| |
| macro_rules! impl_cons_iter( |
| ($_A:ident, $_B:ident, ) => (); // stop |
| |
| ($A:ident, $($B:ident,)*) => ( |
| impl_cons_iter!($($B,)*); |
| #[allow(non_snake_case)] |
| impl<X, Iter, $($B),*> Iterator for ConsTuples<Iter, (($($B,)*), X)> |
| where Iter: Iterator<Item = (($($B,)*), X)>, |
| { |
| type Item = ($($B,)* X, ); |
| fn next(&mut self) -> Option<Self::Item> { |
| self.iter.next().map(|(($($B,)*), x)| ($($B,)* x, )) |
| } |
| |
| fn size_hint(&self) -> (usize, Option<usize>) { |
| self.iter.size_hint() |
| } |
| fn fold<Acc, Fold>(self, accum: Acc, mut f: Fold) -> Acc |
| where Fold: FnMut(Acc, Self::Item) -> Acc, |
| { |
| self.iter.fold(accum, move |acc, (($($B,)*), x)| f(acc, ($($B,)* x, ))) |
| } |
| } |
| |
| #[allow(non_snake_case)] |
| impl<X, Iter, $($B),*> DoubleEndedIterator for ConsTuples<Iter, (($($B,)*), X)> |
| where Iter: DoubleEndedIterator<Item = (($($B,)*), X)>, |
| { |
| fn next_back(&mut self) -> Option<Self::Item> { |
| self.iter.next().map(|(($($B,)*), x)| ($($B,)* x, )) |
| } |
| } |
| |
| ); |
| ); |
| |
| impl_cons_iter!(A, B, C, D, E, F, G, H, I, J, K, L,); |
| |
| /// An iterator that maps an iterator of tuples like |
| /// `((A, B), C)` to an iterator of `(A, B, C)`. |
| /// |
| /// Used by the `iproduct!()` macro. |
| #[must_use = "iterator adaptors are lazy and do nothing unless consumed"] |
| #[derive(Debug)] |
| pub struct ConsTuples<I, J> |
| where I: Iterator<Item=J>, |
| { |
| iter: I, |
| } |
| |
| impl<I, J> Clone for ConsTuples<I, J> |
| where I: Clone + Iterator<Item=J>, |
| { |
| clone_fields!(iter); |
| } |
| |
| /// Create an iterator that maps for example iterators of |
| /// `((A, B), C)` to `(A, B, C)`. |
| pub fn cons_tuples<I, J>(iterable: I) -> ConsTuples<I::IntoIter, J> |
| where I: IntoIterator<Item=J> |
| { |
| ConsTuples { iter: iterable.into_iter() } |
| } |