //! } |
| //! |
| //! fn main() { |
| //! let e1 = Flags::A | Flags::C; |
| //! let e2 = Flags::B | Flags::C; |
| //! assert_eq!((e1 | e2), Flags::ABC); // union |
| //! assert_eq!((e1 & e2), Flags::C); // intersection |
| //! assert_eq!((e1 - e2), Flags::A); // set difference |
| //! assert_eq!(!e2, Flags::A); // set complement |
| //! } |
| //! ``` |
| //! |
| //! See [`example_generated::Flags`](./example_generated/struct.Flags.html) for documentation of code |
| //! generated by the above `bitflags!` expansion. |
| //! |
| //! # Visibility |
| //! |
| //! The `bitflags!` macro supports visibility, just like you'd expect when writing a normal |
| //! Rust `struct`: |
| //! |
| //! ``` |
| //! mod example { |
| //! use bitflags::bitflags; |
| //! |
| //! bitflags! { |
| //! #[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)] |
| //! pub struct Flags1: u32 { |
| //! const A = 0b00000001; |
| //! } |
| //! |
| //! #[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)] |
| //! # pub |
| //! struct Flags2: u32 { |
| //! const B = 0b00000010; |
| //! } |
| //! } |
| //! } |
| //! |
| //! fn main() { |
| //! let flag1 = example::Flags1::A; |
| //! let flag2 = example::Flags2::B; // error: const `B` is private |
| //! } |
| //! ``` |
| //! |
| //! # Attributes |
| //! |
| //! Attributes can be attached to the generated flags types and their constants as normal. |
| //! |
| //! # Representation |
| //! |
| //! It's valid to add a `#[repr(C)]` or `#[repr(transparent)]` attribute to a generated flags type. |
| //! The generated flags type is always guaranteed to be a newtype where its only field has the same |
| //! ABI as the underlying integer type. |
| //! |
| //! In this example, `Flags` has the same ABI as `u32`: |
| //! |
| //! ``` |
| //! use bitflags::bitflags; |
| //! |
| //! bitflags! { |
| //! #[repr(transparent)] |
| //! #[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)] |
| //! struct Flags: u32 { |
| //! const A = 0b00000001; |
| //! const B = 0b00000010; |
| //! const C = 0b00000100; |
| //! } |
| //! } |
| //! ``` |
| //! |
| //! # Extending |
| //! |
| //! Generated flags types belong to you, so you can add trait implementations to them outside |
| //! of what the `bitflags!` macro gives: |
| //! |
| //! ``` |
| //! use std::fmt; |
| //! |
| //! use bitflags::bitflags; |
| //! |
| //! bitflags! { |
| //! #[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)] |
| //! struct Flags: u32 { |
| //! const A = 0b00000001; |
| //! const B = 0b00000010; |
| //! } |
| //! } |
| //! |
| //! impl Flags { |
| //! pub fn clear(&mut self) { |
| //! *self.0.bits_mut() = 0; |
| //! } |
| //! } |
| //! |
| //! fn main() { |
| //! let mut flags = Flags::A | Flags::B; |
| //! |
| //! flags.clear(); |
| //! assert!(flags.is_empty()); |
| //! |
| //! assert_eq!(format!("{:?}", Flags::A | Flags::B), "Flags(A | B)"); |
| //! assert_eq!(format!("{:?}", Flags::B), "Flags(B)"); |
| //! } |
| //! ``` |
| //! |
| //! # What's implemented by `bitflags!` |
| //! |
| //! The `bitflags!` macro adds some trait implementations and inherent methods |
| //! to generated flags types, but leaves room for you to choose the semantics |
| //! of others. |
| //! |
| //! ## Iterators |
| //! |
| //! The following iterator traits are implemented for generated flags types: |
| //! |
| //! - `Extend`: adds the union of the instances iterated over. |
| //! - `FromIterator`: calculates the union. |
| //! - `IntoIterator`: iterates over set flag values. |
| //! |
| //! ## Formatting |
| //! |
| //! The following formatting traits are implemented for generated flags types: |
| //! |
| //! - `Binary`. |
| //! - `LowerHex` and `UpperHex`. |
| //! - `Octal`. |
| //! |
| //! Also see the _Debug and Display_ section for details about standard text |
| //! representations for flags types. |
| //! |
| //! ## Operators |
| //! |
| //! The following operator traits are implemented for the generated `struct`s: |
| //! |
| //! - `BitOr` and `BitOrAssign`: union |
| //! - `BitAnd` and `BitAndAssign`: intersection |
| //! - `BitXor` and `BitXorAssign`: toggle |
| //! - `Sub` and `SubAssign`: set difference |
| //! - `Not`: set complement |
| //! |
| //! ## Methods |
| //! |
| //! The following methods are defined for the generated `struct`s: |
| //! |
| //! - `empty`: an empty set of flags |
| //! - `all`: the set of all defined flags |
| //! - `bits`: the raw value of the flags currently stored |
| //! - `from_bits`: convert from underlying bit representation, unless that |
| //! representation contains bits that do not correspond to a |
| //! defined flag |
| //! - `from_bits_truncate`: convert from underlying bit representation, dropping |
| //! any bits that do not correspond to defined flags |
| //! - `from_bits_retain`: convert from underlying bit representation, keeping |
| //! all bits (even those not corresponding to defined |
| //! flags) |
| //! - `is_empty`: `true` if no flags are currently stored |
| //! - `is_all`: `true` if currently set flags exactly equal all defined flags |
| //! - `intersects`: `true` if there are flags common to both `self` and `other` |
| //! - `contains`: `true` if all of the flags in `other` are contained within `self` |
| //! - `insert`: inserts the specified flags in-place |
| //! - `remove`: removes the specified flags in-place |
| //! - `toggle`: the specified flags will be inserted if not present, and removed |
| //! if they are. |
| //! - `set`: inserts or removes the specified flags depending on the passed value |
| //! - `intersection`: returns a new set of flags, containing only the flags present |
| //! in both `self` and `other` (the argument to the function). |
| //! - `union`: returns a new set of flags, containing any flags present in |
| //! either `self` or `other` (the argument to the function). |
| //! - `difference`: returns a new set of flags, containing all flags present in |
| //! `self` without any of the flags present in `other` (the |
| //! argument to the function). |
| //! - `symmetric_difference`: returns a new set of flags, containing all flags |
| //! present in either `self` or `other` (the argument |
| //! to the function), but not both. |
| //! - `complement`: returns a new set of flags, containing all flags which are |
| //! not set in `self`, but which are allowed for this type. |
| //! |
| //! # What's not implemented by `bitflags!` |
| //! |
| //! Some functionality is not automatically implemented for generated flags types |
| //! by the `bitflags!` macro, even when it reasonably could be. This is so callers |
| //! have more freedom to decide on the semantics of their flags types. |
| //! |
| //! ## `Clone` and `Copy` |
| //! |
| //! Generated flags types are not automatically copyable, even though they can always |
| //! derive both `Clone` and `Copy`. |
| //! |
| //! ## `Default` |
| //! |
| //! The `Default` trait is not automatically implemented for the generated structs. |
| //! |
| //! If your default value is equal to `0` (which is the same value as calling `empty()` |
| //! on the generated struct), you can simply derive `Default`: |
| //! |
| //! ``` |
| //! use bitflags::bitflags; |
| //! |
| //! bitflags! { |
| //! // Results in default value with bits: 0 |
| //! #[derive(Default, Clone, Copy, Debug, PartialEq, Eq, Hash)] |
| //! struct Flags: u32 { |
| //! const A = 0b00000001; |
| //! const B = 0b00000010; |
| //! const C = 0b00000100; |
| //! } |
| //! } |
| //! |
| //! fn main() { |
| //! let derived_default: Flags = Default::default(); |
| //! assert_eq!(derived_default.bits(), 0); |
| //! } |
| //! ``` |
| //! |
| //! If your default value is not equal to `0` you need to implement `Default` yourself: |
| //! |
| //! ``` |
| //! use bitflags::bitflags; |
| //! |
| //! bitflags! { |
| //! #[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)] |
| //! struct Flags: u32 { |
| //! const A = 0b00000001; |
| //! const B = 0b00000010; |
| //! const C = 0b00000100; |
| //! } |
| //! } |
| //! |
| //! // explicit `Default` implementation |
| //! impl Default for Flags { |
| //! fn default() -> Flags { |
| //! Flags::A | Flags::C |
| //! } |
| //! } |
| //! |
| //! fn main() { |
| //! let implemented_default: Flags = Default::default(); |
| //! assert_eq!(implemented_default, (Flags::A | Flags::C)); |
| //! } |
| //! ``` |
| //! |
| //! ## `Debug` and `Display` |
| //! |
| //! The `Debug` trait can be derived for a reasonable implementation. This library defines a standard |
| //! text-based representation for flags that generated flags types can use. For details on the exact |
| //! grammar, see the [`parser`] module. |
| //! |
| //! To support formatting and parsing your generated flags types using that representation, you can implement |
| //! the standard `Display` and `FromStr` traits in this fashion: |
| //! |
| //! ``` |
| //! use bitflags::bitflags; |
| //! use std::{fmt, str}; |
| //! |
| //! bitflags! { |
| //! pub struct Flags: u32 { |
| //! const A = 1; |
| //! const B = 2; |
| //! const C = 4; |
| //! const D = 8; |
| //! } |
| //! } |
| //! |
| //! impl fmt::Debug for Flags { |
| //! fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { |
| //! fmt::Debug::fmt(&self.0, f) |
| //! } |
| //! } |
| //! |
| //! impl fmt::Display for Flags { |
| //! fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { |
| //! fmt::Display::fmt(&self.0, f) |
| //! } |
| //! } |
| //! |
| //! impl str::FromStr for Flags { |
| //! type Err = bitflags::parser::ParseError; |
| //! |
| //! fn from_str(flags: &str) -> Result<Self, Self::Err> { |
| //! Ok(Self(flags.parse()?)) |
| //! } |
| //! } |
| //! ``` |
| //! |
| //! ## `PartialEq` and `PartialOrd` |
| //! |
| //! Equality and ordering can be derived for a reasonable implementation, or implemented manually |
| //! for different semantics. |
| //! |
| //! # Edge cases |
| //! |
| //! ## Zero Flags |
| //! |
| //! Flags with a value equal to zero will have some strange behavior that one should be aware of. |
| //! |
| //! ``` |
| //! use bitflags::bitflags; |
| //! |
| //! bitflags! { |
| //! #[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)] |
| //! struct Flags: u32 { |
| //! const NONE = 0b00000000; |
| //! const SOME = 0b00000001; |
| //! } |
| //! } |
| //! |
| //! fn main() { |
| //! let empty = Flags::empty(); |
| //! let none = Flags::NONE; |
| //! let some = Flags::SOME; |
| //! |
| //! // Zero flags are treated as always present |
| //! assert!(empty.contains(Flags::NONE)); |
| //! assert!(none.contains(Flags::NONE)); |
| //! assert!(some.contains(Flags::NONE)); |
| //! |
| //! // Zero flags will be ignored when testing for emptiness |
| //! assert!(none.is_empty()); |
| //! } |
| //! ``` |
| //! |
| //! Users should generally avoid defining a flag with a value of zero. |
| //! |
| //! ## Multi-bit Flags |
| //! |
| //! It is allowed to define a flag with multiple bits set, however such |
| //! flags are _not_ treated as a set where any of those bits is a valid |
| //! flag. Instead, each flag is treated as a unit when converting from |
| //! bits with [`from_bits`] or [`from_bits_truncate`]. |
| //! |
| //! ``` |
| //! use bitflags::bitflags; |
| //! |
| //! bitflags! { |
| //! #[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)] |
| //! struct Flags: u8 { |
| //! const F3 = 0b00000011; |
| //! } |
| //! } |
| //! |
| //! fn main() { |
| //! // This bit pattern does not set all the bits in `F3`, so it is rejected. |
| //! assert!(Flags::from_bits(0b00000001).is_none()); |
| //! assert!(Flags::from_bits_truncate(0b00000001).is_empty()); |
| //! } |
| //! ``` |
| //! |
| //! [`from_bits`]: Flags::from_bits |
| //! [`from_bits_truncate`]: Flags::from_bits_truncate |
| //! |
| //! # The `Flags` trait |
| //! |
| //! This library defines a `Flags` trait that's implemented by all generated flags types. |
| //! The trait makes it possible to work with flags types generically: |
| //! |
| //! ``` |
| //! fn count_unset_flags<F: bitflags::Flags>(flags: &F) -> usize { |
| //! // Find out how many flags there are in total |
| //! let total = F::all().iter().count(); |
| //! |
| //! // Find out how many flags are set |
| //! let set = flags.iter().count(); |
| //! |
| //! total - set |
| //! } |
| //! |
| //! use bitflags::bitflags; |
| //! |
| //! bitflags! { |
| //! #[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)] |
| //! struct Flags: u32 { |
| //! const A = 0b00000001; |
| //! const B = 0b00000010; |
| //! const C = 0b00000100; |
| //! } |
| //! } |
| //! |
| //! assert_eq!(2, count_unset_flags(&Flags::B)); |
| //! ``` |
| //! |
| //! # The internal field |
| //! |
| //! This library generates newtypes like: |
| //! |
| //! ``` |
| //! # pub struct Field0; |
| //! pub struct Flags(Field0); |
| //! ``` |
| //! |
| //! You can freely use methods and trait implementations on this internal field as `.0`. |
| //! For details on exactly what's generated for it, see the [`Field0`](example_generated/struct.Field0.html) |
| //! example docs. |
| |
| // ANDROID: Use std to allow building as a dylib. |
| #![cfg_attr(not(any(feature = "std", test, android_dylib)), no_std)] |
| #![cfg_attr(not(test), forbid(unsafe_code))] |
| #![doc(html_root_url = "https://docs.rs/bitflags/2.3.2")] |
| |
| #[doc(inline)] |
| pub use traits::{Flags, Flag, Bits}; |
| |
| pub mod iter; |
| pub mod parser; |
| |
| mod traits; |
| |
| #[doc(hidden)] |
| pub mod __private { |
| pub use crate::{external::__private::*, traits::__private::*}; |
| |
| pub use core; |
| } |
| |
| #[allow(unused_imports)] |
| pub use external::*; |
| |
| #[allow(deprecated)] |
| pub use traits::BitFlags; |
| |
| /* |
| How does the bitflags crate work? |
| |
| This library generates a `struct` in the end-user's crate with a bunch of constants on it that represent flags. |
| The difference between `bitflags` and a lot of other libraries is that we don't actually control the generated `struct` in the end. |
| It's part of the end-user's crate, so it belongs to them. That makes it difficult to extend `bitflags` with new functionality |
| because we could end up breaking valid code that was already written. |
| |
| Our solution is to split the type we generate into two: the public struct owned by the end-user, and an internal struct owned by `bitflags` (us). |
| To give you an example, let's say we had a crate that called `bitflags!`: |
| |
| ```rust |
| bitflags! { |
| pub struct MyFlags: u32 { |
| const A = 1; |
| const B = 2; |
| } |
| } |
| ``` |
| |
| What they'd end up with looks something like this: |
| |
| ```rust |
| pub struct MyFlags(<MyFlags as PublicFlags>::InternalBitFlags); |
| |
| const _: () = { |
| #[repr(transparent)] |
| #[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)] |
| pub struct MyInternalBitFlags { |
| bits: u32, |
| } |
| |
| impl PublicFlags for MyFlags { |
| type Internal = InternalBitFlags; |
| } |
| }; |
| ``` |
| |
| If we want to expose something like a new trait impl for generated flags types, we add it to our generated `MyInternalBitFlags`, |
| and let `#[derive]` on `MyFlags` pick up that implementation, if an end-user chooses to add one. |
| |
| The public API is generated in the `__impl_public_flags!` macro, and the internal API is generated in |
| the `__impl_internal_flags!` macro. |
| |
| The macros are split into 3 modules: |
| |
| - `public`: where the user-facing flags types are generated. |
| - `internal`: where the `bitflags`-facing flags types are generated. |
| - `external`: where external library traits are implemented conditionally. |
| */ |
| |
| /// The macro used to generate the flag structure. |
| /// |
| /// See the [crate level docs](../bitflags/index.html) for complete documentation. |
| /// |
| /// # Example |
| /// |
| /// ``` |
| /// use bitflags::bitflags; |
| /// |
| /// bitflags! { |
| /// #[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)] |
| /// struct Flags: u32 { |
| /// const A = 0b00000001; |
| /// const B = 0b00000010; |
| /// const C = 0b00000100; |
| /// const ABC = Self::A.bits() | Self::B.bits() | Self::C.bits(); |
| /// } |
| /// } |
| /// |
| /// let e1 = Flags::A | Flags::C; |
| /// let e2 = Flags::B | Flags::C; |
| /// assert_eq!((e1 | e2), Flags::ABC); // union |
| /// assert_eq!((e1 & e2), Flags::C); // intersection |
| /// assert_eq!((e1 - e2), Flags::A); // set difference |
| /// assert_eq!(!e2, Flags::A); // set complement |
| /// ``` |
| /// |
| /// The generated `struct`s can also be extended with type and trait |
| /// implementations: |
| /// |
| /// ``` |
| /// use std::fmt; |
| /// |
| /// use bitflags::bitflags; |
| /// |
| /// bitflags! { |
| /// #[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)] |
| /// struct Flags: u32 { |
| /// const A = 0b00000001; |
| /// const B = 0b00000010; |
| /// } |
| /// } |
| /// |
| /// impl Flags { |
| /// pub fn clear(&mut self) { |
| /// *self.0.bits_mut() = 0; |
| /// } |
| /// } |
| /// |
| /// let mut flags = Flags::A | Flags::B; |
| /// |
| /// flags.clear(); |
| /// assert!(flags.is_empty()); |
| /// |
| /// assert_eq!(format!("{:?}", Flags::A | Flags::B), "Flags(A | B)"); |
| /// assert_eq!(format!("{:?}", Flags::B), "Flags(B)"); |
| /// ``` |
| #[macro_export(local_inner_macros)] |
| macro_rules! bitflags { |
| ( |
| $(#[$outer:meta])* |
| $vis:vis struct $BitFlags:ident: $T:ty { |
| $( |
| $(#[$inner:ident $($args:tt)*])* |
| const $Flag:ident = $value:expr; |
| )* |
| } |
| |
| $($t:tt)* |
| ) => { |
| // Declared in the scope of the `bitflags!` call |
| // This type appears in the end-user's API |
| __declare_public_bitflags! { |
| $(#[$outer])* |
| $vis struct $BitFlags |
| } |
| |
| // Workaround for: https://github.com/bitflags/bitflags/issues/320 |
| __impl_public_bitflags_consts! { |
| $BitFlags: $T { |
| $( |
| $(#[$inner $($args)*])* |
| $Flag = $value; |
| )* |
| } |
| } |
| |
| #[allow( |
| dead_code, |
| deprecated, |
| unused_doc_comments, |
| unused_attributes, |
| unused_mut, |
| unused_imports, |
| non_upper_case_globals, |
| clippy::assign_op_pattern |
| )] |
| const _: () = { |
| // Declared in a "hidden" scope that can't be reached directly |
| // These types don't appear in the end-user's API |
| __declare_internal_bitflags! { |
| $vis struct InternalBitFlags: $T |
| } |
| |
| __impl_internal_bitflags! { |
| InternalBitFlags: $T, $BitFlags { |
| $( |
| $(#[$inner $($args)*])* |
| $Flag = $value; |
| )* |
| } |
| } |
| |
| // This is where new library trait implementations can be added |
| __impl_external_bitflags! { |
| InternalBitFlags: $T, $BitFlags { |
| $( |
| $(#[$inner $($args)*])* |
| $Flag; |
| )* |
| } |
| } |
| |
| __impl_public_bitflags_forward! { |
| $BitFlags: $T, InternalBitFlags |
| } |
| |
| __impl_public_bitflags_iter! { |
| $BitFlags: $T, $BitFlags |
| } |
| }; |
| |
| bitflags! { |
| $($t)* |
| } |
| }; |
| ( |
| impl $BitFlags:ident: $T:ty { |
| $( |
| $(#[$inner:ident $($args:tt)*])* |
| const $Flag:ident = $value:expr; |
| )* |
| } |
| |
| $($t:tt)* |
| ) => { |
| __impl_public_bitflags_consts! { |
| $BitFlags: $T { |
| $( |
| $(#[$inner $($args)*])* |
| $Flag = $value; |
| )* |
| } |
| } |
| |
| #[allow( |
| dead_code, |
| deprecated, |
| unused_doc_comments, |
| unused_attributes, |
| unused_mut, |
| unused_imports, |
| non_upper_case_globals, |
| clippy::assign_op_pattern |
| )] |
| const _: () = { |
| __impl_public_bitflags! { |
| $BitFlags: $T, $BitFlags { |
| $( |
| $(#[$inner $($args)*])* |
| $Flag; |
| )* |
| } |
| } |
| |
| __impl_public_bitflags_iter! { |
| $BitFlags: $T, $BitFlags |
| } |
| }; |
| |
| bitflags! { |
| $($t)* |
| } |
| }; |
| () => {}; |
| } |
| |
| /// Implement functions on bitflags types. |
| /// |
| /// We need to be careful about adding new methods and trait implementations here because they |
| /// could conflict with items added by the end-user. |
| #[macro_export(local_inner_macros)] |
| #[doc(hidden)] |
| macro_rules! __impl_bitflags { |
| ( |
| $PublicBitFlags:ident: $T:ty { |
| fn empty() $empty:block |
| fn all() $all:block |
| fn bits($bits0:ident) $bits:block |
| fn from_bits($from_bits0:ident) $from_bits:block |
| fn from_bits_truncate($from_bits_truncate0:ident) $from_bits_truncate:block |
| fn from_bits_retain($from_bits_retain0:ident) $from_bits_retain:block |
| fn from_name($from_name0:ident) $from_name:block |
| fn is_empty($is_empty0:ident) $is_empty:block |
| fn is_all($is_all0:ident) $is_all:block |
| fn intersects($intersects0:ident, $intersects1:ident) $intersects:block |
| fn contains($contains0:ident, $contains1:ident) $contains:block |
| fn insert($insert0:ident, $insert1:ident) $insert:block |
| fn remove($remove0:ident, $remove1:ident) $remove:block |
| fn toggle($toggle0:ident, $toggle1:ident) $toggle:block |
| fn set($set0:ident, $set1:ident, $set2:ident) $set:block |
| fn intersection($intersection0:ident, $intersection1:ident) $intersection:block |
| fn union($union0:ident, $union1:ident) $union:block |
| fn difference($difference0:ident, $difference1:ident) $difference:block |
| fn symmetric_difference($symmetric_difference0:ident, $symmetric_difference1:ident) $symmetric_difference:block |
| fn complement($complement0:ident) $complement:block |
| } |
| ) => { |
| #[allow( |
| dead_code, |
| deprecated, |
| unused_attributes |
| )] |
| impl $PublicBitFlags { |
| /// Returns an empty set of flags. |
| #[inline] |
| pub const fn empty() -> Self { |
| $empty |
| } |
| |
| /// Returns the set containing all flags. |
| #[inline] |
| pub const fn all() -> Self { |
| $all |
| } |
| |
| /// Returns the raw value of the flags currently stored. |
| #[inline] |
| pub const fn bits(&self) -> $T { |
| let $bits0 = self; |
| $bits |
| } |
| |
| /// Convert from underlying bit representation, unless that |
| /// representation contains bits that do not correspond to a flag. |
| #[inline] |
| pub const fn from_bits(bits: $T) -> $crate::__private::core::option::Option<Self> { |
| let $from_bits0 = bits; |
| $from_bits |
| } |
| |
| /// Convert from underlying bit representation, dropping any bits |
| /// that do not correspond to flags. |
| #[inline] |
| pub const fn from_bits_truncate(bits: $T) -> Self { |
| let $from_bits_truncate0 = bits; |
| $from_bits_truncate |
| } |
| |
| /// Convert from underlying bit representation, preserving all |
| /// bits (even those not corresponding to a defined flag). |
| #[inline] |
| pub const fn from_bits_retain(bits: $T) -> Self { |
| let $from_bits_retain0 = bits; |
| $from_bits_retain |
| } |
| |
| /// Get the value for a flag from its stringified name. |
| /// |
| /// Names are _case-sensitive_, so must correspond exactly to |
| /// the identifier given to the flag. |
| #[inline] |
| pub fn from_name(name: &str) -> $crate::__private::core::option::Option<Self> { |
| let $from_name0 = name; |
| $from_name |
| } |
| |
| /// Returns `true` if no flags are currently stored. |
| #[inline] |
| pub const fn is_empty(&self) -> bool { |
| let $is_empty0 = self; |
| $is_empty |
| } |
| |
| /// Returns `true` if all flags are currently set. |
| #[inline] |
| pub const fn is_all(&self) -> bool { |
| let $is_all0 = self; |
| $is_all |
| } |
| |
| /// Returns `true` if there are flags common to both `self` and `other`. |
| #[inline] |
| pub const fn intersects(&self, other: Self) -> bool { |
| let $intersects0 = self; |
| let $intersects1 = other; |
| $intersects |
| } |
| |
| /// Returns `true` if all of the flags in `other` are contained within `self`. |
| #[inline] |
| pub const fn contains(&self, other: Self) -> bool { |
| let $contains0 = self; |
| let $contains1 = other; |
| $contains |
| } |
| |
| /// Inserts the specified flags in-place. |
| #[inline] |
| pub fn insert(&mut self, other: Self) { |
| let $insert0 = self; |
| let $insert1 = other; |
| $insert |
| } |
| |
| /// Removes the specified flags in-place. |
| #[inline] |
| pub fn remove(&mut self, other: Self) { |
| let $remove0 = self; |
| let $remove1 = other; |
| $remove |
| } |
| |
| /// Toggles the specified flags in-place. |
| #[inline] |
| pub fn toggle(&mut self, other: Self) { |
| let $toggle0 = self; |
| let $toggle1 = other; |
| $toggle |
| } |
| |
| /// Inserts or removes the specified flags depending on the passed value. |
| #[inline] |
| pub fn set(&mut self, other: Self, value: bool) { |
| let $set0 = self; |
| let $set1 = other; |
| let $set2 = value; |
| $set |
| } |
| |
| /// Returns the intersection between the flags in `self` and |
| /// `other`. |
| /// |
| /// Specifically, the returned set contains only the flags which are |
| /// present in *both* `self` *and* `other`. |
| /// |
| /// This is equivalent to using the `&` operator (e.g. |
| /// [`ops::BitAnd`]), as in `flags & other`. |
| /// |
| /// [`ops::BitAnd`]: https://doc.rust-lang.org/std/ops/trait.BitAnd.html |
| #[inline] |
| #[must_use] |
| pub const fn intersection(self, other: Self) -> Self { |
| let $intersection0 = self; |
| let $intersection1 = other; |
| $intersection |
| } |
| |
| /// Returns the union of between the flags in `self` and `other`. |
| /// |
| /// Specifically, the returned set contains all flags which are |
| /// present in *either* `self` *or* `other`, including any which are |
| /// present in both (see [`Self::symmetric_difference`] if that |
| /// is undesirable). |
| /// |
| /// This is equivalent to using the `|` operator (e.g. |
| /// [`ops::BitOr`]), as in `flags | other`. |
| /// |
| /// [`ops::BitOr`]: https://doc.rust-lang.org/std/ops/trait.BitOr.html |
| #[inline] |
| #[must_use] |
| pub const fn union(self, other: Self) -> Self { |
| let $union0 = self; |
| let $union1 = other; |
| $union |
| } |
| |
| /// Returns the difference between the flags in `self` and `other`. |
| /// |
| /// Specifically, the returned set contains all flags present in |
| /// `self`, except for the ones present in `other`. |
| /// |
| /// It is also conceptually equivalent to the "bit-clear" operation: |
| /// `flags & !other` (and this syntax is also supported). |
| /// |
| /// This is equivalent to using the `-` operator (e.g. |
| /// [`ops::Sub`]), as in `flags - other`. |
| /// |
| /// [`ops::Sub`]: https://doc.rust-lang.org/std/ops/trait.Sub.html |
| #[inline] |
| #[must_use] |
| pub const fn difference(self, other: Self) -> Self { |
| let $difference0 = self; |
| let $difference1 = other; |
| $difference |
| } |
| |
| /// Returns the [symmetric difference][sym-diff] between the flags |
| /// in `self` and `other`. |
| /// |
| /// Specifically, the returned set contains the flags present which |
| /// are present in `self` or `other`, but that are not present in |
| /// both. Equivalently, it contains the flags present in *exactly |
| /// one* of the sets `self` and `other`. |
| /// |
| /// This is equivalent to using the `^` operator (e.g. |
| /// [`ops::BitXor`]), as in `flags ^ other`. |
| /// |
| /// [sym-diff]: https://en.wikipedia.org/wiki/Symmetric_difference |
| /// [`ops::BitXor`]: https://doc.rust-lang.org/std/ops/trait.BitXor.html |
| #[inline] |
| #[must_use] |
| pub const fn symmetric_difference(self, other: Self) -> Self { |
| let $symmetric_difference0 = self; |
| let $symmetric_difference1 = other; |
| $symmetric_difference |
| } |
| |
| /// Returns the complement of this set of flags. |
| /// |
| /// Specifically, the returned set contains all the flags which are |
| /// not set in `self`, but which are allowed for this type. |
| /// |
| /// Alternatively, it can be thought of as the set difference |
| /// between [`Self::all()`] and `self` (e.g. `Self::all() - self`) |
| /// |
| /// This is equivalent to using the `!` operator (e.g. |
| /// [`ops::Not`]), as in `!flags`. |
| /// |
| /// [`Self::all()`]: Self::all |
| /// [`ops::Not`]: https://doc.rust-lang.org/std/ops/trait.Not.html |
| #[inline] |
| #[must_use] |
| pub const fn complement(self) -> Self { |
| let $complement0 = self; |
| $complement |
| } |
| } |
| }; |
| } |
| |
| /// A macro that processed the input to `bitflags!` and shuffles attributes around |
| /// based on whether or not they're "expression-safe". |
| /// |
| /// This macro is a token-tree muncher that works on 2 levels: |
| /// |
| /// For each attribute, we explicitly match on its identifier, like `cfg` to determine |
| /// whether or not it should be considered expression-safe. |
| /// |
| /// If you find yourself with an attribute that should be considered expression-safe |
| /// and isn't, it can be added here. |
| #[macro_export(local_inner_macros)] |
| #[doc(hidden)] |
| macro_rules! __bitflags_expr_safe_attrs { |
| // Entrypoint: Move all flags and all attributes into `unprocessed` lists |
| // where they'll be munched one-at-a-time |
| ( |
| $(#[$inner:ident $($args:tt)*])* |
| { $e:expr } |
| ) => { |
| __bitflags_expr_safe_attrs! { |
| expr: { $e }, |
| attrs: { |
| // All attributes start here |
| unprocessed: [$(#[$inner $($args)*])*], |
| // Attributes that are safe on expressions go here |
| processed: [], |
| }, |
| } |
| }; |
| // Process the next attribute on the current flag |
| // `cfg`: The next flag should be propagated to expressions |
| // NOTE: You can copy this rules block and replace `cfg` with |
| // your attribute name that should be considered expression-safe |
| ( |
| expr: { $e:expr }, |
| attrs: { |
| unprocessed: [ |
| // cfg matched here |
| #[cfg $($args:tt)*] |
| $($attrs_rest:tt)* |
| ], |
| processed: [$($expr:tt)*], |
| }, |
| ) => { |
| __bitflags_expr_safe_attrs! { |
| expr: { $e }, |
| attrs: { |
| unprocessed: [ |
| $($attrs_rest)* |
| ], |
| processed: [ |
| $($expr)* |
| // cfg added here |
| #[cfg $($args)*] |
| ], |
| }, |
| } |
| }; |
| // Process the next attribute on the current flag |
| // `$other`: The next flag should not be propagated to expressions |
| ( |
| expr: { $e:expr }, |
| attrs: { |
| unprocessed: [ |
| // $other matched here |
| #[$other:ident $($args:tt)*] |
| $($attrs_rest:tt)* |
| ], |
| processed: [$($expr:tt)*], |
| }, |
| ) => { |
| __bitflags_expr_safe_attrs! { |
| expr: { $e }, |
| attrs: { |
| unprocessed: [ |
| $($attrs_rest)* |
| ], |
| processed: [ |
| // $other not added here |
| $($expr)* |
| ], |
| }, |
| } |
| }; |
| // Once all attributes on all flags are processed, generate the actual code |
| ( |
| expr: { $e:expr }, |
| attrs: { |
| unprocessed: [], |
| processed: [$(#[$expr:ident $($exprargs:tt)*])*], |
| }, |
| ) => { |
| $(#[$expr $($exprargs)*])* |
| { $e } |
| } |
| } |
| |
| #[macro_use] |
| mod public; |
| #[macro_use] |
| mod internal; |
| #[macro_use] |
| mod external; |
| |
| #[cfg(feature = "example_generated")] |
| pub mod example_generated; |
| |
| #[cfg(test)] |
| mod tests { |
| use std::{ |
| collections::hash_map::DefaultHasher, |
| fmt, |
| hash::{Hash, Hasher}, |
| str, |
| }; |
| |
| #[derive(Debug, PartialEq, Eq)] |
| pub struct ManualFlags(u32); |
| |
| bitflags! { |
| #[doc = "> The first principle is that you must not fool yourself — and"] |
| #[doc = "> you are the easiest person to fool."] |
| #[doc = "> "] |
| #[doc = "> - Richard Feynman"] |
| #[derive(Clone, Copy, Default, Debug, PartialEq, Eq, PartialOrd, Ord, Hash)] |
| struct Flags: u32 { |
| const A = 0b00000001; |
| #[doc = "<pcwalton> macros are way better at generating code than trans is"] |
| const B = 0b00000010; |
| const C = 0b00000100; |
| #[doc = "* cmr bed"] |
| #[doc = "* strcat table"] |
| #[doc = "<strcat> wait what?"] |
| const ABC = Self::A.bits() | Self::B.bits() | Self::C.bits(); |
| } |
| |
| #[derive(Clone, Copy, Default, Debug, PartialEq, Eq, PartialOrd, Ord, Hash)] |
| struct _CfgFlags: u32 { |
| #[cfg(unix)] |
| const _CFG_A = 0b01; |
| #[cfg(windows)] |
| const _CFG_B = 0b01; |
| #[cfg(unix)] |
| const _CFG_C = Self::_CFG_A.bits() | 0b10; |
| } |
| |
| #[derive(Clone, Copy, Default, Debug, PartialEq, Eq, PartialOrd, Ord, Hash)] |
| struct AnotherSetOfFlags: i8 { |
| const ANOTHER_FLAG = -1_i8; |
| } |
| |
| #[derive(Clone, Copy, Default, Debug, PartialEq, Eq, PartialOrd, Ord, Hash)] |
| struct LongFlags: u32 { |
| const LONG_A = 0b1111111111111111; |
| } |
| |
| impl ManualFlags: u32 { |
| const A = 0b00000001; |
| #[doc = "<pcwalton> macros are way better at generating code than trans is"] |
| const B = 0b00000010; |
| const C = 0b00000100; |
| #[doc = "* cmr bed"] |
| #[doc = "* strcat table"] |
| #[doc = "<strcat> wait what?"] |
| const ABC = Self::A.bits() | Self::B.bits() | Self::C.bits(); |
| } |
| } |
| |
| bitflags! { |
| #[derive(Debug, PartialEq, Eq)] |
| struct FmtFlags: u16 { |
| const 고양이 = 0b0000_0001; |
| const 개 = 0b0000_0010; |
| const 물고기 = 0b0000_0100; |
| const 물고기_고양이 = Self::고양이.bits() | Self::물고기.bits(); |
| } |
| } |
| |
| impl str::FromStr for FmtFlags { |
| type Err = crate::parser::ParseError; |
| |
| fn from_str(flags: &str) -> Result<Self, Self::Err> { |
| Ok(Self(flags.parse()?)) |
| } |
| } |
| |
| impl fmt::Display for FmtFlags { |
| fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { |
| fmt::Display::fmt(&self.0, f) |
| } |
| } |
| |
| bitflags! { |
| #[derive(Clone, Copy, Default, Debug, PartialEq, Eq, PartialOrd, Ord, Hash)] |
| struct EmptyFlags: u32 { |
| } |
| } |
| |
| #[test] |
| fn test_bits() { |
| assert_eq!(Flags::empty().bits(), 0b00000000); |
| assert_eq!(Flags::A.bits(), 0b00000001); |
| assert_eq!(Flags::ABC.bits(), 0b00000111); |
| |
| assert_eq!(<Flags as crate::Flags>::bits(&Flags::ABC), 0b00000111); |
| |
| assert_eq!(AnotherSetOfFlags::empty().bits(), 0b00); |
| assert_eq!(AnotherSetOfFlags::ANOTHER_FLAG.bits(), !0_i8); |
| |
| assert_eq!(EmptyFlags::empty().bits(), 0b00000000); |
| } |
| |
| #[test] |
| fn test_from_bits() { |
| assert_eq!(Flags::from_bits(0), Some(Flags::empty())); |
| assert_eq!(Flags::from_bits(0b1), Some(Flags::A)); |
| assert_eq!(Flags::from_bits(0b10), Some(Flags::B)); |
| assert_eq!(Flags::from_bits(0b11), Some(Flags::A | Flags::B)); |
| assert_eq!(Flags::from_bits(0b1000), None); |
| |
| assert_eq!(<Flags as crate::Flags>::from_bits(0b11), Some(Flags::A | Flags::B)); |
| |
| assert_eq!( |
| AnotherSetOfFlags::from_bits(!0_i8), |
| Some(AnotherSetOfFlags::ANOTHER_FLAG) |
| ); |
| |
| assert_eq!(EmptyFlags::from_bits(0), Some(EmptyFlags::empty())); |
| assert_eq!(EmptyFlags::from_bits(0b1), None); |
| } |
| |
| #[test] |
| fn test_from_bits_truncate() { |
| assert_eq!(Flags::from_bits_truncate(0), Flags::empty()); |
| assert_eq!(Flags::from_bits_truncate(0b1), Flags::A); |
| assert_eq!(Flags::from_bits_truncate(0b10), Flags::B); |
| assert_eq!(Flags::from_bits_truncate(0b11), (Flags::A | Flags::B)); |
| assert_eq!(Flags::from_bits_truncate(0b1000), Flags::empty()); |
| assert_eq!(Flags::from_bits_truncate(0b1001), Flags::A); |
| |
| assert_eq!(<Flags as crate::Flags>::from_bits_truncate(0b11), (Flags::A | Flags::B)); |
| |
| assert_eq!( |
| AnotherSetOfFlags::from_bits_truncate(0_i8), |
| AnotherSetOfFlags::empty() |
| ); |
| |
| assert_eq!(EmptyFlags::from_bits_truncate(0), EmptyFlags::empty()); |
| assert_eq!(EmptyFlags::from_bits_truncate(0b1), EmptyFlags::empty()); |
| } |
| |
| #[test] |
| fn test_from_bits_retain() { |
| let extra = Flags::from_bits_retain(0b1000); |
| assert_eq!(Flags::from_bits_retain(0), Flags::empty()); |
| assert_eq!(Flags::from_bits_retain(0b1), Flags::A); |
| assert_eq!(Flags::from_bits_retain(0b10), Flags::B); |
| |
| assert_eq!(Flags::from_bits_retain(0b11), (Flags::A | Flags::B)); |
| assert_eq!(Flags::from_bits_retain(0b1000), (extra | Flags::empty())); |
| assert_eq!(Flags::from_bits_retain(0b1001), (extra | Flags::A)); |
| |
| assert_eq!(<Flags as crate::Flags>::from_bits_retain(0b11), (Flags::A | Flags::B)); |
| |
| let extra = EmptyFlags::from_bits_retain(0b1000); |
| assert_eq!( |
| EmptyFlags::from_bits_retain(0b1000), |
| (extra | EmptyFlags::empty()) |
| ); |
| } |
| |
| #[test] |
| fn test_is_empty() { |
| assert!(Flags::empty().is_empty()); |
| assert!(!Flags::A.is_empty()); |
| assert!(!Flags::ABC.is_empty()); |
| |
| assert!(!<Flags as crate::Flags>::is_empty(&Flags::ABC)); |
| |
| assert!(!AnotherSetOfFlags::ANOTHER_FLAG.is_empty()); |
| |
| assert!(EmptyFlags::empty().is_empty()); |
| assert!(EmptyFlags::all().is_empty()); |
| } |
| |
| #[test] |
| fn test_is_all() { |
| assert!(Flags::all().is_all()); |
| assert!(!Flags::A.is_all()); |
| assert!(Flags::ABC.is_all()); |
| |
| let extra = Flags::from_bits_retain(0b1000); |
| assert!(!extra.is_all()); |
| assert!(!(Flags::A | extra).is_all()); |
| assert!((Flags::ABC | extra).is_all()); |
| |
| assert!(<Flags as crate::Flags>::is_all(&Flags::all())); |
| |
| assert!(AnotherSetOfFlags::ANOTHER_FLAG.is_all()); |
| |
| assert!(EmptyFlags::all().is_all()); |
| assert!(EmptyFlags::empty().is_all()); |
| } |
| |
| #[test] |
| fn test_two_empties_do_not_intersect() { |
| let e1 = Flags::empty(); |
| let e2 = Flags::empty(); |
| assert!(!e1.intersects(e2)); |
| |
| assert!(!<Flags as crate::Flags>::intersects(&e1, e2)); |
| |
| assert!(AnotherSetOfFlags::ANOTHER_FLAG.intersects(AnotherSetOfFlags::ANOTHER_FLAG)); |
| } |
| |
| #[test] |
| fn test_empty_does_not_intersect_with_full() { |
| let e1 = Flags::empty(); |
| let e2 = Flags::ABC; |
| assert!(!e1.intersects(e2)); |
| |
| assert!(!<Flags as crate::Flags>::intersects(&e1, e2)); |
| } |
| |
| #[test] |
| fn test_disjoint_intersects() { |
| let e1 = Flags::A; |
| let e2 = Flags::B; |
| assert!(!e1.intersects(e2)); |
| |
| assert!(!<Flags as crate::Flags>::intersects(&e1, e2)); |
| } |
| |
| #[test] |
| fn test_overlapping_intersects() { |
| let e1 = Flags::A; |
| let e2 = Flags::A | Flags::B; |
| assert!(e1.intersects(e2)); |
| |
| assert!(<Flags as crate::Flags>::intersects(&e1, e2)); |
| } |
| |
| #[test] |
| fn test_contains() { |
| let e1 = Flags::A; |
| let e2 = Flags::A | Flags::B; |
| assert!(!e1.contains(e2)); |
| assert!(e2.contains(e1)); |
| assert!(Flags::ABC.contains(e2)); |
| |
| assert!(<Flags as crate::Flags>::contains(&Flags::ABC, e2)); |
| |
| assert!(AnotherSetOfFlags::ANOTHER_FLAG.contains(AnotherSetOfFlags::ANOTHER_FLAG)); |
| |
| assert!(EmptyFlags::empty().contains(EmptyFlags::empty())); |
| } |
| |
| #[test] |
| fn test_insert() { |
| let mut e1 = Flags::A; |
| let e2 = Flags::A | Flags::B; |
| e1.insert(e2); |
| assert_eq!(e1, e2); |
| |
| let mut e1 = Flags::A; |
| let e2 = Flags::A | Flags::B; |
| <Flags as crate::Flags>::insert(&mut e1, e2); |
| assert_eq!(e1, e2); |
| |
| let mut e3 = AnotherSetOfFlags::empty(); |
| e3.insert(AnotherSetOfFlags::ANOTHER_FLAG); |
| assert_eq!(e3, AnotherSetOfFlags::ANOTHER_FLAG); |
| } |
| |
| #[test] |
| fn test_remove() { |
| let mut e1 = Flags::A | Flags::B; |
| let e2 = Flags::A | Flags::C; |
| e1.remove(e2); |
| assert_eq!(e1, Flags::B); |
| |
| let mut e1 = Flags::A | Flags::B; |
| let e2 = Flags::A | Flags::C; |
| <Flags as crate::Flags>::remove(&mut e1, e2); |
| assert_eq!(e1, Flags::B); |
| |
| let mut e3 = AnotherSetOfFlags::ANOTHER_FLAG; |
| e3.remove(AnotherSetOfFlags::ANOTHER_FLAG); |
| assert_eq!(e3, AnotherSetOfFlags::empty()); |
| } |
| |
| #[test] |
| fn test_operators() { |
| let e1 = Flags::A | Flags::C; |
| let e2 = Flags::B | Flags::C; |
| assert_eq!((e1 | e2), Flags::ABC); // union |
| assert_eq!((e1 & e2), Flags::C); // intersection |
| assert_eq!((e1 - e2), Flags::A); // set difference |
| assert_eq!(!e2, Flags::A); // set complement |
| assert_eq!(e1 ^ e2, Flags::A | Flags::B); // toggle |
| let mut e3 = e1; |
| e3.toggle(e2); |
| assert_eq!(e3, Flags::A | Flags::B); |
| |
| let mut m4 = AnotherSetOfFlags::empty(); |
| m4.toggle(AnotherSetOfFlags::empty()); |
| assert_eq!(m4, AnotherSetOfFlags::empty()); |
| } |
| |
| #[test] |
| fn test_operators_unchecked() { |
| let extra = Flags::from_bits_retain(0b1000); |
| let e1 = Flags::A | Flags::C | extra; |
| let e2 = Flags::B | Flags::C; |
| assert_eq!((e1 | e2), (Flags::ABC | extra)); // union |
| assert_eq!((e1 & e2), Flags::C); // intersection |
| assert_eq!((e1 - e2), (Flags::A | extra)); // set difference |
| assert_eq!(!e2, Flags::A); // set complement |
| assert_eq!(!e1, Flags::B); // set complement |
| assert_eq!(e1 ^ e2, Flags::A | Flags::B | extra); // toggle |
| let mut e3 = e1; |
| e3.toggle(e2); |
| assert_eq!(e3, Flags::A | Flags::B | extra); |
| } |
| |
| #[test] |
| fn test_set_ops_basic() { |
| let ab = Flags::A.union(Flags::B); |
| let ac = Flags::A.union(Flags::C); |
| let bc = Flags::B.union(Flags::C); |
| assert_eq!(ab.bits(), 0b011); |
| assert_eq!(bc.bits(), 0b110); |
| assert_eq!(ac.bits(), 0b101); |
| |
| assert_eq!(ab, Flags::B.union(Flags::A)); |
| assert_eq!(ac, Flags::C.union(Flags::A)); |
| assert_eq!(bc, Flags::C.union(Flags::B)); |
| |
| assert_eq!(ac, <Flags as crate::Flags>::union(Flags::A, Flags::C)); |
| |
| assert_eq!(ac, Flags::A | Flags::C); |
| assert_eq!(bc, Flags::B | Flags::C); |
| assert_eq!(ab.union(bc), Flags::ABC); |
| |
| assert_eq!(ac, Flags::A | Flags::C); |
| assert_eq!(bc, Flags::B | Flags::C); |
| |
| assert_eq!(ac.union(bc), ac | bc); |
| assert_eq!(ac.union(bc), Flags::ABC); |
| assert_eq!(bc.union(ac), Flags::ABC); |
| |
| assert_eq!(ac.intersection(bc), ac & bc); |
| assert_eq!(ac.intersection(bc), Flags::C); |
| assert_eq!(bc.intersection(ac), Flags::C); |
| |
| assert_eq!(Flags::C, <Flags as crate::Flags>::intersection(ac, bc)); |
| |
| assert_eq!(ac.difference(bc), ac - bc); |
| assert_eq!(bc.difference(ac), bc - ac); |
| assert_eq!(ac.difference(bc), Flags::A); |
| assert_eq!(bc.difference(ac), Flags::B); |
| |
| assert_eq!(bc, <Flags as crate::Flags>::difference(bc, Flags::A)); |
| |
| assert_eq!(bc.complement(), !bc); |
| assert_eq!(bc.complement(), Flags::A); |
| |
| assert_eq!(Flags::A, <Flags as crate::Flags>::complement(bc)); |
| |
| assert_eq!(ac.symmetric_difference(bc), Flags::A.union(Flags::B)); |
| assert_eq!(bc.symmetric_difference(ac), Flags::A.union(Flags::B)); |
| |
| assert_eq!(ab, <Flags as crate::Flags>::symmetric_difference(ac, bc)); |
| } |
| |
| #[test] |
| fn test_set_ops_const() { |
| // These just test that these compile and don't cause use-site panics |
| // (would be possible if we had some sort of UB) |
| const INTERSECT: Flags = Flags::all().intersection(Flags::C); |
| const UNION: Flags = Flags::A.union(Flags::C); |
| const DIFFERENCE: Flags = Flags::all().difference(Flags::A); |
| const COMPLEMENT: Flags = Flags::C.complement(); |
| const SYM_DIFFERENCE: Flags = UNION.symmetric_difference(DIFFERENCE); |
| assert_eq!(INTERSECT, Flags::C); |
| assert_eq!(UNION, Flags::A | Flags::C); |
| assert_eq!(DIFFERENCE, Flags::all() - Flags::A); |
| assert_eq!(COMPLEMENT, !Flags::C); |
| assert_eq!( |
| SYM_DIFFERENCE, |
| (Flags::A | Flags::C) ^ (Flags::all() - Flags::A) |
| ); |
| } |
| |
| #[test] |
| fn test_set_ops_unchecked() { |
| let extra = Flags::from_bits_retain(0b1000); |
| let e1 = Flags::A.union(Flags::C).union(extra); |
| let e2 = Flags::B.union(Flags::C); |
| assert_eq!(e1.bits(), 0b1101); |
| assert_eq!(e1.union(e2), (Flags::ABC | extra)); |
| assert_eq!(e1.intersection(e2), Flags::C); |
| assert_eq!(e1.difference(e2), Flags::A | extra); |
| assert_eq!(e2.difference(e1), Flags::B); |
| assert_eq!(e2.complement(), Flags::A); |
| assert_eq!(e1.complement(), Flags::B); |
| assert_eq!(e1.symmetric_difference(e2), Flags::A | Flags::B | extra); // toggle |
| } |
| |
| #[test] |
| fn test_set_ops_exhaustive() { |
| // Define a flag that contains gaps to help exercise edge-cases, |
| // especially around "unknown" flags (e.g. ones outside of `all()` |
| // `from_bits_retain`). |
| // - when lhs and rhs both have different sets of unknown flags. |
| // - unknown flags at both ends, and in the middle |
| // - cases with "gaps". |
| bitflags! { |
| #[derive(Clone, Copy, Debug, PartialEq, Eq)] |
| struct Test: u16 { |
| // Intentionally no `A` |
| const B = 0b000000010; |
| // Intentionally no `C` |
| const D = 0b000001000; |
| const E = 0b000010000; |
| const F = 0b000100000; |
| const G = 0b001000000; |
| // Intentionally no `H` |
| const I = 0b100000000; |
| } |
| } |
| let iter_test_flags = || (0..=0b111_1111_1111).map(|bits| Test::from_bits_retain(bits)); |
| |
| for a in iter_test_flags() { |
| assert_eq!( |
| a.complement(), |
| Test::from_bits_truncate(!a.bits()), |
| "wrong result: !({:?})", |
| a, |
| ); |
| assert_eq!(a.complement(), !a, "named != op: !({:?})", a); |
| for b in iter_test_flags() { |
| // Check that the named operations produce the expected bitwise |
| // values. |
| assert_eq!( |
| a.union(b).bits(), |
| a.bits() | b.bits(), |
| "wrong result: `{:?}` | `{:?}`", |
| a, |
| b, |
| ); |
| assert_eq!( |
| a.intersection(b).bits(), |
| a.bits() & b.bits(), |
| "wrong result: `{:?}` & `{:?}`", |
| a, |
| b, |
| ); |
| assert_eq!( |
| a.symmetric_difference(b).bits(), |
| a.bits() ^ b.bits(), |
| "wrong result: `{:?}` ^ `{:?}`", |
| a, |
| b, |
| ); |
| assert_eq!( |
| a.difference(b).bits(), |
| a.bits() & !b.bits(), |
| "wrong result: `{:?}` - `{:?}`", |
| a, |
| b, |
| ); |
| // Note: Difference is checked as both `a - b` and `b - a` |
| assert_eq!( |
| b.difference(a).bits(), |
| b.bits() & !a.bits(), |
| "wrong result: `{:?}` - `{:?}`", |
| b, |
| a, |
| ); |
| // Check that the named set operations are equivalent to the |
| // bitwise equivalents |
| assert_eq!(a.union(b), a | b, "named != op: `{:?}` | `{:?}`", a, b,); |
| assert_eq!( |
| a.intersection(b), |
| a & b, |
| "named != op: `{:?}` & `{:?}`", |
| a, |
| b, |
| ); |
| assert_eq!( |
| a.symmetric_difference(b), |
| a ^ b, |
| "named != op: `{:?}` ^ `{:?}`", |
| a, |
| b, |
| ); |
| assert_eq!(a.difference(b), a - b, "named != op: `{:?}` - `{:?}`", a, b,); |
| // Note: Difference is checked as both `a - b` and `b - a` |
| assert_eq!(b.difference(a), b - a, "named != op: `{:?}` - `{:?}`", b, a,); |
| // Verify that the operations which should be symmetric are |
| // actually symmetric. |
| assert_eq!(a.union(b), b.union(a), "asymmetry: `{:?}` | `{:?}`", a, b,); |
| assert_eq!( |
| a.intersection(b), |
| b.intersection(a), |
| "asymmetry: `{:?}` & `{:?}`", |
| a, |
| b, |
| ); |
| assert_eq!( |
| a.symmetric_difference(b), |
| b.symmetric_difference(a), |
| "asymmetry: `{:?}` ^ `{:?}`", |
| a, |
| b, |
| ); |
| } |
| } |
| } |
| |
| #[test] |
| fn test_set() { |
| let mut e1 = Flags::A | Flags::C; |
| e1.set(Flags::B, true); |
| e1.set(Flags::C, false); |
| |
| assert_eq!(e1, Flags::A | Flags::B); |
| } |
| |
| #[test] |
| fn test_assignment_operators() { |
| let mut m1 = Flags::empty(); |
| let e1 = Flags::A | Flags::C; |
| // union |
| m1 |= Flags::A; |
| assert_eq!(m1, Flags::A); |
| // intersection |
| m1 &= e1; |
| assert_eq!(m1, Flags::A); |
| // set difference |
| m1 -= m1; |
| assert_eq!(m1, Flags::empty()); |
| // toggle |
| m1 ^= e1; |
| assert_eq!(m1, e1); |
| } |
| |
| #[test] |
| fn test_const_fn() { |
| const _M1: Flags = Flags::empty(); |
| |
| const M2: Flags = Flags::A; |
| assert_eq!(M2, Flags::A); |
| |
| const M3: Flags = Flags::C; |
| assert_eq!(M3, Flags::C); |
| } |
| |
| #[test] |
| fn test_extend() { |
| let mut flags; |
| |
| flags = Flags::empty(); |
| flags.extend([].iter().cloned()); |
| assert_eq!(flags, Flags::empty()); |
| |
| flags = Flags::empty(); |
| flags.extend([Flags::A, Flags::B].iter().cloned()); |
| assert_eq!(flags, Flags::A | Flags::B); |
| |
| flags = Flags::A; |
| flags.extend([Flags::A, Flags::B].iter().cloned()); |
| assert_eq!(flags, Flags::A | Flags::B); |
| |
| flags = Flags::B; |
| flags.extend([Flags::A, Flags::ABC].iter().cloned()); |
| assert_eq!(flags, Flags::ABC); |
| } |
| |
| #[test] |
| fn test_from_iterator() { |
| assert_eq!([].iter().cloned().collect::<Flags>(), Flags::empty()); |
| assert_eq!( |
| [Flags::A, Flags::B].iter().cloned().collect::<Flags>(), |
| Flags::A | Flags::B |
| ); |
| assert_eq!( |
| [Flags::A, Flags::ABC].iter().cloned().collect::<Flags>(), |
| Flags::ABC |
| ); |
| } |
| |
| #[test] |
| fn test_lt() { |
| let mut a = Flags::empty(); |
| let mut b = Flags::empty(); |
| |
| assert!(!(a < b) && !(b < a)); |
| b = Flags::B; |
| assert!(a < b); |
| a = Flags::C; |
| assert!(!(a < b) && b < a); |
| b = Flags::C | Flags::B; |
| assert!(a < b); |
| } |
| |
| #[test] |
| fn test_ord() { |
| let mut a = Flags::empty(); |
| let mut b = Flags::empty(); |
| |
| assert!(a <= b && a >= b); |
| a = Flags::A; |
| assert!(a > b && a >= b); |
| assert!(b < a && b <= a); |
| b = Flags::B; |
| assert!(b > a && b >= a); |
| assert!(a < b && a <= b); |
| } |
| |
| fn hash<T: Hash>(t: &T) -> u64 { |
| let mut s = DefaultHasher::new(); |
| t.hash(&mut s); |
| s.finish() |
| } |
| |
| #[test] |
| fn test_hash() { |
| let mut x = Flags::empty(); |
| let mut y = Flags::empty(); |
| assert_eq!(hash(&x), hash(&y)); |
| x = Flags::all(); |
| y = Flags::ABC; |
| assert_eq!(hash(&x), hash(&y)); |
| } |
| |
| #[test] |
| fn test_default() { |
| assert_eq!(Flags::empty(), Flags::default()); |
| } |
| |
| #[test] |
| fn test_debug() { |
| assert_eq!(format!("{:?}", Flags::A | Flags::B), "Flags(A | B)"); |
| assert_eq!(format!("{:?}", Flags::empty()), "Flags(0x0)"); |
| assert_eq!(format!("{:?}", Flags::ABC), "Flags(A | B | C)"); |
| |
| let extra = Flags::from_bits_retain(0xb8); |
| |
| assert_eq!(format!("{:?}", extra), "Flags(0xb8)"); |
| assert_eq!(format!("{:?}", Flags::A | extra), "Flags(A | 0xb8)"); |
| |
| assert_eq!( |
| format!("{:?}", Flags::ABC | extra), |
| "Flags(A | B | C | ABC | 0xb8)" |
| ); |
| |
| assert_eq!(format!("{:?}", EmptyFlags::empty()), "EmptyFlags(0x0)"); |
| } |
| |
| #[test] |
| fn test_display_from_str_roundtrip() { |
| fn format_parse_case<T: fmt::Debug + fmt::Display + str::FromStr + PartialEq>(flags: T) where <T as str::FromStr>::Err: fmt::Display { |
| assert_eq!(flags, { |
| match flags.to_string().parse::<T>() { |
| Ok(flags) => flags, |
| Err(e) => panic!("failed to parse `{}`: {}", flags, e), |
| } |
| }); |
| } |
| |
| fn parse_case<T: fmt::Debug + str::FromStr + PartialEq>(expected: T, flags: &str) where <T as str::FromStr>::Err: fmt::Display + fmt::Debug { |
| assert_eq!(expected, flags.parse::<T>().unwrap()); |
| } |
| |
| bitflags! { |
| #[derive(Debug, Eq, PartialEq)] |
| pub struct MultiBitFmtFlags: u8 { |
| const A = 0b0000_0001u8; |
| const B = 0b0001_1110u8; |
| } |
| } |
| |
| impl fmt::Display for MultiBitFmtFlags { |
| fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { |
| fmt::Display::fmt(&self.0, f) |
| } |
| } |
| |
| impl str::FromStr for MultiBitFmtFlags { |
| type Err = crate::parser::ParseError; |
| |
| fn from_str(s: &str) -> Result<Self, Self::Err> { |
| Ok(MultiBitFmtFlags(s.parse()?)) |
| } |
| } |
| |
| format_parse_case(FmtFlags::empty()); |
| format_parse_case(FmtFlags::all()); |
| format_parse_case(FmtFlags::고양이); |
| format_parse_case(FmtFlags::고양이 | FmtFlags::개); |
| format_parse_case(FmtFlags::물고기_고양이); |
| format_parse_case(FmtFlags::from_bits_retain(0xb8)); |
| format_parse_case(FmtFlags::from_bits_retain(0x20)); |
| format_parse_case(MultiBitFmtFlags::from_bits_retain(3)); |
| |
| parse_case(FmtFlags::empty(), ""); |
| parse_case(FmtFlags::empty(), " \r\n\t"); |
| parse_case(FmtFlags::empty(), "0x0"); |
| |
| parse_case(FmtFlags::고양이, "고양이"); |
| parse_case(FmtFlags::고양이, " 고양이 "); |
| parse_case(FmtFlags::고양이, "고양이 | 고양이 | 고양이"); |
| parse_case(FmtFlags::고양이, "0x01"); |
| |
| parse_case(FmtFlags::고양이 | FmtFlags::개, "고양이 | 개"); |
| parse_case(FmtFlags::고양이 | FmtFlags::개, "고양이|개"); |
| parse_case(FmtFlags::고양이 | FmtFlags::개, "\n고양이|개 "); |
| |
| parse_case(FmtFlags::고양이 | FmtFlags::물고기, "물고기_고양이"); |
| } |
| |
| #[test] |
| fn test_from_str_err() { |
| fn parse_case(pat: &str, flags: &str) { |
| let err = flags.parse::<FmtFlags>().unwrap_err().to_string(); |
| assert!(err.contains(pat), "`{}` not found in error `{}`", pat, err); |
| } |
| |
| parse_case("empty flag", "|"); |
| parse_case("empty flag", "|||"); |
| parse_case("empty flag", "고양이 |"); |
| parse_case("unrecognized named flag", "NOT_A_FLAG"); |
| parse_case("unrecognized named flag", "고양이 개"); |
| parse_case("unrecognized named flag", "고양이 | NOT_A_FLAG"); |
| parse_case("invalid hex flag", "0xhi"); |
| parse_case("invalid hex flag", "고양이 | 0xhi"); |
| } |
| |
| #[test] |
| fn test_binary() { |
| assert_eq!(format!("{:b}", Flags::ABC), "111"); |
| assert_eq!(format!("{:#b}", Flags::ABC), "0b111"); |
| let extra = Flags::from_bits_retain(0b1010000); |
| assert_eq!(format!("{:b}", Flags::ABC | extra), "1010111"); |
| assert_eq!(format!("{:#b}", Flags::ABC | extra), "0b1010111"); |
| } |
| |
| #[test] |
| fn test_octal() { |
| assert_eq!(format!("{:o}", LongFlags::LONG_A), "177777"); |
| assert_eq!(format!("{:#o}", LongFlags::LONG_A), "0o177777"); |
| let extra = LongFlags::from_bits_retain(0o5000000); |
| assert_eq!(format!("{:o}", LongFlags::LONG_A | extra), "5177777"); |
| assert_eq!(format!("{:#o}", LongFlags::LONG_A | extra), "0o5177777"); |
| } |
| |
| #[test] |
| fn test_lowerhex() { |
| assert_eq!(format!("{:x}", LongFlags::LONG_A), "ffff"); |
| assert_eq!(format!("{:#x}", LongFlags::LONG_A), "0xffff"); |
| let extra = LongFlags::from_bits_retain(0xe00000); |
| assert_eq!(format!("{:x}", LongFlags::LONG_A | extra), "e0ffff"); |
| assert_eq!(format!("{:#x}", LongFlags::LONG_A | extra), "0xe0ffff"); |
| } |
| |
| #[test] |
| fn test_upperhex() { |
| assert_eq!(format!("{:X}", LongFlags::LONG_A), "FFFF"); |
| assert_eq!(format!("{:#X}", LongFlags::LONG_A), "0xFFFF"); |
| let extra = LongFlags::from_bits_retain(0xe00000); |
| assert_eq!(format!("{:X}", LongFlags::LONG_A | extra), "E0FFFF"); |
| assert_eq!(format!("{:#X}", LongFlags::LONG_A | extra), "0xE0FFFF"); |
| } |
| |
| mod submodule { |
| bitflags! { |
| #[derive(Clone, Copy)] |
| pub struct PublicFlags: i8 { |
| const X = 0; |
| } |
| |
| #[derive(Clone, Copy)] |
| struct PrivateFlags: i8 { |
| const Y = 0; |
| } |
| } |
| |
| #[test] |
| fn test_private() { |
| let _ = PrivateFlags::Y; |
| } |
| } |
| |
| #[test] |
| fn test_public() { |
| let _ = submodule::PublicFlags::X; |
| } |
| |
| mod t1 { |
| mod foo { |
| pub type Bar = i32; |
| } |
| |
| bitflags! { |
| /// baz |
| #[derive(Clone, Copy)] |
| struct Flags: foo::Bar { |
| const A = 0b00000001; |
| #[cfg(foo)] |
| const B = 0b00000010; |
| #[cfg(foo)] |
| const C = 0b00000010; |
| } |
| } |
| } |
| |
| #[test] |
| fn test_in_function() { |
| bitflags! { |
| #[derive(Clone, Copy, Debug, PartialEq, Eq)] |
| struct Flags: u8 { |
| const A = 1; |
| #[cfg(any())] // false |
| const B = 2; |
| } |
| } |
| assert_eq!(Flags::all(), Flags::A); |
| assert_eq!(format!("{:?}", Flags::A), "Flags(A)"); |
| } |
| |
| #[test] |
| fn test_deprecated() { |
| bitflags! { |
| #[derive(Clone, Copy)] |
| pub struct TestFlags: u32 { |
| #[deprecated(note = "Use something else.")] |
| const ONE = 1; |
| } |
| } |
| } |
| |
| #[test] |
| fn test_pub_crate() { |
| mod module { |
| bitflags! { |
| #[derive(Clone, Copy)] |
| pub (crate) struct Test: u8 { |
| const FOO = 1; |
| } |
| } |
| } |
| |
| assert_eq!(module::Test::FOO.bits(), 1); |
| } |
| |
| #[test] |
| fn test_pub_in_module() { |
| mod module { |
| mod submodule { |
| bitflags! { |
| // `pub (in super)` means only the module `module` will |
| // be able to access this. |
| #[derive(Clone, Copy)] |
| pub (in super) struct Test: u8 { |
| const FOO = 1; |
| } |
| } |
| } |
| |
| mod test { |
| // Note: due to `pub (in super)`, |
| // this cannot be accessed directly by the testing code. |
| pub(super) fn value() -> u8 { |
| super::submodule::Test::FOO.bits() |
| } |
| } |
| |
| pub fn value() -> u8 { |
| test::value() |
| } |
| } |
| |
| assert_eq!(module::value(), 1) |
| } |
| |
| #[test] |
| fn test_zero_value_flags() { |
| bitflags! { |
| #[derive(Clone, Copy, Debug, PartialEq, Eq)] |
| struct Flags: u32 { |
| const NONE = 0b0; |
| const SOME = 0b1; |
| } |
| } |
| |
| assert!(Flags::empty().contains(Flags::NONE)); |
| assert!(Flags::SOME.contains(Flags::NONE)); |
| assert!(Flags::NONE.is_empty()); |
| |
| assert_eq!(format!("{:?}", Flags::SOME), "Flags(NONE | SOME)"); |
| } |
| |
| #[test] |
| fn test_empty_bitflags() { |
| bitflags! {} |
| } |
| |
| #[test] |
| fn test_u128_bitflags() { |
| bitflags! { |
| #[derive(Clone, Copy, Debug, PartialEq, Eq)] |
| struct Flags: u128 { |
| const A = 0x0000_0000_0000_0000_0000_0000_0000_0001; |
| const B = 0x0000_0000_0000_1000_0000_0000_0000_0000; |
| const C = 0x8000_0000_0000_0000_0000_0000_0000_0000; |
| const ABC = Self::A.bits() | Self::B.bits() | Self::C.bits(); |
| } |
| } |
| |
| assert_eq!(Flags::ABC, Flags::A | Flags::B | Flags::C); |
| assert_eq!(Flags::A.bits(), 0x0000_0000_0000_0000_0000_0000_0000_0001); |
| assert_eq!(Flags::B.bits(), 0x0000_0000_0000_1000_0000_0000_0000_0000); |
| assert_eq!(Flags::C.bits(), 0x8000_0000_0000_0000_0000_0000_0000_0000); |
| assert_eq!(Flags::ABC.bits(), 0x8000_0000_0000_1000_0000_0000_0000_0001); |
| assert_eq!(format!("{:?}", Flags::A), "Flags(A)"); |
| assert_eq!(format!("{:?}", Flags::B), "Flags(B)"); |
| assert_eq!(format!("{:?}", Flags::C), "Flags(C)"); |
| assert_eq!(format!("{:?}", Flags::ABC), "Flags(A | B | C)"); |
| } |
| |
| #[test] |
| fn test_from_bits_edge_cases() { |
| bitflags! { |
| #[derive(Clone, Copy, Debug, PartialEq, Eq)] |
| struct Flags: u8 { |
| const A = 0b00000001; |
| const BC = 0b00000110; |
| } |
| } |
| |
| let flags = Flags::from_bits(0b00000100); |
| assert_eq!(flags, None); |
| let flags = Flags::from_bits(0b00000101); |
| assert_eq!(flags, None); |
| } |
| |
| #[test] |
| fn test_from_bits_truncate_edge_cases() { |
| bitflags! { |
| #[derive(Clone, Copy, Debug, PartialEq, Eq)] |
| struct Flags: u8 { |
| const A = 0b00000001; |
| const BC = 0b00000110; |
| } |
| } |
| |
| let flags = Flags::from_bits_truncate(0b00000100); |
| assert_eq!(flags, Flags::empty()); |
| let flags = Flags::from_bits_truncate(0b00000101); |
| assert_eq!(flags, Flags::A); |
| } |
| |
| #[test] |
| fn test_iter() { |
| bitflags! { |
| #[derive(Clone, Copy, Debug, PartialEq, Eq)] |
| struct Flags: u32 { |
| const ONE = 0b001; |
| const TWO = 0b010; |
| const THREE = 0b100; |
| #[cfg(windows)] |
| const FOUR_WIN = 0b1000; |
| #[cfg(unix)] |
| const FOUR_UNIX = 0b10000; |
| const FIVE = 0b01000100; |
| } |
| } |
| |
| let count = { |
| #[cfg(any(unix, windows))] |
| { |
| 5 |
| } |
| |
| #[cfg(not(any(unix, windows)))] |
| { |
| 4 |
| } |
| }; |
| |
| let flags = Flags::all(); |
| assert_eq!(flags.into_iter().count(), count); |
| |
| for flag in flags.into_iter() { |
| assert!(flags.contains(flag)); |
| } |
| |
| let mut iter = flags.iter_names(); |
| |
| assert_eq!(iter.next().unwrap(), ("ONE", Flags::ONE)); |
| assert_eq!(iter.next().unwrap(), ("TWO", Flags::TWO)); |
| assert_eq!(iter.next().unwrap(), ("THREE", Flags::THREE)); |
| |
| #[cfg(unix)] |
| { |
| assert_eq!(iter.next().unwrap(), ("FOUR_UNIX", Flags::FOUR_UNIX)); |
| } |
| #[cfg(windows)] |
| { |
| assert_eq!(iter.next().unwrap(), ("FOUR_WIN", Flags::FOUR_WIN)); |
| } |
| |
| assert_eq!(iter.next().unwrap(), ("FIVE", Flags::FIVE)); |
| |
| assert_eq!(iter.next(), None); |
| |
| let flags = Flags::empty(); |
| assert_eq!(flags.into_iter().count(), 0); |
| |
| let flags = Flags::ONE | Flags::THREE; |
| assert_eq!(flags.into_iter().count(), 2); |
| |
| let mut iter = flags.iter_names(); |
| |
| assert_eq!(iter.next().unwrap(), ("ONE", Flags::ONE)); |
| assert_eq!(iter.next().unwrap(), ("THREE", Flags::THREE)); |
| assert_eq!(iter.next(), None); |
| |
| let flags = Flags::from_bits_retain(0b1000_0000); |
| assert_eq!(flags.into_iter().count(), 1); |
| assert_eq!(flags.iter_names().count(), 0); |
| } |
| |
| #[test] |
| fn into_iter_from_iter_roundtrip() { |
| let flags = Flags::ABC | Flags::from_bits_retain(0b1000_0000); |
| |
| assert_eq!(flags, flags.into_iter().collect::<Flags>()); |
| } |
| |
| #[test] |
| fn test_from_name() { |
| let flags = Flags::all(); |
| |
| let mut rebuilt = Flags::empty(); |
| |
| for (name, value) in flags.iter_names() { |
| assert_eq!(value, Flags::from_name(name).unwrap()); |
| |
| rebuilt |= Flags::from_name(name).unwrap(); |
| } |
| |
| assert_eq!(flags, rebuilt); |
| } |
| |
| #[test] |
| fn bits_types() { |
| bitflags! { |
| pub struct I8: i8 { |
| const A = 1; |
| } |
| |
| pub struct I16: i16 { |
| const A = 1; |
| } |
| |
| pub struct I32: i32 { |
| const A = 1; |
| } |
| |
| pub struct I64: i64 { |
| const A = 1; |
| } |
| |
| pub struct I128: i128 { |
| const A = 1; |
| } |
| |
| pub struct Isize: isize { |
| const A = 1; |
| } |
| |
| pub struct U8: u8 { |
| const A = 1; |
| } |
| |
| pub struct U16: u16 { |
| const A = 1; |
| } |
| |
| pub struct U32: u32 { |
| const A = 1; |
| } |
| |
| pub struct U64: u64 { |
| const A = 1; |
| } |
| |
| pub struct U128: u128 { |
| const A = 1; |
| } |
| |
| pub struct Usize: usize { |
| const A = 1; |
| } |
| } |
| } |
| } |