| #![cfg(feature = "use_std")] |
| |
| use crate::MinMaxResult; |
| use std::collections::HashMap; |
| use std::cmp::Ordering; |
| use std::hash::Hash; |
| use std::iter::Iterator; |
| use std::ops::{Add, Mul}; |
| |
| /// A wrapper to allow for an easy [`into_grouping_map_by`](crate::Itertools::into_grouping_map_by) |
| #[derive(Clone, Debug)] |
| pub struct MapForGrouping<I, F>(I, F); |
| |
| impl<I, F> MapForGrouping<I, F> { |
| pub(crate) fn new(iter: I, key_mapper: F) -> Self { |
| Self(iter, key_mapper) |
| } |
| } |
| |
| impl<K, V, I, F> Iterator for MapForGrouping<I, F> |
| where I: Iterator<Item = V>, |
| K: Hash + Eq, |
| F: FnMut(&V) -> K, |
| { |
| type Item = (K, V); |
| fn next(&mut self) -> Option<Self::Item> { |
| self.0.next().map(|val| ((self.1)(&val), val)) |
| } |
| } |
| |
| /// Creates a new `GroupingMap` from `iter` |
| pub fn new<I, K, V>(iter: I) -> GroupingMap<I> |
| where I: Iterator<Item = (K, V)>, |
| K: Hash + Eq, |
| { |
| GroupingMap { iter } |
| } |
| |
| /// `GroupingMapBy` is an intermediate struct for efficient group-and-fold operations. |
| /// |
| /// See [`GroupingMap`] for more informations. |
| #[must_use = "GroupingMapBy is lazy and do nothing unless consumed"] |
| pub type GroupingMapBy<I, F> = GroupingMap<MapForGrouping<I, F>>; |
| |
| /// `GroupingMap` is an intermediate struct for efficient group-and-fold operations. |
| /// It groups elements by their key and at the same time fold each group |
| /// using some aggregating operation. |
| /// |
| /// No method on this struct performs temporary allocations. |
| #[derive(Clone, Debug)] |
| #[must_use = "GroupingMap is lazy and do nothing unless consumed"] |
| pub struct GroupingMap<I> { |
| iter: I, |
| } |
| |
| impl<I, K, V> GroupingMap<I> |
| where I: Iterator<Item = (K, V)>, |
| K: Hash + Eq, |
| { |
| /// This is the generic way to perform any operation on a `GroupingMap`. |
| /// It's suggested to use this method only to implement custom operations |
| /// when the already provided ones are not enough. |
| /// |
| /// Groups elements from the `GroupingMap` source by key and applies `operation` to the elements |
| /// of each group sequentially, passing the previously accumulated value, a reference to the key |
| /// and the current element as arguments, and stores the results in an `HashMap`. |
| /// |
| /// The `operation` function is invoked on each element with the following parameters: |
| /// - the current value of the accumulator of the group if there is currently one; |
| /// - a reference to the key of the group this element belongs to; |
| /// - the element from the source being aggregated; |
| /// |
| /// If `operation` returns `Some(element)` then the accumulator is updated with `element`, |
| /// otherwise the previous accumulation is discarded. |
| /// |
| /// Return a `HashMap` associating the key of each group with the result of aggregation of |
| /// that group's elements. If the aggregation of the last element of a group discards the |
| /// accumulator then there won't be an entry associated to that group's key. |
| /// |
| /// ``` |
| /// use itertools::Itertools; |
| /// |
| /// let data = vec![2, 8, 5, 7, 9, 0, 4, 10]; |
| /// let lookup = data.into_iter() |
| /// .into_grouping_map_by(|&n| n % 4) |
| /// .aggregate(|acc, _key, val| { |
| /// if val == 0 || val == 10 { |
| /// None |
| /// } else { |
| /// Some(acc.unwrap_or(0) + val) |
| /// } |
| /// }); |
| /// |
| /// assert_eq!(lookup[&0], 4); // 0 resets the accumulator so only 4 is summed |
| /// assert_eq!(lookup[&1], 5 + 9); |
| /// assert_eq!(lookup.get(&2), None); // 10 resets the accumulator and nothing is summed afterward |
| /// assert_eq!(lookup[&3], 7); |
| /// assert_eq!(lookup.len(), 3); // The final keys are only 0, 1 and 2 |
| /// ``` |
| pub fn aggregate<FO, R>(self, mut operation: FO) -> HashMap<K, R> |
| where FO: FnMut(Option<R>, &K, V) -> Option<R>, |
| { |
| let mut destination_map = HashMap::new(); |
| |
| self.iter.for_each(|(key, val)| { |
| let acc = destination_map.remove(&key); |
| if let Some(op_res) = operation(acc, &key, val) { |
| destination_map.insert(key, op_res); |
| } |
| }); |
| |
| destination_map |
| } |
| |
| /// Groups elements from the `GroupingMap` source by key and applies `operation` to the elements |
| /// of each group sequentially, passing the previously accumulated value, a reference to the key |
| /// and the current element as arguments, and stores the results in a new map. |
| /// |
| /// `init` is the value from which will be cloned the initial value of each accumulator. |
| /// |
| /// `operation` is a function that is invoked on each element with the following parameters: |
| /// - the current value of the accumulator of the group; |
| /// - a reference to the key of the group this element belongs to; |
| /// - the element from the source being accumulated. |
| /// |
| /// Return a `HashMap` associating the key of each group with the result of folding that group's elements. |
| /// |
| /// ``` |
| /// use itertools::Itertools; |
| /// |
| /// let lookup = (1..=7) |
| /// .into_grouping_map_by(|&n| n % 3) |
| /// .fold(0, |acc, _key, val| acc + val); |
| /// |
| /// assert_eq!(lookup[&0], 3 + 6); |
| /// assert_eq!(lookup[&1], 1 + 4 + 7); |
| /// assert_eq!(lookup[&2], 2 + 5); |
| /// assert_eq!(lookup.len(), 3); |
| /// ``` |
| pub fn fold<FO, R>(self, init: R, mut operation: FO) -> HashMap<K, R> |
| where R: Clone, |
| FO: FnMut(R, &K, V) -> R, |
| { |
| self.aggregate(|acc, key, val| { |
| let acc = acc.unwrap_or_else(|| init.clone()); |
| Some(operation(acc, key, val)) |
| }) |
| } |
| |
| /// Groups elements from the `GroupingMap` source by key and applies `operation` to the elements |
| /// of each group sequentially, passing the previously accumulated value, a reference to the key |
| /// and the current element as arguments, and stores the results in a new map. |
| /// |
| /// This is similar to [`fold`] but the initial value of the accumulator is the first element of the group. |
| /// |
| /// `operation` is a function that is invoked on each element with the following parameters: |
| /// - the current value of the accumulator of the group; |
| /// - a reference to the key of the group this element belongs to; |
| /// - the element from the source being accumulated. |
| /// |
| /// Return a `HashMap` associating the key of each group with the result of folding that group's elements. |
| /// |
| /// [`fold`]: GroupingMap::fold |
| /// |
| /// ``` |
| /// use itertools::Itertools; |
| /// |
| /// let lookup = (1..=7) |
| /// .into_grouping_map_by(|&n| n % 3) |
| /// .fold_first(|acc, _key, val| acc + val); |
| /// |
| /// assert_eq!(lookup[&0], 3 + 6); |
| /// assert_eq!(lookup[&1], 1 + 4 + 7); |
| /// assert_eq!(lookup[&2], 2 + 5); |
| /// assert_eq!(lookup.len(), 3); |
| /// ``` |
| pub fn fold_first<FO>(self, mut operation: FO) -> HashMap<K, V> |
| where FO: FnMut(V, &K, V) -> V, |
| { |
| self.aggregate(|acc, key, val| { |
| Some(match acc { |
| Some(acc) => operation(acc, key, val), |
| None => val, |
| }) |
| }) |
| } |
| |
| /// Groups elements from the `GroupingMap` source by key and collects the elements of each group in |
| /// an instance of `C`. The iteration order is preserved when inserting elements. |
| /// |
| /// Return a `HashMap` associating the key of each group with the collection containing that group's elements. |
| /// |
| /// ``` |
| /// use itertools::Itertools; |
| /// use std::collections::HashSet; |
| /// |
| /// let lookup = vec![0, 1, 2, 3, 4, 5, 6, 2, 3, 6].into_iter() |
| /// .into_grouping_map_by(|&n| n % 3) |
| /// .collect::<HashSet<_>>(); |
| /// |
| /// assert_eq!(lookup[&0], vec![0, 3, 6].into_iter().collect::<HashSet<_>>()); |
| /// assert_eq!(lookup[&1], vec![1, 4].into_iter().collect::<HashSet<_>>()); |
| /// assert_eq!(lookup[&2], vec![2, 5].into_iter().collect::<HashSet<_>>()); |
| /// assert_eq!(lookup.len(), 3); |
| /// ``` |
| pub fn collect<C>(self) -> HashMap<K, C> |
| where C: Default + Extend<V>, |
| { |
| let mut destination_map = HashMap::new(); |
| |
| self.iter.for_each(|(key, val)| { |
| destination_map.entry(key).or_insert_with(C::default).extend(Some(val)); |
| }); |
| |
| destination_map |
| } |
| |
| /// Groups elements from the `GroupingMap` source by key and finds the maximum of each group. |
| /// |
| /// If several elements are equally maximum, the last element is picked. |
| /// |
| /// Returns a `HashMap` associating the key of each group with the maximum of that group's elements. |
| /// |
| /// ``` |
| /// use itertools::Itertools; |
| /// |
| /// let lookup = vec![1, 3, 4, 5, 7, 8, 9, 12].into_iter() |
| /// .into_grouping_map_by(|&n| n % 3) |
| /// .max(); |
| /// |
| /// assert_eq!(lookup[&0], 12); |
| /// assert_eq!(lookup[&1], 7); |
| /// assert_eq!(lookup[&2], 8); |
| /// assert_eq!(lookup.len(), 3); |
| /// ``` |
| pub fn max(self) -> HashMap<K, V> |
| where V: Ord, |
| { |
| self.max_by(|_, v1, v2| V::cmp(v1, v2)) |
| } |
| |
| /// Groups elements from the `GroupingMap` source by key and finds the maximum of each group |
| /// with respect to the specified comparison function. |
| /// |
| /// If several elements are equally maximum, the last element is picked. |
| /// |
| /// Returns a `HashMap` associating the key of each group with the maximum of that group's elements. |
| /// |
| /// ``` |
| /// use itertools::Itertools; |
| /// |
| /// let lookup = vec![1, 3, 4, 5, 7, 8, 9, 12].into_iter() |
| /// .into_grouping_map_by(|&n| n % 3) |
| /// .max_by(|_key, x, y| y.cmp(x)); |
| /// |
| /// assert_eq!(lookup[&0], 3); |
| /// assert_eq!(lookup[&1], 1); |
| /// assert_eq!(lookup[&2], 5); |
| /// assert_eq!(lookup.len(), 3); |
| /// ``` |
| pub fn max_by<F>(self, mut compare: F) -> HashMap<K, V> |
| where F: FnMut(&K, &V, &V) -> Ordering, |
| { |
| self.fold_first(|acc, key, val| match compare(key, &acc, &val) { |
| Ordering::Less | Ordering::Equal => val, |
| Ordering::Greater => acc |
| }) |
| } |
| |
| /// Groups elements from the `GroupingMap` source by key and finds the element of each group |
| /// that gives the maximum from the specified function. |
| /// |
| /// If several elements are equally maximum, the last element is picked. |
| /// |
| /// Returns a `HashMap` associating the key of each group with the maximum of that group's elements. |
| /// |
| /// ``` |
| /// use itertools::Itertools; |
| /// |
| /// let lookup = vec![1, 3, 4, 5, 7, 8, 9, 12].into_iter() |
| /// .into_grouping_map_by(|&n| n % 3) |
| /// .max_by_key(|_key, &val| val % 4); |
| /// |
| /// assert_eq!(lookup[&0], 3); |
| /// assert_eq!(lookup[&1], 7); |
| /// assert_eq!(lookup[&2], 5); |
| /// assert_eq!(lookup.len(), 3); |
| /// ``` |
| pub fn max_by_key<F, CK>(self, mut f: F) -> HashMap<K, V> |
| where F: FnMut(&K, &V) -> CK, |
| CK: Ord, |
| { |
| self.max_by(|key, v1, v2| f(key, &v1).cmp(&f(key, &v2))) |
| } |
| |
| /// Groups elements from the `GroupingMap` source by key and finds the minimum of each group. |
| /// |
| /// If several elements are equally minimum, the first element is picked. |
| /// |
| /// Returns a `HashMap` associating the key of each group with the minimum of that group's elements. |
| /// |
| /// ``` |
| /// use itertools::Itertools; |
| /// |
| /// let lookup = vec![1, 3, 4, 5, 7, 8, 9, 12].into_iter() |
| /// .into_grouping_map_by(|&n| n % 3) |
| /// .min(); |
| /// |
| /// assert_eq!(lookup[&0], 3); |
| /// assert_eq!(lookup[&1], 1); |
| /// assert_eq!(lookup[&2], 5); |
| /// assert_eq!(lookup.len(), 3); |
| /// ``` |
| pub fn min(self) -> HashMap<K, V> |
| where V: Ord, |
| { |
| self.min_by(|_, v1, v2| V::cmp(v1, v2)) |
| } |
| |
| /// Groups elements from the `GroupingMap` source by key and finds the minimum of each group |
| /// with respect to the specified comparison function. |
| /// |
| /// If several elements are equally minimum, the first element is picked. |
| /// |
| /// Returns a `HashMap` associating the key of each group with the minimum of that group's elements. |
| /// |
| /// ``` |
| /// use itertools::Itertools; |
| /// |
| /// let lookup = vec![1, 3, 4, 5, 7, 8, 9, 12].into_iter() |
| /// .into_grouping_map_by(|&n| n % 3) |
| /// .min_by(|_key, x, y| y.cmp(x)); |
| /// |
| /// assert_eq!(lookup[&0], 12); |
| /// assert_eq!(lookup[&1], 7); |
| /// assert_eq!(lookup[&2], 8); |
| /// assert_eq!(lookup.len(), 3); |
| /// ``` |
| pub fn min_by<F>(self, mut compare: F) -> HashMap<K, V> |
| where F: FnMut(&K, &V, &V) -> Ordering, |
| { |
| self.fold_first(|acc, key, val| match compare(key, &acc, &val) { |
| Ordering::Less | Ordering::Equal => acc, |
| Ordering::Greater => val |
| }) |
| } |
| |
| /// Groups elements from the `GroupingMap` source by key and finds the element of each group |
| /// that gives the minimum from the specified function. |
| /// |
| /// If several elements are equally minimum, the first element is picked. |
| /// |
| /// Returns a `HashMap` associating the key of each group with the minimum of that group's elements. |
| /// |
| /// ``` |
| /// use itertools::Itertools; |
| /// |
| /// let lookup = vec![1, 3, 4, 5, 7, 8, 9, 12].into_iter() |
| /// .into_grouping_map_by(|&n| n % 3) |
| /// .min_by_key(|_key, &val| val % 4); |
| /// |
| /// assert_eq!(lookup[&0], 12); |
| /// assert_eq!(lookup[&1], 4); |
| /// assert_eq!(lookup[&2], 8); |
| /// assert_eq!(lookup.len(), 3); |
| /// ``` |
| pub fn min_by_key<F, CK>(self, mut f: F) -> HashMap<K, V> |
| where F: FnMut(&K, &V) -> CK, |
| CK: Ord, |
| { |
| self.min_by(|key, v1, v2| f(key, &v1).cmp(&f(key, &v2))) |
| } |
| |
| /// Groups elements from the `GroupingMap` source by key and find the maximum and minimum of |
| /// each group. |
| /// |
| /// If several elements are equally maximum, the last element is picked. |
| /// If several elements are equally minimum, the first element is picked. |
| /// |
| /// See [.minmax()](crate::Itertools::minmax) for the non-grouping version. |
| /// |
| /// Differences from the non grouping version: |
| /// - It never produces a `MinMaxResult::NoElements` |
| /// - It doesn't have any speedup |
| /// |
| /// Returns a `HashMap` associating the key of each group with the minimum and maximum of that group's elements. |
| /// |
| /// ``` |
| /// use itertools::Itertools; |
| /// use itertools::MinMaxResult::{OneElement, MinMax}; |
| /// |
| /// let lookup = vec![1, 3, 4, 5, 7, 9, 12].into_iter() |
| /// .into_grouping_map_by(|&n| n % 3) |
| /// .minmax(); |
| /// |
| /// assert_eq!(lookup[&0], MinMax(3, 12)); |
| /// assert_eq!(lookup[&1], MinMax(1, 7)); |
| /// assert_eq!(lookup[&2], OneElement(5)); |
| /// assert_eq!(lookup.len(), 3); |
| /// ``` |
| pub fn minmax(self) -> HashMap<K, MinMaxResult<V>> |
| where V: Ord, |
| { |
| self.minmax_by(|_, v1, v2| V::cmp(v1, v2)) |
| } |
| |
| /// Groups elements from the `GroupingMap` source by key and find the maximum and minimum of |
| /// each group with respect to the specified comparison function. |
| /// |
| /// If several elements are equally maximum, the last element is picked. |
| /// If several elements are equally minimum, the first element is picked. |
| /// |
| /// It has the same differences from the non-grouping version as `minmax`. |
| /// |
| /// Returns a `HashMap` associating the key of each group with the minimum and maximum of that group's elements. |
| /// |
| /// ``` |
| /// use itertools::Itertools; |
| /// use itertools::MinMaxResult::{OneElement, MinMax}; |
| /// |
| /// let lookup = vec![1, 3, 4, 5, 7, 9, 12].into_iter() |
| /// .into_grouping_map_by(|&n| n % 3) |
| /// .minmax_by(|_key, x, y| y.cmp(x)); |
| /// |
| /// assert_eq!(lookup[&0], MinMax(12, 3)); |
| /// assert_eq!(lookup[&1], MinMax(7, 1)); |
| /// assert_eq!(lookup[&2], OneElement(5)); |
| /// assert_eq!(lookup.len(), 3); |
| /// ``` |
| pub fn minmax_by<F>(self, mut compare: F) -> HashMap<K, MinMaxResult<V>> |
| where F: FnMut(&K, &V, &V) -> Ordering, |
| { |
| self.aggregate(|acc, key, val| { |
| Some(match acc { |
| Some(MinMaxResult::OneElement(e)) => { |
| if compare(key, &val, &e) == Ordering::Less { |
| MinMaxResult::MinMax(val, e) |
| } else { |
| MinMaxResult::MinMax(e, val) |
| } |
| } |
| Some(MinMaxResult::MinMax(min, max)) => { |
| if compare(key, &val, &min) == Ordering::Less { |
| MinMaxResult::MinMax(val, max) |
| } else if compare(key, &val, &max) != Ordering::Less { |
| MinMaxResult::MinMax(min, val) |
| } else { |
| MinMaxResult::MinMax(min, max) |
| } |
| } |
| None => MinMaxResult::OneElement(val), |
| Some(MinMaxResult::NoElements) => unreachable!(), |
| }) |
| }) |
| } |
| |
| /// Groups elements from the `GroupingMap` source by key and find the elements of each group |
| /// that gives the minimum and maximum from the specified function. |
| /// |
| /// If several elements are equally maximum, the last element is picked. |
| /// If several elements are equally minimum, the first element is picked. |
| /// |
| /// It has the same differences from the non-grouping version as `minmax`. |
| /// |
| /// Returns a `HashMap` associating the key of each group with the minimum and maximum of that group's elements. |
| /// |
| /// ``` |
| /// use itertools::Itertools; |
| /// use itertools::MinMaxResult::{OneElement, MinMax}; |
| /// |
| /// let lookup = vec![1, 3, 4, 5, 7, 9, 12].into_iter() |
| /// .into_grouping_map_by(|&n| n % 3) |
| /// .minmax_by_key(|_key, &val| val % 4); |
| /// |
| /// assert_eq!(lookup[&0], MinMax(12, 3)); |
| /// assert_eq!(lookup[&1], MinMax(4, 7)); |
| /// assert_eq!(lookup[&2], OneElement(5)); |
| /// assert_eq!(lookup.len(), 3); |
| /// ``` |
| pub fn minmax_by_key<F, CK>(self, mut f: F) -> HashMap<K, MinMaxResult<V>> |
| where F: FnMut(&K, &V) -> CK, |
| CK: Ord, |
| { |
| self.minmax_by(|key, v1, v2| f(key, &v1).cmp(&f(key, &v2))) |
| } |
| |
| /// Groups elements from the `GroupingMap` source by key and sums them. |
| /// |
| /// This is just a shorthand for `self.fold_first(|acc, _, val| acc + val)`. |
| /// It is more limited than `Iterator::sum` since it doesn't use the `Sum` trait. |
| /// |
| /// Returns a `HashMap` associating the key of each group with the sum of that group's elements. |
| /// |
| /// ``` |
| /// use itertools::Itertools; |
| /// |
| /// let lookup = vec![1, 3, 4, 5, 7, 8, 9, 12].into_iter() |
| /// .into_grouping_map_by(|&n| n % 3) |
| /// .sum(); |
| /// |
| /// assert_eq!(lookup[&0], 3 + 9 + 12); |
| /// assert_eq!(lookup[&1], 1 + 4 + 7); |
| /// assert_eq!(lookup[&2], 5 + 8); |
| /// assert_eq!(lookup.len(), 3); |
| /// ``` |
| pub fn sum(self) -> HashMap<K, V> |
| where V: Add<V, Output = V> |
| { |
| self.fold_first(|acc, _, val| acc + val) |
| } |
| |
| /// Groups elements from the `GroupingMap` source by key and multiply them. |
| /// |
| /// This is just a shorthand for `self.fold_first(|acc, _, val| acc * val)`. |
| /// It is more limited than `Iterator::product` since it doesn't use the `Product` trait. |
| /// |
| /// Returns a `HashMap` associating the key of each group with the product of that group's elements. |
| /// |
| /// ``` |
| /// use itertools::Itertools; |
| /// |
| /// let lookup = vec![1, 3, 4, 5, 7, 8, 9, 12].into_iter() |
| /// .into_grouping_map_by(|&n| n % 3) |
| /// .product(); |
| /// |
| /// assert_eq!(lookup[&0], 3 * 9 * 12); |
| /// assert_eq!(lookup[&1], 1 * 4 * 7); |
| /// assert_eq!(lookup[&2], 5 * 8); |
| /// assert_eq!(lookup.len(), 3); |
| /// ``` |
| pub fn product(self) -> HashMap<K, V> |
| where V: Mul<V, Output = V>, |
| { |
| self.fold_first(|acc, _, val| acc * val) |
| } |
| } |