blob: ee0de302e2a49f12c20dc5fe20a04467b7292cc8 [file] [log] [blame]
use std::ffi::OsStr;
#[cfg(not(any(target_os = "windows", target_arch = "wasm32")))]
use std::os::unix::ffi::OsStrExt;
#[cfg(any(target_os = "windows", target_arch = "wasm32"))]
use INVALID_UTF8;
#[cfg(any(target_os = "windows", target_arch = "wasm32"))]
pub trait OsStrExt3 {
fn from_bytes(b: &[u8]) -> &Self;
fn as_bytes(&self) -> &[u8];
}
#[doc(hidden)]
pub trait OsStrExt2 {
fn starts_with(&self, s: &[u8]) -> bool;
fn split_at_byte(&self, b: u8) -> (&OsStr, &OsStr);
fn split_at(&self, i: usize) -> (&OsStr, &OsStr);
fn trim_left_matches(&self, b: u8) -> &OsStr;
fn contains_byte(&self, b: u8) -> bool;
fn split(&self, b: u8) -> OsSplit;
}
// A starts-with implementation that does not panic when the OsStr contains
// invalid Unicode.
//
// A Windows OsStr is usually UTF-16. If `prefix` is valid UTF-8, we can
// re-encode it as UTF-16, and ask whether `osstr` starts with the same series
// of u16 code units. If `prefix` is not valid UTF-8, then this comparison
// isn't meaningful, and we just return false.
#[cfg(target_os = "windows")]
fn windows_osstr_starts_with(osstr: &OsStr, prefix: &[u8]) -> bool {
use std::os::windows::ffi::OsStrExt;
let prefix_str = if let Ok(s) = std::str::from_utf8(prefix) {
s
} else {
return false;
};
let mut osstr_units = osstr.encode_wide();
let mut prefix_units = prefix_str.encode_utf16();
loop {
match (osstr_units.next(), prefix_units.next()) {
// These code units match. Keep looping.
(Some(o), Some(p)) if o == p => continue,
// We've reached the end of the prefix. It's a match.
(_, None) => return true,
// Otherwise, it's not a match.
_ => return false,
}
}
}
#[test]
#[cfg(target_os = "windows")]
fn test_windows_osstr_starts_with() {
use std::ffi::OsString;
use std::os::windows::ffi::OsStringExt;
fn from_ascii(ascii: &[u8]) -> OsString {
let u16_vec: Vec<u16> = ascii.iter().map(|&c| c as u16).collect();
OsString::from_wide(&u16_vec)
}
// Test all the basic cases.
assert!(windows_osstr_starts_with(&from_ascii(b"abcdef"), b"abc"));
assert!(windows_osstr_starts_with(&from_ascii(b"abcdef"), b"abcdef"));
assert!(!windows_osstr_starts_with(&from_ascii(b"abcdef"), b"def"));
assert!(!windows_osstr_starts_with(&from_ascii(b"abc"), b"abcd"));
// Test the case where the candidate prefix is not valid UTF-8. Note that a
// standalone \xff byte is valid ASCII but not valid UTF-8. Thus although
// these strings look identical, they do not match.
assert!(!windows_osstr_starts_with(&from_ascii(b"\xff"), b"\xff"));
// Test the case where the OsString is not valid UTF-16. It should still be
// possible to match the valid characters at the front.
//
// UTF-16 surrogate characters are only valid in pairs. Including one on
// the end by itself makes this invalid UTF-16.
let surrogate_char: u16 = 0xDC00;
let mut invalid_unicode =
OsString::from_wide(&['a' as u16, 'b' as u16, 'c' as u16, surrogate_char]);
assert!(
invalid_unicode.to_str().is_none(),
"This string is invalid Unicode, and conversion to &str should fail.",
);
assert!(windows_osstr_starts_with(&invalid_unicode, b"abc"));
assert!(!windows_osstr_starts_with(&invalid_unicode, b"abcd"));
}
#[cfg(any(target_os = "windows", target_arch = "wasm32"))]
impl OsStrExt3 for OsStr {
fn from_bytes(b: &[u8]) -> &Self {
use std::mem;
unsafe { mem::transmute(b) }
}
fn as_bytes(&self) -> &[u8] {
self.to_str().map(|s| s.as_bytes()).expect(INVALID_UTF8)
}
}
impl OsStrExt2 for OsStr {
fn starts_with(&self, s: &[u8]) -> bool {
#[cfg(target_os = "windows")]
{
// On Windows, the as_bytes() method will panic if the OsStr
// contains invalid Unicode. To avoid this, we use a
// Windows-specific starts-with function that doesn't rely on
// as_bytes(). This is necessary for Windows command line
// applications to handle non-Unicode arguments successfully. This
// allows common cases like `clap.exe [invalid]` to succeed, though
// cases that require string splitting will still fail, like
// `clap.exe --arg=[invalid]`. Note that this entire module is
// replaced in Clap 3.x, so this workaround is specific to the 2.x
// branch.
return windows_osstr_starts_with(self, s);
}
self.as_bytes().starts_with(s)
}
fn contains_byte(&self, byte: u8) -> bool {
for b in self.as_bytes() {
if b == &byte {
return true;
}
}
false
}
fn split_at_byte(&self, byte: u8) -> (&OsStr, &OsStr) {
for (i, b) in self.as_bytes().iter().enumerate() {
if b == &byte {
return (
OsStr::from_bytes(&self.as_bytes()[..i]),
OsStr::from_bytes(&self.as_bytes()[i + 1..]),
);
}
}
(
&*self,
OsStr::from_bytes(&self.as_bytes()[self.len()..self.len()]),
)
}
fn trim_left_matches(&self, byte: u8) -> &OsStr {
let mut found = false;
for (i, b) in self.as_bytes().iter().enumerate() {
if b != &byte {
return OsStr::from_bytes(&self.as_bytes()[i..]);
} else {
found = true;
}
}
if found {
return OsStr::from_bytes(&self.as_bytes()[self.len()..]);
}
&*self
}
fn split_at(&self, i: usize) -> (&OsStr, &OsStr) {
(
OsStr::from_bytes(&self.as_bytes()[..i]),
OsStr::from_bytes(&self.as_bytes()[i..]),
)
}
fn split(&self, b: u8) -> OsSplit {
OsSplit {
sep: b,
val: self.as_bytes(),
pos: 0,
}
}
}
#[doc(hidden)]
#[derive(Clone, Debug)]
pub struct OsSplit<'a> {
sep: u8,
val: &'a [u8],
pos: usize,
}
impl<'a> Iterator for OsSplit<'a> {
type Item = &'a OsStr;
fn next(&mut self) -> Option<&'a OsStr> {
debugln!("OsSplit::next: self={:?}", self);
if self.pos == self.val.len() {
return None;
}
let start = self.pos;
for b in &self.val[start..] {
self.pos += 1;
if *b == self.sep {
return Some(OsStr::from_bytes(&self.val[start..self.pos - 1]));
}
}
Some(OsStr::from_bytes(&self.val[start..]))
}
}