| /* origin: FreeBSD /usr/src/lib/msun/src/s_expm1f.c */ |
| /* |
| * Conversion to float by Ian Lance Taylor, Cygnus Support, [email protected]. |
| */ |
| /* |
| * ==================================================== |
| * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
| * |
| * Developed at SunPro, a Sun Microsystems, Inc. business. |
| * Permission to use, copy, modify, and distribute this |
| * software is freely granted, provided that this notice |
| * is preserved. |
| * ==================================================== |
| */ |
| |
| const O_THRESHOLD: f32 = 8.8721679688e+01; /* 0x42b17180 */ |
| const LN2_HI: f32 = 6.9313812256e-01; /* 0x3f317180 */ |
| const LN2_LO: f32 = 9.0580006145e-06; /* 0x3717f7d1 */ |
| const INV_LN2: f32 = 1.4426950216e+00; /* 0x3fb8aa3b */ |
| /* |
| * Domain [-0.34568, 0.34568], range ~[-6.694e-10, 6.696e-10]: |
| * |6 / x * (1 + 2 * (1 / (exp(x) - 1) - 1 / x)) - q(x)| < 2**-30.04 |
| * Scaled coefficients: Qn_here = 2**n * Qn_for_q (see s_expm1.c): |
| */ |
| const Q1: f32 = -3.3333212137e-2; /* -0x888868.0p-28 */ |
| const Q2: f32 = 1.5807170421e-3; /* 0xcf3010.0p-33 */ |
| |
| /// Exponential, base *e*, of x-1 (f32) |
| /// |
| /// Calculates the exponential of `x` and subtract 1, that is, *e* raised |
| /// to the power `x` minus 1 (where *e* is the base of the natural |
| /// system of logarithms, approximately 2.71828). |
| /// The result is accurate even for small values of `x`, |
| /// where using `exp(x)-1` would lose many significant digits. |
| #[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] |
| pub fn expm1f(mut x: f32) -> f32 { |
| let x1p127 = f32::from_bits(0x7f000000); // 0x1p127f === 2 ^ 127 |
| |
| let mut hx = x.to_bits(); |
| let sign = (hx >> 31) != 0; |
| hx &= 0x7fffffff; |
| |
| /* filter out huge and non-finite argument */ |
| if hx >= 0x4195b844 { |
| /* if |x|>=27*ln2 */ |
| if hx > 0x7f800000 { |
| /* NaN */ |
| return x; |
| } |
| if sign { |
| return -1.; |
| } |
| if x > O_THRESHOLD { |
| x *= x1p127; |
| return x; |
| } |
| } |
| |
| let k: i32; |
| let hi: f32; |
| let lo: f32; |
| let mut c = 0f32; |
| /* argument reduction */ |
| if hx > 0x3eb17218 { |
| /* if |x| > 0.5 ln2 */ |
| if hx < 0x3F851592 { |
| /* and |x| < 1.5 ln2 */ |
| if !sign { |
| hi = x - LN2_HI; |
| lo = LN2_LO; |
| k = 1; |
| } else { |
| hi = x + LN2_HI; |
| lo = -LN2_LO; |
| k = -1; |
| } |
| } else { |
| k = (INV_LN2 * x + (if sign { -0.5 } else { 0.5 })) as i32; |
| let t = k as f32; |
| hi = x - t * LN2_HI; /* t*ln2_hi is exact here */ |
| lo = t * LN2_LO; |
| } |
| x = hi - lo; |
| c = (hi - x) - lo; |
| } else if hx < 0x33000000 { |
| /* when |x|<2**-25, return x */ |
| if hx < 0x00800000 { |
| force_eval!(x * x); |
| } |
| return x; |
| } else { |
| k = 0; |
| } |
| |
| /* x is now in primary range */ |
| let hfx = 0.5 * x; |
| let hxs = x * hfx; |
| let r1 = 1. + hxs * (Q1 + hxs * Q2); |
| let t = 3. - r1 * hfx; |
| let mut e = hxs * ((r1 - t) / (6. - x * t)); |
| if k == 0 { |
| /* c is 0 */ |
| return x - (x * e - hxs); |
| } |
| e = x * (e - c) - c; |
| e -= hxs; |
| /* exp(x) ~ 2^k (x_reduced - e + 1) */ |
| if k == -1 { |
| return 0.5 * (x - e) - 0.5; |
| } |
| if k == 1 { |
| if x < -0.25 { |
| return -2. * (e - (x + 0.5)); |
| } |
| return 1. + 2. * (x - e); |
| } |
| let twopk = f32::from_bits(((0x7f + k) << 23) as u32); /* 2^k */ |
| if (k < 0) || (k > 56) { |
| /* suffice to return exp(x)-1 */ |
| let mut y = x - e + 1.; |
| if k == 128 { |
| y = y * 2. * x1p127; |
| } else { |
| y = y * twopk; |
| } |
| return y - 1.; |
| } |
| let uf = f32::from_bits(((0x7f - k) << 23) as u32); /* 2^-k */ |
| if k < 23 { |
| (x - e + (1. - uf)) * twopk |
| } else { |
| (x - (e + uf) + 1.) * twopk |
| } |
| } |