| /* deflate.c -- compress data using the deflation algorithm |
| * Copyright (C) 1995-2016 Jean-loup Gailly and Mark Adler |
| * For conditions of distribution and use, see copyright notice in zlib.h |
| */ |
| |
| /* |
| * ALGORITHM |
| * |
| * The "deflation" process depends on being able to identify portions |
| * of the input text which are identical to earlier input (within a |
| * sliding window trailing behind the input currently being processed). |
| * |
| * The most straightforward technique turns out to be the fastest for |
| * most input files: try all possible matches and select the longest. |
| * The key feature of this algorithm is that insertions into the string |
| * dictionary are very simple and thus fast, and deletions are avoided |
| * completely. Insertions are performed at each input character, whereas |
| * string matches are performed only when the previous match ends. So it |
| * is preferable to spend more time in matches to allow very fast string |
| * insertions and avoid deletions. The matching algorithm for small |
| * strings is inspired from that of Rabin & Karp. A brute force approach |
| * is used to find longer strings when a small match has been found. |
| * A similar algorithm is used in comic (by Jan-Mark Wams) and freeze |
| * (by Leonid Broukhis). |
| * A previous version of this file used a more sophisticated algorithm |
| * (by Fiala and Greene) which is guaranteed to run in linear amortized |
| * time, but has a larger average cost, uses more memory and is patented. |
| * However the F&G algorithm may be faster for some highly redundant |
| * files if the parameter max_chain_length (described below) is too large. |
| * |
| * ACKNOWLEDGEMENTS |
| * |
| * The idea of lazy evaluation of matches is due to Jan-Mark Wams, and |
| * I found it in 'freeze' written by Leonid Broukhis. |
| * Thanks to many people for bug reports and testing. |
| * |
| * REFERENCES |
| * |
| * Deutsch, L.P.,"DEFLATE Compressed Data Format Specification". |
| * Available in http://tools.ietf.org/html/rfc1951 |
| * |
| * A description of the Rabin and Karp algorithm is given in the book |
| * "Algorithms" by R. Sedgewick, Addison-Wesley, p252. |
| * |
| * Fiala,E.R., and Greene,D.H. |
| * Data Compression with Finite Windows, Comm.ACM, 32,4 (1989) 490-595 |
| * |
| */ |
| |
| #include "zbuild.h" |
| #include "deflate.h" |
| #include "deflate_p.h" |
| #include "functable.h" |
| |
| const char PREFIX(deflate_copyright)[] = " deflate 1.2.12.f Copyright 1995-2016 Jean-loup Gailly and Mark Adler "; |
| /* |
| If you use the zlib library in a product, an acknowledgment is welcome |
| in the documentation of your product. If for some reason you cannot |
| include such an acknowledgment, I would appreciate that you keep this |
| copyright string in the executable of your product. |
| */ |
| |
| /* =========================================================================== |
| * Architecture-specific hooks. |
| */ |
| #ifdef S390_DFLTCC_DEFLATE |
| # include "arch/s390/dfltcc_deflate.h" |
| #else |
| /* Memory management for the deflate state. Useful for allocating arch-specific extension blocks. */ |
| # define ZALLOC_STATE(strm, items, size) ZALLOC(strm, items, size) |
| # define ZFREE_STATE(strm, addr) ZFREE(strm, addr) |
| # define ZCOPY_STATE(dst, src, size) memcpy(dst, src, size) |
| /* Memory management for the window. Useful for allocation the aligned window. */ |
| # define ZALLOC_WINDOW(strm, items, size) ZALLOC(strm, items, size) |
| # define TRY_FREE_WINDOW(strm, addr) TRY_FREE(strm, addr) |
| /* Invoked at the beginning of deflateSetDictionary(). Useful for checking arch-specific window data. */ |
| # define DEFLATE_SET_DICTIONARY_HOOK(strm, dict, dict_len) do {} while (0) |
| /* Invoked at the beginning of deflateGetDictionary(). Useful for adjusting arch-specific window data. */ |
| # define DEFLATE_GET_DICTIONARY_HOOK(strm, dict, dict_len) do {} while (0) |
| /* Invoked at the end of deflateResetKeep(). Useful for initializing arch-specific extension blocks. */ |
| # define DEFLATE_RESET_KEEP_HOOK(strm) do {} while (0) |
| /* Invoked at the beginning of deflateParams(). Useful for updating arch-specific compression parameters. */ |
| # define DEFLATE_PARAMS_HOOK(strm, level, strategy, hook_flush) do {} while (0) |
| /* Returns whether the last deflate(flush) operation did everything it's supposed to do. */ |
| # define DEFLATE_DONE(strm, flush) 1 |
| /* Adjusts the upper bound on compressed data length based on compression parameters and uncompressed data length. |
| * Useful when arch-specific deflation code behaves differently than regular zlib-ng algorithms. */ |
| # define DEFLATE_BOUND_ADJUST_COMPLEN(strm, complen, sourceLen) do {} while (0) |
| /* Returns whether an optimistic upper bound on compressed data length should *not* be used. |
| * Useful when arch-specific deflation code behaves differently than regular zlib-ng algorithms. */ |
| # define DEFLATE_NEED_CONSERVATIVE_BOUND(strm) 0 |
| /* Invoked for each deflate() call. Useful for plugging arch-specific deflation code. */ |
| # define DEFLATE_HOOK(strm, flush, bstate) 0 |
| /* Returns whether zlib-ng should compute a checksum. Set to 0 if arch-specific deflation code already does that. */ |
| # define DEFLATE_NEED_CHECKSUM(strm) 1 |
| /* Returns whether reproducibility parameter can be set to a given value. */ |
| # define DEFLATE_CAN_SET_REPRODUCIBLE(strm, reproducible) 1 |
| #endif |
| |
| /* =========================================================================== |
| * Function prototypes. |
| */ |
| typedef block_state (*compress_func) (deflate_state *s, int flush); |
| /* Compression function. Returns the block state after the call. */ |
| |
| static int deflateStateCheck (PREFIX3(stream) *strm); |
| static block_state deflate_stored (deflate_state *s, int flush); |
| Z_INTERNAL block_state deflate_fast (deflate_state *s, int flush); |
| Z_INTERNAL block_state deflate_quick (deflate_state *s, int flush); |
| #ifndef NO_MEDIUM_STRATEGY |
| Z_INTERNAL block_state deflate_medium (deflate_state *s, int flush); |
| #endif |
| Z_INTERNAL block_state deflate_slow (deflate_state *s, int flush); |
| static block_state deflate_rle (deflate_state *s, int flush); |
| static block_state deflate_huff (deflate_state *s, int flush); |
| static void lm_init (deflate_state *s); |
| Z_INTERNAL unsigned read_buf (PREFIX3(stream) *strm, unsigned char *buf, unsigned size); |
| |
| extern void crc_reset(deflate_state *const s); |
| #ifdef X86_PCLMULQDQ_CRC |
| extern void crc_finalize(deflate_state *const s); |
| #endif |
| extern void copy_with_crc(PREFIX3(stream) *strm, unsigned char *dst, unsigned long size); |
| |
| /* =========================================================================== |
| * Local data |
| */ |
| |
| #define NIL 0 |
| /* Tail of hash chains */ |
| |
| /* Values for max_lazy_match, good_match and max_chain_length, depending on |
| * the desired pack level (0..9). The values given below have been tuned to |
| * exclude worst case performance for pathological files. Better values may be |
| * found for specific files. |
| */ |
| typedef struct config_s { |
| uint16_t good_length; /* reduce lazy search above this match length */ |
| uint16_t max_lazy; /* do not perform lazy search above this match length */ |
| uint16_t nice_length; /* quit search above this match length */ |
| uint16_t max_chain; |
| compress_func func; |
| } config; |
| |
| static const config configuration_table[10] = { |
| /* good lazy nice chain */ |
| /* 0 */ {0, 0, 0, 0, deflate_stored}, /* store only */ |
| |
| #ifndef NO_QUICK_STRATEGY |
| /* 1 */ {4, 4, 8, 4, deflate_quick}, |
| /* 2 */ {4, 4, 8, 4, deflate_fast}, /* max speed, no lazy matches */ |
| #else |
| /* 1 */ {4, 4, 8, 4, deflate_fast}, /* max speed, no lazy matches */ |
| /* 2 */ {4, 5, 16, 8, deflate_fast}, |
| #endif |
| |
| /* 3 */ {4, 6, 32, 32, deflate_fast}, |
| |
| #ifdef NO_MEDIUM_STRATEGY |
| /* 4 */ {4, 4, 16, 16, deflate_slow}, /* lazy matches */ |
| /* 5 */ {8, 16, 32, 32, deflate_slow}, |
| /* 6 */ {8, 16, 128, 128, deflate_slow}, |
| #else |
| /* 4 */ {4, 4, 16, 16, deflate_medium}, /* lazy matches */ |
| /* 5 */ {8, 16, 32, 32, deflate_medium}, |
| /* 6 */ {8, 16, 128, 128, deflate_medium}, |
| #endif |
| |
| /* 7 */ {8, 32, 128, 256, deflate_slow}, |
| /* 8 */ {32, 128, 258, 1024, deflate_slow}, |
| /* 9 */ {32, 258, 258, 4096, deflate_slow}}; /* max compression */ |
| |
| /* Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4 |
| * For deflate_fast() (levels <= 3) good is ignored and lazy has a different |
| * meaning. |
| */ |
| |
| /* rank Z_BLOCK between Z_NO_FLUSH and Z_PARTIAL_FLUSH */ |
| #define RANK(f) (((f) * 2) - ((f) > 4 ? 9 : 0)) |
| |
| |
| /* =========================================================================== |
| * Initialize the hash table. prev[] will be initialized on the fly. |
| */ |
| #define CLEAR_HASH(s) do { \ |
| memset((unsigned char *)s->head, 0, HASH_SIZE * sizeof(*s->head)); \ |
| } while (0) |
| |
| /* =========================================================================== |
| * Slide the hash table when sliding the window down (could be avoided with 32 |
| * bit values at the expense of memory usage). We slide even when level == 0 to |
| * keep the hash table consistent if we switch back to level > 0 later. |
| */ |
| Z_INTERNAL void slide_hash_c(deflate_state *s) { |
| Pos *p; |
| unsigned n; |
| unsigned int wsize = s->w_size; |
| |
| n = HASH_SIZE; |
| p = &s->head[n]; |
| #ifdef NOT_TWEAK_COMPILER |
| do { |
| unsigned m; |
| m = *--p; |
| *p = (Pos)(m >= wsize ? m-wsize : NIL); |
| } while (--n); |
| #else |
| /* As of I make this change, gcc (4.8.*) isn't able to vectorize |
| * this hot loop using saturated-subtraction on x86-64 architecture. |
| * To avoid this defect, we can change the loop such that |
| * o. the pointer advance forward, and |
| * o. demote the variable 'm' to be local to the loop, and |
| * choose type "Pos" (instead of 'unsigned int') for the |
| * variable to avoid unncessary zero-extension. |
| */ |
| { |
| unsigned int i; |
| Pos *q = p - n; |
| for (i = 0; i < n; i++) { |
| Pos m = *q; |
| Pos t = wsize; |
| *q++ = (Pos)(m >= t ? m-t: NIL); |
| } |
| } |
| #endif /* NOT_TWEAK_COMPILER */ |
| |
| n = wsize; |
| p = &s->prev[n]; |
| #ifdef NOT_TWEAK_COMPILER |
| do { |
| unsigned m; |
| m = *--p; |
| *p = (Pos)(m >= wsize ? m-wsize : NIL); |
| /* If n is not on any hash chain, prev[n] is garbage but |
| * its value will never be used. |
| */ |
| } while (--n); |
| #else |
| { |
| unsigned int i; |
| Pos *q = p - n; |
| for (i = 0; i < n; i++) { |
| Pos m = *q; |
| Pos t = wsize; |
| *q++ = (Pos)(m >= t ? m-t: NIL); |
| } |
| } |
| #endif /* NOT_TWEAK_COMPILER */ |
| } |
| |
| /* ========================================================================= */ |
| int32_t Z_EXPORT PREFIX(deflateInit_)(PREFIX3(stream) *strm, int32_t level, const char *version, int32_t stream_size) { |
| return PREFIX(deflateInit2_)(strm, level, Z_DEFLATED, MAX_WBITS, DEF_MEM_LEVEL, Z_DEFAULT_STRATEGY, version, stream_size); |
| /* Todo: ignore strm->next_in if we use it as window */ |
| } |
| |
| /* ========================================================================= */ |
| int32_t Z_EXPORT PREFIX(deflateInit2_)(PREFIX3(stream) *strm, int32_t level, int32_t method, int32_t windowBits, |
| int32_t memLevel, int32_t strategy, const char *version, int32_t stream_size) { |
| uint32_t window_padding = 0; |
| deflate_state *s; |
| int wrap = 1; |
| static const char my_version[] = PREFIX2(VERSION); |
| |
| #if defined(X86_FEATURES) |
| x86_check_features(); |
| #elif defined(ARM_FEATURES) |
| arm_check_features(); |
| #endif |
| |
| if (version == NULL || version[0] != my_version[0] || stream_size != sizeof(PREFIX3(stream))) { |
| return Z_VERSION_ERROR; |
| } |
| if (strm == NULL) |
| return Z_STREAM_ERROR; |
| |
| strm->msg = NULL; |
| if (strm->zalloc == NULL) { |
| strm->zalloc = zng_calloc; |
| strm->opaque = NULL; |
| } |
| if (strm->zfree == NULL) |
| strm->zfree = zng_cfree; |
| |
| if (level == Z_DEFAULT_COMPRESSION) |
| level = 6; |
| |
| if (windowBits < 0) { /* suppress zlib wrapper */ |
| wrap = 0; |
| windowBits = -windowBits; |
| #ifdef GZIP |
| } else if (windowBits > 15) { |
| wrap = 2; /* write gzip wrapper instead */ |
| windowBits -= 16; |
| #endif |
| } |
| if (memLevel < 1 || memLevel > MAX_MEM_LEVEL || method != Z_DEFLATED || windowBits < 8 || |
| windowBits > 15 || level < 0 || level > 9 || strategy < 0 || strategy > Z_FIXED || |
| (windowBits == 8 && wrap != 1)) { |
| return Z_STREAM_ERROR; |
| } |
| if (windowBits == 8) |
| windowBits = 9; /* until 256-byte window bug fixed */ |
| |
| #if !defined(NO_QUICK_STRATEGY) && !defined(S390_DFLTCC_DEFLATE) |
| if (level == 1) |
| windowBits = 13; |
| #endif |
| |
| s = (deflate_state *) ZALLOC_STATE(strm, 1, sizeof(deflate_state)); |
| if (s == NULL) |
| return Z_MEM_ERROR; |
| strm->state = (struct internal_state *)s; |
| s->strm = strm; |
| s->status = INIT_STATE; /* to pass state test in deflateReset() */ |
| |
| s->wrap = wrap; |
| s->gzhead = NULL; |
| s->w_bits = (unsigned int)windowBits; |
| s->w_size = 1 << s->w_bits; |
| s->w_mask = s->w_size - 1; |
| |
| #ifdef X86_PCLMULQDQ_CRC |
| window_padding = 8; |
| #endif |
| |
| s->window = (unsigned char *) ZALLOC_WINDOW(strm, s->w_size + window_padding, 2*sizeof(unsigned char)); |
| s->prev = (Pos *) ZALLOC(strm, s->w_size, sizeof(Pos)); |
| memset(s->prev, 0, s->w_size * sizeof(Pos)); |
| s->head = (Pos *) ZALLOC(strm, HASH_SIZE, sizeof(Pos)); |
| |
| s->high_water = 0; /* nothing written to s->window yet */ |
| |
| s->lit_bufsize = 1 << (memLevel + 6); /* 16K elements by default */ |
| |
| /* We overlay pending_buf and sym_buf. This works since the average size |
| * for length/distance pairs over any compressed block is assured to be 31 |
| * bits or less. |
| * |
| * Analysis: The longest fixed codes are a length code of 8 bits plus 5 |
| * extra bits, for lengths 131 to 257. The longest fixed distance codes are |
| * 5 bits plus 13 extra bits, for distances 16385 to 32768. The longest |
| * possible fixed-codes length/distance pair is then 31 bits total. |
| * |
| * sym_buf starts one-fourth of the way into pending_buf. So there are |
| * three bytes in sym_buf for every four bytes in pending_buf. Each symbol |
| * in sym_buf is three bytes -- two for the distance and one for the |
| * literal/length. As each symbol is consumed, the pointer to the next |
| * sym_buf value to read moves forward three bytes. From that symbol, up to |
| * 31 bits are written to pending_buf. The closest the written pending_buf |
| * bits gets to the next sym_buf symbol to read is just before the last |
| * code is written. At that time, 31*(n-2) bits have been written, just |
| * after 24*(n-2) bits have been consumed from sym_buf. sym_buf starts at |
| * 8*n bits into pending_buf. (Note that the symbol buffer fills when n-1 |
| * symbols are written.) The closest the writing gets to what is unread is |
| * then n+14 bits. Here n is lit_bufsize, which is 16384 by default, and |
| * can range from 128 to 32768. |
| * |
| * Therefore, at a minimum, there are 142 bits of space between what is |
| * written and what is read in the overlain buffers, so the symbols cannot |
| * be overwritten by the compressed data. That space is actually 139 bits, |
| * due to the three-bit fixed-code block header. |
| * |
| * That covers the case where either Z_FIXED is specified, forcing fixed |
| * codes, or when the use of fixed codes is chosen, because that choice |
| * results in a smaller compressed block than dynamic codes. That latter |
| * condition then assures that the above analysis also covers all dynamic |
| * blocks. A dynamic-code block will only be chosen to be emitted if it has |
| * fewer bits than a fixed-code block would for the same set of symbols. |
| * Therefore its average symbol length is assured to be less than 31. So |
| * the compressed data for a dynamic block also cannot overwrite the |
| * symbols from which it is being constructed. |
| */ |
| |
| s->pending_buf = (unsigned char *) ZALLOC(strm, s->lit_bufsize, 4); |
| s->pending_buf_size = s->lit_bufsize * 4; |
| |
| if (s->window == NULL || s->prev == NULL || s->head == NULL || s->pending_buf == NULL) { |
| s->status = FINISH_STATE; |
| strm->msg = ERR_MSG(Z_MEM_ERROR); |
| PREFIX(deflateEnd)(strm); |
| return Z_MEM_ERROR; |
| } |
| s->sym_buf = s->pending_buf + s->lit_bufsize; |
| s->sym_end = (s->lit_bufsize - 1) * 3; |
| /* We avoid equality with lit_bufsize*3 because of wraparound at 64K |
| * on 16 bit machines and because stored blocks are restricted to |
| * 64K-1 bytes. |
| */ |
| |
| s->level = level; |
| s->strategy = strategy; |
| s->block_open = 0; |
| s->reproducible = 0; |
| |
| return PREFIX(deflateReset)(strm); |
| } |
| |
| /* ========================================================================= |
| * Check for a valid deflate stream state. Return 0 if ok, 1 if not. |
| */ |
| static int deflateStateCheck (PREFIX3(stream) *strm) { |
| deflate_state *s; |
| if (strm == NULL || strm->zalloc == (alloc_func)0 || strm->zfree == (free_func)0) |
| return 1; |
| s = strm->state; |
| if (s == NULL || s->strm != strm || (s->status != INIT_STATE && |
| #ifdef GZIP |
| s->status != GZIP_STATE && |
| #endif |
| s->status != EXTRA_STATE && |
| s->status != NAME_STATE && |
| s->status != COMMENT_STATE && |
| s->status != HCRC_STATE && |
| s->status != BUSY_STATE && |
| s->status != FINISH_STATE)) |
| return 1; |
| return 0; |
| } |
| |
| /* ========================================================================= */ |
| int32_t Z_EXPORT PREFIX(deflateSetDictionary)(PREFIX3(stream) *strm, const uint8_t *dictionary, uint32_t dictLength) { |
| deflate_state *s; |
| unsigned int str, n; |
| int wrap; |
| uint32_t avail; |
| const unsigned char *next; |
| |
| if (deflateStateCheck(strm) || dictionary == NULL) |
| return Z_STREAM_ERROR; |
| s = strm->state; |
| wrap = s->wrap; |
| if (wrap == 2 || (wrap == 1 && s->status != INIT_STATE) || s->lookahead) |
| return Z_STREAM_ERROR; |
| |
| /* when using zlib wrappers, compute Adler-32 for provided dictionary */ |
| if (wrap == 1) |
| strm->adler = functable.adler32(strm->adler, dictionary, dictLength); |
| DEFLATE_SET_DICTIONARY_HOOK(strm, dictionary, dictLength); /* hook for IBM Z DFLTCC */ |
| s->wrap = 0; /* avoid computing Adler-32 in read_buf */ |
| |
| /* if dictionary would fill window, just replace the history */ |
| if (dictLength >= s->w_size) { |
| if (wrap == 0) { /* already empty otherwise */ |
| CLEAR_HASH(s); |
| s->strstart = 0; |
| s->block_start = 0; |
| s->insert = 0; |
| } |
| dictionary += dictLength - s->w_size; /* use the tail */ |
| dictLength = s->w_size; |
| } |
| |
| /* insert dictionary into window and hash */ |
| avail = strm->avail_in; |
| next = strm->next_in; |
| strm->avail_in = dictLength; |
| strm->next_in = (z_const unsigned char *)dictionary; |
| fill_window(s); |
| while (s->lookahead >= MIN_MATCH) { |
| str = s->strstart; |
| n = s->lookahead - (MIN_MATCH-1); |
| functable.insert_string(s, str, n); |
| s->strstart = str + n; |
| s->lookahead = MIN_MATCH-1; |
| fill_window(s); |
| } |
| s->strstart += s->lookahead; |
| s->block_start = (int)s->strstart; |
| s->insert = s->lookahead; |
| s->lookahead = 0; |
| s->prev_length = MIN_MATCH-1; |
| s->match_available = 0; |
| strm->next_in = (z_const unsigned char *)next; |
| strm->avail_in = avail; |
| s->wrap = wrap; |
| return Z_OK; |
| } |
| |
| /* ========================================================================= */ |
| int32_t Z_EXPORT PREFIX(deflateGetDictionary)(PREFIX3(stream) *strm, uint8_t *dictionary, uint32_t *dictLength) { |
| deflate_state *s; |
| unsigned int len; |
| |
| if (deflateStateCheck(strm)) |
| return Z_STREAM_ERROR; |
| DEFLATE_GET_DICTIONARY_HOOK(strm, dictionary, dictLength); /* hook for IBM Z DFLTCC */ |
| s = strm->state; |
| len = s->strstart + s->lookahead; |
| if (len > s->w_size) |
| len = s->w_size; |
| if (dictionary != NULL && len) |
| memcpy(dictionary, s->window + s->strstart + s->lookahead - len, len); |
| if (dictLength != NULL) |
| *dictLength = len; |
| return Z_OK; |
| } |
| |
| /* ========================================================================= */ |
| int32_t Z_EXPORT PREFIX(deflateResetKeep)(PREFIX3(stream) *strm) { |
| deflate_state *s; |
| |
| if (deflateStateCheck(strm)) |
| return Z_STREAM_ERROR; |
| |
| strm->total_in = strm->total_out = 0; |
| strm->msg = NULL; /* use zfree if we ever allocate msg dynamically */ |
| strm->data_type = Z_UNKNOWN; |
| |
| s = (deflate_state *)strm->state; |
| s->pending = 0; |
| s->pending_out = s->pending_buf; |
| |
| if (s->wrap < 0) |
| s->wrap = -s->wrap; /* was made negative by deflate(..., Z_FINISH); */ |
| |
| s->status = |
| #ifdef GZIP |
| s->wrap == 2 ? GZIP_STATE : |
| #endif |
| INIT_STATE; |
| |
| #ifdef GZIP |
| if (s->wrap == 2) |
| crc_reset(s); |
| else |
| #endif |
| strm->adler = ADLER32_INITIAL_VALUE; |
| s->last_flush = -2; |
| |
| zng_tr_init(s); |
| |
| DEFLATE_RESET_KEEP_HOOK(strm); /* hook for IBM Z DFLTCC */ |
| |
| return Z_OK; |
| } |
| |
| /* ========================================================================= */ |
| int32_t Z_EXPORT PREFIX(deflateReset)(PREFIX3(stream) *strm) { |
| int ret; |
| |
| ret = PREFIX(deflateResetKeep)(strm); |
| if (ret == Z_OK) |
| lm_init(strm->state); |
| return ret; |
| } |
| |
| /* ========================================================================= */ |
| int32_t Z_EXPORT PREFIX(deflateSetHeader)(PREFIX3(stream) *strm, PREFIX(gz_headerp) head) { |
| if (deflateStateCheck(strm) || strm->state->wrap != 2) |
| return Z_STREAM_ERROR; |
| strm->state->gzhead = head; |
| return Z_OK; |
| } |
| |
| /* ========================================================================= */ |
| int32_t Z_EXPORT PREFIX(deflatePending)(PREFIX3(stream) *strm, uint32_t *pending, int32_t *bits) { |
| if (deflateStateCheck(strm)) |
| return Z_STREAM_ERROR; |
| if (pending != NULL) |
| *pending = strm->state->pending; |
| if (bits != NULL) |
| *bits = strm->state->bi_valid; |
| return Z_OK; |
| } |
| |
| /* ========================================================================= */ |
| int32_t Z_EXPORT PREFIX(deflatePrime)(PREFIX3(stream) *strm, int32_t bits, int32_t value) { |
| deflate_state *s; |
| uint64_t value64 = (uint64_t)value; |
| int32_t put; |
| |
| if (deflateStateCheck(strm)) |
| return Z_STREAM_ERROR; |
| s = strm->state; |
| if (bits < 0 || bits > BIT_BUF_SIZE || bits > (int32_t)(sizeof(value) << 3) || |
| s->sym_buf < s->pending_out + ((BIT_BUF_SIZE + 7) >> 3)) |
| return Z_BUF_ERROR; |
| do { |
| put = BIT_BUF_SIZE - s->bi_valid; |
| if (put > bits) |
| put = bits; |
| if (s->bi_valid == 0) |
| s->bi_buf = value64; |
| else |
| s->bi_buf |= (value64 & ((UINT64_C(1) << put) - 1)) << s->bi_valid; |
| s->bi_valid += put; |
| zng_tr_flush_bits(s); |
| value64 >>= put; |
| bits -= put; |
| } while (bits); |
| return Z_OK; |
| } |
| |
| /* ========================================================================= */ |
| int32_t Z_EXPORT PREFIX(deflateParams)(PREFIX3(stream) *strm, int32_t level, int32_t strategy) { |
| deflate_state *s; |
| compress_func func; |
| int hook_flush = Z_NO_FLUSH; |
| |
| if (deflateStateCheck(strm)) |
| return Z_STREAM_ERROR; |
| s = strm->state; |
| |
| if (level == Z_DEFAULT_COMPRESSION) |
| level = 6; |
| if (level < 0 || level > 9 || strategy < 0 || strategy > Z_FIXED) |
| return Z_STREAM_ERROR; |
| DEFLATE_PARAMS_HOOK(strm, level, strategy, &hook_flush); /* hook for IBM Z DFLTCC */ |
| func = configuration_table[s->level].func; |
| |
| if (((strategy != s->strategy || func != configuration_table[level].func) && s->last_flush != -2) |
| || hook_flush != Z_NO_FLUSH) { |
| /* Flush the last buffer. Use Z_BLOCK mode, unless the hook requests a "stronger" one. */ |
| int flush = RANK(hook_flush) > RANK(Z_BLOCK) ? hook_flush : Z_BLOCK; |
| int err = PREFIX(deflate)(strm, flush); |
| if (err == Z_STREAM_ERROR) |
| return err; |
| if (strm->avail_in || ((int)s->strstart - s->block_start) + s->lookahead || !DEFLATE_DONE(strm, flush)) |
| return Z_BUF_ERROR; |
| } |
| if (s->level != level) { |
| if (s->level == 0 && s->matches != 0) { |
| if (s->matches == 1) { |
| functable.slide_hash(s); |
| } else { |
| CLEAR_HASH(s); |
| } |
| s->matches = 0; |
| } |
| s->level = level; |
| s->max_lazy_match = configuration_table[level].max_lazy; |
| s->good_match = configuration_table[level].good_length; |
| s->nice_match = configuration_table[level].nice_length; |
| s->max_chain_length = configuration_table[level].max_chain; |
| } |
| s->strategy = strategy; |
| return Z_OK; |
| } |
| |
| /* ========================================================================= */ |
| int32_t Z_EXPORT PREFIX(deflateTune)(PREFIX3(stream) *strm, int32_t good_length, int32_t max_lazy, int32_t nice_length, int32_t max_chain) { |
| deflate_state *s; |
| |
| if (deflateStateCheck(strm)) |
| return Z_STREAM_ERROR; |
| s = strm->state; |
| s->good_match = (unsigned int)good_length; |
| s->max_lazy_match = (unsigned int)max_lazy; |
| s->nice_match = nice_length; |
| s->max_chain_length = (unsigned int)max_chain; |
| return Z_OK; |
| } |
| |
| /* ========================================================================= |
| * For the default windowBits of 15 and memLevel of 8, this function returns |
| * a close to exact, as well as small, upper bound on the compressed size. |
| * They are coded as constants here for a reason--if the #define's are |
| * changed, then this function needs to be changed as well. The return |
| * value for 15 and 8 only works for those exact settings. |
| * |
| * For any setting other than those defaults for windowBits and memLevel, |
| * the value returned is a conservative worst case for the maximum expansion |
| * resulting from using fixed blocks instead of stored blocks, which deflate |
| * can emit on compressed data for some combinations of the parameters. |
| * |
| * This function could be more sophisticated to provide closer upper bounds for |
| * every combination of windowBits and memLevel. But even the conservative |
| * upper bound of about 14% expansion does not seem onerous for output buffer |
| * allocation. |
| */ |
| unsigned long Z_EXPORT PREFIX(deflateBound)(PREFIX3(stream) *strm, unsigned long sourceLen) { |
| deflate_state *s; |
| unsigned long complen, wraplen; |
| |
| /* conservative upper bound for compressed data */ |
| complen = sourceLen + ((sourceLen + 7) >> 3) + ((sourceLen + 63) >> 6) + 5; |
| DEFLATE_BOUND_ADJUST_COMPLEN(strm, complen, sourceLen); /* hook for IBM Z DFLTCC */ |
| |
| /* if can't get parameters, return conservative bound plus zlib wrapper */ |
| if (deflateStateCheck(strm)) |
| return complen + 6; |
| |
| /* compute wrapper length */ |
| s = strm->state; |
| switch (s->wrap) { |
| case 0: /* raw deflate */ |
| wraplen = 0; |
| break; |
| case 1: /* zlib wrapper */ |
| wraplen = 6 + (s->strstart ? 4 : 0); |
| break; |
| #ifdef GZIP |
| case 2: /* gzip wrapper */ |
| wraplen = 18; |
| if (s->gzhead != NULL) { /* user-supplied gzip header */ |
| unsigned char *str; |
| if (s->gzhead->extra != NULL) { |
| wraplen += 2 + s->gzhead->extra_len; |
| } |
| str = s->gzhead->name; |
| if (str != NULL) { |
| do { |
| wraplen++; |
| } while (*str++); |
| } |
| str = s->gzhead->comment; |
| if (str != NULL) { |
| do { |
| wraplen++; |
| } while (*str++); |
| } |
| if (s->gzhead->hcrc) |
| wraplen += 2; |
| } |
| break; |
| #endif |
| default: /* for compiler happiness */ |
| wraplen = 6; |
| } |
| |
| /* if not default parameters, return conservative bound */ |
| if (DEFLATE_NEED_CONSERVATIVE_BOUND(strm) || /* hook for IBM Z DFLTCC */ |
| s->w_bits != 15 || HASH_BITS < 15) |
| return complen + wraplen; |
| |
| /* default settings: return tight bound for that case */ |
| return sourceLen + (sourceLen >> 12) + (sourceLen >> 14) + (sourceLen >> 25) + 13 - 6 + wraplen; |
| } |
| |
| /* ========================================================================= |
| * Flush as much pending output as possible. All deflate() output, except for |
| * some deflate_stored() output, goes through this function so some |
| * applications may wish to modify it to avoid allocating a large |
| * strm->next_out buffer and copying into it. (See also read_buf()). |
| */ |
| Z_INTERNAL void flush_pending(PREFIX3(stream) *strm) { |
| uint32_t len; |
| deflate_state *s = strm->state; |
| |
| zng_tr_flush_bits(s); |
| len = s->pending; |
| if (len > strm->avail_out) |
| len = strm->avail_out; |
| if (len == 0) |
| return; |
| |
| Tracev((stderr, "[FLUSH]")); |
| memcpy(strm->next_out, s->pending_out, len); |
| strm->next_out += len; |
| s->pending_out += len; |
| strm->total_out += len; |
| strm->avail_out -= len; |
| s->pending -= len; |
| if (s->pending == 0) |
| s->pending_out = s->pending_buf; |
| } |
| |
| /* =========================================================================== |
| * Update the header CRC with the bytes s->pending_buf[beg..s->pending - 1]. |
| */ |
| #define HCRC_UPDATE(beg) \ |
| do { \ |
| if (s->gzhead->hcrc && s->pending > (beg)) \ |
| strm->adler = PREFIX(crc32)(strm->adler, s->pending_buf + (beg), s->pending - (beg)); \ |
| } while (0) |
| |
| /* ========================================================================= */ |
| int32_t Z_EXPORT PREFIX(deflate)(PREFIX3(stream) *strm, int32_t flush) { |
| int32_t old_flush; /* value of flush param for previous deflate call */ |
| deflate_state *s; |
| |
| if (deflateStateCheck(strm) || flush > Z_BLOCK || flush < 0) |
| return Z_STREAM_ERROR; |
| s = strm->state; |
| |
| if (strm->next_out == NULL || (strm->avail_in != 0 && strm->next_in == NULL) |
| || (s->status == FINISH_STATE && flush != Z_FINISH)) { |
| ERR_RETURN(strm, Z_STREAM_ERROR); |
| } |
| if (strm->avail_out == 0) { |
| ERR_RETURN(strm, Z_BUF_ERROR); |
| } |
| |
| old_flush = s->last_flush; |
| s->last_flush = flush; |
| |
| /* Flush as much pending output as possible */ |
| if (s->pending != 0) { |
| flush_pending(strm); |
| if (strm->avail_out == 0) { |
| /* Since avail_out is 0, deflate will be called again with |
| * more output space, but possibly with both pending and |
| * avail_in equal to zero. There won't be anything to do, |
| * but this is not an error situation so make sure we |
| * return OK instead of BUF_ERROR at next call of deflate: |
| */ |
| s->last_flush = -1; |
| return Z_OK; |
| } |
| |
| /* Make sure there is something to do and avoid duplicate consecutive |
| * flushes. For repeated and useless calls with Z_FINISH, we keep |
| * returning Z_STREAM_END instead of Z_BUF_ERROR. |
| */ |
| } else if (strm->avail_in == 0 && RANK(flush) <= RANK(old_flush) && flush != Z_FINISH) { |
| ERR_RETURN(strm, Z_BUF_ERROR); |
| } |
| |
| /* User must not provide more input after the first FINISH: */ |
| if (s->status == FINISH_STATE && strm->avail_in != 0) { |
| ERR_RETURN(strm, Z_BUF_ERROR); |
| } |
| |
| /* Write the header */ |
| if (s->status == INIT_STATE && s->wrap == 0) |
| s->status = BUSY_STATE; |
| if (s->status == INIT_STATE) { |
| /* zlib header */ |
| unsigned int header = (Z_DEFLATED + ((s->w_bits-8)<<4)) << 8; |
| unsigned int level_flags; |
| |
| if (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2) |
| level_flags = 0; |
| else if (s->level < 6) |
| level_flags = 1; |
| else if (s->level == 6) |
| level_flags = 2; |
| else |
| level_flags = 3; |
| header |= (level_flags << 6); |
| if (s->strstart != 0) |
| header |= PRESET_DICT; |
| header += 31 - (header % 31); |
| |
| put_short_msb(s, (uint16_t)header); |
| |
| /* Save the adler32 of the preset dictionary: */ |
| if (s->strstart != 0) |
| put_uint32_msb(s, strm->adler); |
| strm->adler = ADLER32_INITIAL_VALUE; |
| s->status = BUSY_STATE; |
| |
| /* Compression must start with an empty pending buffer */ |
| flush_pending(strm); |
| if (s->pending != 0) { |
| s->last_flush = -1; |
| return Z_OK; |
| } |
| } |
| #ifdef GZIP |
| if (s->status == GZIP_STATE) { |
| /* gzip header */ |
| crc_reset(s); |
| put_byte(s, 31); |
| put_byte(s, 139); |
| put_byte(s, 8); |
| if (s->gzhead == NULL) { |
| put_uint32(s, 0); |
| put_byte(s, 0); |
| put_byte(s, s->level == 9 ? 2 : |
| (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ? 4 : 0)); |
| put_byte(s, OS_CODE); |
| s->status = BUSY_STATE; |
| |
| /* Compression must start with an empty pending buffer */ |
| flush_pending(strm); |
| if (s->pending != 0) { |
| s->last_flush = -1; |
| return Z_OK; |
| } |
| } else { |
| put_byte(s, (s->gzhead->text ? 1 : 0) + |
| (s->gzhead->hcrc ? 2 : 0) + |
| (s->gzhead->extra == NULL ? 0 : 4) + |
| (s->gzhead->name == NULL ? 0 : 8) + |
| (s->gzhead->comment == NULL ? 0 : 16) |
| ); |
| put_uint32(s, s->gzhead->time); |
| put_byte(s, s->level == 9 ? 2 : (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ? 4 : 0)); |
| put_byte(s, s->gzhead->os & 0xff); |
| if (s->gzhead->extra != NULL) |
| put_short(s, (uint16_t)s->gzhead->extra_len); |
| if (s->gzhead->hcrc) |
| strm->adler = PREFIX(crc32)(strm->adler, s->pending_buf, s->pending); |
| s->gzindex = 0; |
| s->status = EXTRA_STATE; |
| } |
| } |
| if (s->status == EXTRA_STATE) { |
| if (s->gzhead->extra != NULL) { |
| uint32_t beg = s->pending; /* start of bytes to update crc */ |
| uint32_t left = (s->gzhead->extra_len & 0xffff) - s->gzindex; |
| |
| while (s->pending + left > s->pending_buf_size) { |
| uint32_t copy = s->pending_buf_size - s->pending; |
| memcpy(s->pending_buf + s->pending, s->gzhead->extra + s->gzindex, copy); |
| s->pending = s->pending_buf_size; |
| HCRC_UPDATE(beg); |
| s->gzindex += copy; |
| flush_pending(strm); |
| if (s->pending != 0) { |
| s->last_flush = -1; |
| return Z_OK; |
| } |
| beg = 0; |
| left -= copy; |
| } |
| memcpy(s->pending_buf + s->pending, s->gzhead->extra + s->gzindex, left); |
| s->pending += left; |
| HCRC_UPDATE(beg); |
| s->gzindex = 0; |
| } |
| s->status = NAME_STATE; |
| } |
| if (s->status == NAME_STATE) { |
| if (s->gzhead->name != NULL) { |
| uint32_t beg = s->pending; /* start of bytes to update crc */ |
| unsigned char val; |
| |
| do { |
| if (s->pending == s->pending_buf_size) { |
| HCRC_UPDATE(beg); |
| flush_pending(strm); |
| if (s->pending != 0) { |
| s->last_flush = -1; |
| return Z_OK; |
| } |
| beg = 0; |
| } |
| val = s->gzhead->name[s->gzindex++]; |
| put_byte(s, val); |
| } while (val != 0); |
| HCRC_UPDATE(beg); |
| s->gzindex = 0; |
| } |
| s->status = COMMENT_STATE; |
| } |
| if (s->status == COMMENT_STATE) { |
| if (s->gzhead->comment != NULL) { |
| uint32_t beg = s->pending; /* start of bytes to update crc */ |
| unsigned char val; |
| |
| do { |
| if (s->pending == s->pending_buf_size) { |
| HCRC_UPDATE(beg); |
| flush_pending(strm); |
| if (s->pending != 0) { |
| s->last_flush = -1; |
| return Z_OK; |
| } |
| beg = 0; |
| } |
| val = s->gzhead->comment[s->gzindex++]; |
| put_byte(s, val); |
| } while (val != 0); |
| HCRC_UPDATE(beg); |
| } |
| s->status = HCRC_STATE; |
| } |
| if (s->status == HCRC_STATE) { |
| if (s->gzhead->hcrc) { |
| if (s->pending + 2 > s->pending_buf_size) { |
| flush_pending(strm); |
| if (s->pending != 0) { |
| s->last_flush = -1; |
| return Z_OK; |
| } |
| } |
| put_short(s, (uint16_t)strm->adler); |
| crc_reset(s); |
| } |
| s->status = BUSY_STATE; |
| |
| /* Compression must start with an empty pending buffer */ |
| flush_pending(strm); |
| if (s->pending != 0) { |
| s->last_flush = -1; |
| return Z_OK; |
| } |
| } |
| #endif |
| |
| /* Start a new block or continue the current one. |
| */ |
| if (strm->avail_in != 0 || s->lookahead != 0 || (flush != Z_NO_FLUSH && s->status != FINISH_STATE)) { |
| block_state bstate; |
| |
| bstate = DEFLATE_HOOK(strm, flush, &bstate) ? bstate : /* hook for IBM Z DFLTCC */ |
| s->level == 0 ? deflate_stored(s, flush) : |
| s->strategy == Z_HUFFMAN_ONLY ? deflate_huff(s, flush) : |
| s->strategy == Z_RLE ? deflate_rle(s, flush) : |
| (*(configuration_table[s->level].func))(s, flush); |
| |
| if (bstate == finish_started || bstate == finish_done) { |
| s->status = FINISH_STATE; |
| } |
| if (bstate == need_more || bstate == finish_started) { |
| if (strm->avail_out == 0) { |
| s->last_flush = -1; /* avoid BUF_ERROR next call, see above */ |
| } |
| return Z_OK; |
| /* If flush != Z_NO_FLUSH && avail_out == 0, the next call |
| * of deflate should use the same flush parameter to make sure |
| * that the flush is complete. So we don't have to output an |
| * empty block here, this will be done at next call. This also |
| * ensures that for a very small output buffer, we emit at most |
| * one empty block. |
| */ |
| } |
| if (bstate == block_done) { |
| if (flush == Z_PARTIAL_FLUSH) { |
| zng_tr_align(s); |
| } else if (flush != Z_BLOCK) { /* FULL_FLUSH or SYNC_FLUSH */ |
| zng_tr_stored_block(s, (char*)0, 0L, 0); |
| /* For a full flush, this empty block will be recognized |
| * as a special marker by inflate_sync(). |
| */ |
| if (flush == Z_FULL_FLUSH) { |
| CLEAR_HASH(s); /* forget history */ |
| if (s->lookahead == 0) { |
| s->strstart = 0; |
| s->block_start = 0; |
| s->insert = 0; |
| } |
| } |
| } |
| flush_pending(strm); |
| if (strm->avail_out == 0) { |
| s->last_flush = -1; /* avoid BUF_ERROR at next call, see above */ |
| return Z_OK; |
| } |
| } |
| } |
| |
| if (flush != Z_FINISH) |
| return Z_OK; |
| |
| /* Write the trailer */ |
| #ifdef GZIP |
| if (s->wrap == 2) { |
| # ifdef X86_PCLMULQDQ_CRC |
| crc_finalize(s); |
| # endif |
| put_uint32(s, strm->adler); |
| put_uint32(s, (uint32_t)strm->total_in); |
| } else |
| #endif |
| if (s->wrap == 1) |
| put_uint32_msb(s, strm->adler); |
| flush_pending(strm); |
| /* If avail_out is zero, the application will call deflate again |
| * to flush the rest. |
| */ |
| if (s->wrap > 0) |
| s->wrap = -s->wrap; /* write the trailer only once! */ |
| if (s->pending == 0) { |
| Assert(s->bi_valid == 0, "bi_buf not flushed"); |
| return Z_STREAM_END; |
| } |
| return Z_OK; |
| } |
| |
| /* ========================================================================= */ |
| int32_t Z_EXPORT PREFIX(deflateEnd)(PREFIX3(stream) *strm) { |
| int32_t status; |
| |
| if (deflateStateCheck(strm)) |
| return Z_STREAM_ERROR; |
| |
| status = strm->state->status; |
| |
| /* Deallocate in reverse order of allocations: */ |
| TRY_FREE(strm, strm->state->pending_buf); |
| TRY_FREE(strm, strm->state->head); |
| TRY_FREE(strm, strm->state->prev); |
| TRY_FREE_WINDOW(strm, strm->state->window); |
| |
| ZFREE_STATE(strm, strm->state); |
| strm->state = NULL; |
| |
| return status == BUSY_STATE ? Z_DATA_ERROR : Z_OK; |
| } |
| |
| /* ========================================================================= |
| * Copy the source state to the destination state. |
| */ |
| int32_t Z_EXPORT PREFIX(deflateCopy)(PREFIX3(stream) *dest, PREFIX3(stream) *source) { |
| deflate_state *ds; |
| deflate_state *ss; |
| uint32_t window_padding = 0; |
| |
| if (deflateStateCheck(source) || dest == NULL) |
| return Z_STREAM_ERROR; |
| |
| ss = source->state; |
| |
| memcpy((void *)dest, (void *)source, sizeof(PREFIX3(stream))); |
| |
| ds = (deflate_state *) ZALLOC_STATE(dest, 1, sizeof(deflate_state)); |
| if (ds == NULL) |
| return Z_MEM_ERROR; |
| dest->state = (struct internal_state *) ds; |
| ZCOPY_STATE((void *)ds, (void *)ss, sizeof(deflate_state)); |
| ds->strm = dest; |
| |
| #ifdef X86_PCLMULQDQ_CRC |
| window_padding = 8; |
| #endif |
| |
| ds->window = (unsigned char *) ZALLOC_WINDOW(dest, ds->w_size + window_padding, 2*sizeof(unsigned char)); |
| ds->prev = (Pos *) ZALLOC(dest, ds->w_size, sizeof(Pos)); |
| ds->head = (Pos *) ZALLOC(dest, HASH_SIZE, sizeof(Pos)); |
| ds->pending_buf = (unsigned char *) ZALLOC(dest, ds->lit_bufsize, 4); |
| |
| if (ds->window == NULL || ds->prev == NULL || ds->head == NULL || ds->pending_buf == NULL) { |
| PREFIX(deflateEnd)(dest); |
| return Z_MEM_ERROR; |
| } |
| |
| memcpy(ds->window, ss->window, ds->w_size * 2 * sizeof(unsigned char)); |
| memcpy((void *)ds->prev, (void *)ss->prev, ds->w_size * sizeof(Pos)); |
| memcpy((void *)ds->head, (void *)ss->head, HASH_SIZE * sizeof(Pos)); |
| memcpy(ds->pending_buf, ss->pending_buf, ds->pending_buf_size); |
| |
| ds->pending_out = ds->pending_buf + (ss->pending_out - ss->pending_buf); |
| ds->sym_buf = ds->pending_buf + ds->lit_bufsize; |
| |
| ds->l_desc.dyn_tree = ds->dyn_ltree; |
| ds->d_desc.dyn_tree = ds->dyn_dtree; |
| ds->bl_desc.dyn_tree = ds->bl_tree; |
| |
| return Z_OK; |
| } |
| |
| /* =========================================================================== |
| * Read a new buffer from the current input stream, update the adler32 |
| * and total number of bytes read. All deflate() input goes through |
| * this function so some applications may wish to modify it to avoid |
| * allocating a large strm->next_in buffer and copying from it. |
| * (See also flush_pending()). |
| */ |
| Z_INTERNAL unsigned read_buf(PREFIX3(stream) *strm, unsigned char *buf, unsigned size) { |
| uint32_t len = strm->avail_in; |
| |
| if (len > size) |
| len = size; |
| if (len == 0) |
| return 0; |
| |
| strm->avail_in -= len; |
| |
| if (!DEFLATE_NEED_CHECKSUM(strm)) { |
| memcpy(buf, strm->next_in, len); |
| #ifdef GZIP |
| } else if (strm->state->wrap == 2) { |
| copy_with_crc(strm, buf, len); |
| #endif |
| } else { |
| memcpy(buf, strm->next_in, len); |
| if (strm->state->wrap == 1) |
| strm->adler = functable.adler32(strm->adler, buf, len); |
| } |
| strm->next_in += len; |
| strm->total_in += len; |
| |
| return len; |
| } |
| |
| /* =========================================================================== |
| * Initialize the "longest match" routines for a new zlib stream |
| */ |
| static void lm_init(deflate_state *s) { |
| s->window_size = 2 * s->w_size; |
| |
| CLEAR_HASH(s); |
| |
| /* Set the default configuration parameters: |
| */ |
| s->max_lazy_match = configuration_table[s->level].max_lazy; |
| s->good_match = configuration_table[s->level].good_length; |
| s->nice_match = configuration_table[s->level].nice_length; |
| s->max_chain_length = configuration_table[s->level].max_chain; |
| |
| s->strstart = 0; |
| s->block_start = 0; |
| s->lookahead = 0; |
| s->insert = 0; |
| s->prev_length = MIN_MATCH-1; |
| s->match_available = 0; |
| s->match_start = 0; |
| } |
| |
| #ifdef ZLIB_DEBUG |
| #define EQUAL 0 |
| /* result of memcmp for equal strings */ |
| |
| /* =========================================================================== |
| * Check that the match at match_start is indeed a match. |
| */ |
| void check_match(deflate_state *s, Pos start, Pos match, int length) { |
| /* check that the match length is valid*/ |
| if (length < MIN_MATCH || length > MAX_MATCH) { |
| fprintf(stderr, " start %u, match %u, length %d\n", start, match, length); |
| z_error("invalid match length"); |
| } |
| /* check that the match is indeed a match */ |
| if (memcmp(s->window + match, s->window + start, length) != EQUAL) { |
| fprintf(stderr, " start %u, match %u, length %d\n", start, match, length); |
| do { |
| fprintf(stderr, "%c%c", s->window[match++], s->window[start++]); |
| } while (--length != 0); |
| z_error("invalid match"); |
| } |
| if (z_verbose > 1) { |
| fprintf(stderr, "\\[%u,%d]", start-match, length); |
| do { |
| putc(s->window[start++], stderr); |
| } while (--length != 0); |
| } |
| } |
| #else |
| # define check_match(s, start, match, length) |
| #endif /* ZLIB_DEBUG */ |
| |
| /* =========================================================================== |
| * Fill the window when the lookahead becomes insufficient. |
| * Updates strstart and lookahead. |
| * |
| * IN assertion: lookahead < MIN_LOOKAHEAD |
| * OUT assertions: strstart <= window_size-MIN_LOOKAHEAD |
| * At least one byte has been read, or avail_in == 0; reads are |
| * performed for at least two bytes (required for the zip translate_eol |
| * option -- not supported here). |
| */ |
| |
| void Z_INTERNAL fill_window(deflate_state *s) { |
| unsigned n; |
| unsigned int more; /* Amount of free space at the end of the window. */ |
| unsigned int wsize = s->w_size; |
| |
| Assert(s->lookahead < MIN_LOOKAHEAD, "already enough lookahead"); |
| |
| do { |
| more = s->window_size - s->lookahead - s->strstart; |
| |
| /* If the window is almost full and there is insufficient lookahead, |
| * move the upper half to the lower one to make room in the upper half. |
| */ |
| if (s->strstart >= wsize+MAX_DIST(s)) { |
| memcpy(s->window, s->window+wsize, (unsigned)wsize); |
| s->match_start = (s->match_start >= wsize) ? s->match_start - wsize : 0; |
| s->strstart -= wsize; /* we now have strstart >= MAX_DIST */ |
| s->block_start -= (int)wsize; |
| if (s->insert > s->strstart) |
| s->insert = s->strstart; |
| functable.slide_hash(s); |
| more += wsize; |
| } |
| if (s->strm->avail_in == 0) |
| break; |
| |
| /* If there was no sliding: |
| * strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 && |
| * more == window_size - lookahead - strstart |
| * => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1) |
| * => more >= window_size - 2*WSIZE + 2 |
| * In the BIG_MEM or MMAP case (not yet supported), |
| * window_size == input_size + MIN_LOOKAHEAD && |
| * strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD. |
| * Otherwise, window_size == 2*WSIZE so more >= 2. |
| * If there was sliding, more >= WSIZE. So in all cases, more >= 2. |
| */ |
| Assert(more >= 2, "more < 2"); |
| |
| n = read_buf(s->strm, s->window + s->strstart + s->lookahead, more); |
| s->lookahead += n; |
| |
| /* Initialize the hash value now that we have some input: */ |
| if (s->lookahead + s->insert >= MIN_MATCH) { |
| unsigned int str = s->strstart - s->insert; |
| if (str >= 1) |
| functable.quick_insert_string(s, str + 2 - MIN_MATCH); |
| #if MIN_MATCH != 3 |
| #error Call insert_string() MIN_MATCH-3 more times |
| while (s->insert) { |
| functable.quick_insert_string(s, str); |
| str++; |
| s->insert--; |
| if (s->lookahead + s->insert < MIN_MATCH) |
| break; |
| } |
| #else |
| unsigned int count; |
| if (UNLIKELY(s->lookahead == 1)) { |
| count = s->insert - 1; |
| } else { |
| count = s->insert; |
| } |
| if (count > 0) { |
| functable.insert_string(s, str, count); |
| s->insert -= count; |
| } |
| #endif |
| } |
| /* If the whole input has less than MIN_MATCH bytes, ins_h is garbage, |
| * but this is not important since only literal bytes will be emitted. |
| */ |
| } while (s->lookahead < MIN_LOOKAHEAD && s->strm->avail_in != 0); |
| |
| /* If the WIN_INIT bytes after the end of the current data have never been |
| * written, then zero those bytes in order to avoid memory check reports of |
| * the use of uninitialized (or uninitialised as Julian writes) bytes by |
| * the longest match routines. Update the high water mark for the next |
| * time through here. WIN_INIT is set to MAX_MATCH since the longest match |
| * routines allow scanning to strstart + MAX_MATCH, ignoring lookahead. |
| */ |
| if (s->high_water < s->window_size) { |
| unsigned int curr = s->strstart + s->lookahead; |
| unsigned int init; |
| |
| if (s->high_water < curr) { |
| /* Previous high water mark below current data -- zero WIN_INIT |
| * bytes or up to end of window, whichever is less. |
| */ |
| init = s->window_size - curr; |
| if (init > WIN_INIT) |
| init = WIN_INIT; |
| memset(s->window + curr, 0, init); |
| s->high_water = curr + init; |
| } else if (s->high_water < curr + WIN_INIT) { |
| /* High water mark at or above current data, but below current data |
| * plus WIN_INIT -- zero out to current data plus WIN_INIT, or up |
| * to end of window, whichever is less. |
| */ |
| init = curr + WIN_INIT - s->high_water; |
| if (init > s->window_size - s->high_water) |
| init = s->window_size - s->high_water; |
| memset(s->window + s->high_water, 0, init); |
| s->high_water += init; |
| } |
| } |
| |
| Assert((unsigned long)s->strstart <= s->window_size - MIN_LOOKAHEAD, |
| "not enough room for search"); |
| } |
| |
| /* =========================================================================== |
| * Copy without compression as much as possible from the input stream, return |
| * the current block state. |
| * |
| * In case deflateParams() is used to later switch to a non-zero compression |
| * level, s->matches (otherwise unused when storing) keeps track of the number |
| * of hash table slides to perform. If s->matches is 1, then one hash table |
| * slide will be done when switching. If s->matches is 2, the maximum value |
| * allowed here, then the hash table will be cleared, since two or more slides |
| * is the same as a clear. |
| * |
| * deflate_stored() is written to minimize the number of times an input byte is |
| * copied. It is most efficient with large input and output buffers, which |
| * maximizes the opportunites to have a single copy from next_in to next_out. |
| */ |
| static block_state deflate_stored(deflate_state *s, int flush) { |
| /* Smallest worthy block size when not flushing or finishing. By default |
| * this is 32K. This can be as small as 507 bytes for memLevel == 1. For |
| * large input and output buffers, the stored block size will be larger. |
| */ |
| unsigned min_block = MIN(s->pending_buf_size - 5, s->w_size); |
| |
| /* Copy as many min_block or larger stored blocks directly to next_out as |
| * possible. If flushing, copy the remaining available input to next_out as |
| * stored blocks, if there is enough space. |
| */ |
| unsigned len, left, have, last = 0; |
| unsigned used = s->strm->avail_in; |
| do { |
| /* Set len to the maximum size block that we can copy directly with the |
| * available input data and output space. Set left to how much of that |
| * would be copied from what's left in the window. |
| */ |
| len = MAX_STORED; /* maximum deflate stored block length */ |
| have = (s->bi_valid + 42) >> 3; /* number of header bytes */ |
| if (s->strm->avail_out < have) /* need room for header */ |
| break; |
| /* maximum stored block length that will fit in avail_out: */ |
| have = s->strm->avail_out - have; |
| left = (int)s->strstart - s->block_start; /* bytes left in window */ |
| if (len > (unsigned long)left + s->strm->avail_in) |
| len = left + s->strm->avail_in; /* limit len to the input */ |
| if (len > have) |
| len = have; /* limit len to the output */ |
| |
| /* If the stored block would be less than min_block in length, or if |
| * unable to copy all of the available input when flushing, then try |
| * copying to the window and the pending buffer instead. Also don't |
| * write an empty block when flushing -- deflate() does that. |
| */ |
| if (len < min_block && ((len == 0 && flush != Z_FINISH) || flush == Z_NO_FLUSH || len != left + s->strm->avail_in)) |
| break; |
| |
| /* Make a dummy stored block in pending to get the header bytes, |
| * including any pending bits. This also updates the debugging counts. |
| */ |
| last = flush == Z_FINISH && len == left + s->strm->avail_in ? 1 : 0; |
| zng_tr_stored_block(s, (char *)0, 0L, last); |
| |
| /* Replace the lengths in the dummy stored block with len. */ |
| s->pending -= 4; |
| put_short(s, (uint16_t)len); |
| put_short(s, (uint16_t)~len); |
| |
| /* Write the stored block header bytes. */ |
| flush_pending(s->strm); |
| |
| /* Update debugging counts for the data about to be copied. */ |
| cmpr_bits_add(s, len << 3); |
| sent_bits_add(s, len << 3); |
| |
| /* Copy uncompressed bytes from the window to next_out. */ |
| if (left) { |
| if (left > len) |
| left = len; |
| memcpy(s->strm->next_out, s->window + s->block_start, left); |
| s->strm->next_out += left; |
| s->strm->avail_out -= left; |
| s->strm->total_out += left; |
| s->block_start += (int)left; |
| len -= left; |
| } |
| |
| /* Copy uncompressed bytes directly from next_in to next_out, updating |
| * the check value. |
| */ |
| if (len) { |
| read_buf(s->strm, s->strm->next_out, len); |
| s->strm->next_out += len; |
| s->strm->avail_out -= len; |
| s->strm->total_out += len; |
| } |
| } while (last == 0); |
| |
| /* Update the sliding window with the last s->w_size bytes of the copied |
| * data, or append all of the copied data to the existing window if less |
| * than s->w_size bytes were copied. Also update the number of bytes to |
| * insert in the hash tables, in the event that deflateParams() switches to |
| * a non-zero compression level. |
| */ |
| used -= s->strm->avail_in; /* number of input bytes directly copied */ |
| if (used) { |
| /* If any input was used, then no unused input remains in the window, |
| * therefore s->block_start == s->strstart. |
| */ |
| if (used >= s->w_size) { /* supplant the previous history */ |
| s->matches = 2; /* clear hash */ |
| memcpy(s->window, s->strm->next_in - s->w_size, s->w_size); |
| s->strstart = s->w_size; |
| s->insert = s->strstart; |
| } else { |
| if (s->window_size - s->strstart <= used) { |
| /* Slide the window down. */ |
| s->strstart -= s->w_size; |
| memcpy(s->window, s->window + s->w_size, s->strstart); |
| if (s->matches < 2) |
| s->matches++; /* add a pending slide_hash() */ |
| if (s->insert > s->strstart) |
| s->insert = s->strstart; |
| } |
| memcpy(s->window + s->strstart, s->strm->next_in - used, used); |
| s->strstart += used; |
| s->insert += MIN(used, s->w_size - s->insert); |
| } |
| s->block_start = (int)s->strstart; |
| } |
| if (s->high_water < s->strstart) |
| s->high_water = s->strstart; |
| |
| /* If the last block was written to next_out, then done. */ |
| if (last) |
| return finish_done; |
| |
| /* If flushing and all input has been consumed, then done. */ |
| if (flush != Z_NO_FLUSH && flush != Z_FINISH && s->strm->avail_in == 0 && (int)s->strstart == s->block_start) |
| return block_done; |
| |
| /* Fill the window with any remaining input. */ |
| have = s->window_size - s->strstart; |
| if (s->strm->avail_in > have && s->block_start >= (int)s->w_size) { |
| /* Slide the window down. */ |
| s->block_start -= (int)s->w_size; |
| s->strstart -= s->w_size; |
| memcpy(s->window, s->window + s->w_size, s->strstart); |
| if (s->matches < 2) |
| s->matches++; /* add a pending slide_hash() */ |
| have += s->w_size; /* more space now */ |
| if (s->insert > s->strstart) |
| s->insert = s->strstart; |
| } |
| if (have > s->strm->avail_in) |
| have = s->strm->avail_in; |
| if (have) { |
| read_buf(s->strm, s->window + s->strstart, have); |
| s->strstart += have; |
| s->insert += MIN(have, s->w_size - s->insert); |
| } |
| if (s->high_water < s->strstart) |
| s->high_water = s->strstart; |
| |
| /* There was not enough avail_out to write a complete worthy or flushed |
| * stored block to next_out. Write a stored block to pending instead, if we |
| * have enough input for a worthy block, or if flushing and there is enough |
| * room for the remaining input as a stored block in the pending buffer. |
| */ |
| have = (s->bi_valid + 42) >> 3; /* number of header bytes */ |
| /* maximum stored block length that will fit in pending: */ |
| have = MIN(s->pending_buf_size - have, MAX_STORED); |
| min_block = MIN(have, s->w_size); |
| left = (int)s->strstart - s->block_start; |
| if (left >= min_block || ((left || flush == Z_FINISH) && flush != Z_NO_FLUSH && s->strm->avail_in == 0 && left <= have)) { |
| len = MIN(left, have); |
| last = flush == Z_FINISH && s->strm->avail_in == 0 && len == left ? 1 : 0; |
| zng_tr_stored_block(s, (char *)s->window + s->block_start, len, last); |
| s->block_start += (int)len; |
| flush_pending(s->strm); |
| } |
| |
| /* We've done all we can with the available input and output. */ |
| return last ? finish_started : need_more; |
| } |
| |
| |
| /* =========================================================================== |
| * For Z_RLE, simply look for runs of bytes, generate matches only of distance |
| * one. Do not maintain a hash table. (It will be regenerated if this run of |
| * deflate switches away from Z_RLE.) |
| */ |
| static block_state deflate_rle(deflate_state *s, int flush) { |
| int bflush = 0; /* set if current block must be flushed */ |
| unsigned int prev; /* byte at distance one to match */ |
| unsigned char *scan, *strend; /* scan goes up to strend for length of run */ |
| uint32_t match_len = 0; |
| |
| for (;;) { |
| /* Make sure that we always have enough lookahead, except |
| * at the end of the input file. We need MAX_MATCH bytes |
| * for the longest run, plus one for the unrolled loop. |
| */ |
| if (s->lookahead <= MAX_MATCH) { |
| fill_window(s); |
| if (s->lookahead <= MAX_MATCH && flush == Z_NO_FLUSH) |
| return need_more; |
| if (s->lookahead == 0) |
| break; /* flush the current block */ |
| } |
| |
| /* See how many times the previous byte repeats */ |
| if (s->lookahead >= MIN_MATCH && s->strstart > 0) { |
| scan = s->window + s->strstart - 1; |
| prev = *scan; |
| if (prev == *++scan && prev == *++scan && prev == *++scan) { |
| strend = s->window + s->strstart + MAX_MATCH; |
| do { |
| } while (prev == *++scan && prev == *++scan && |
| prev == *++scan && prev == *++scan && |
| prev == *++scan && prev == *++scan && |
| prev == *++scan && prev == *++scan && |
| scan < strend); |
| match_len = MAX_MATCH - (unsigned int)(strend - scan); |
| if (match_len > s->lookahead) |
| match_len = s->lookahead; |
| } |
| Assert(scan <= s->window + s->window_size - 1, "wild scan"); |
| } |
| |
| /* Emit match if have run of MIN_MATCH or longer, else emit literal */ |
| if (match_len >= MIN_MATCH) { |
| check_match(s, s->strstart, s->strstart - 1, match_len); |
| |
| bflush = zng_tr_tally_dist(s, 1, match_len - MIN_MATCH); |
| |
| s->lookahead -= match_len; |
| s->strstart += match_len; |
| match_len = 0; |
| } else { |
| /* No match, output a literal byte */ |
| bflush = zng_tr_tally_lit(s, s->window[s->strstart]); |
| s->lookahead--; |
| s->strstart++; |
| } |
| if (bflush) |
| FLUSH_BLOCK(s, 0); |
| } |
| s->insert = 0; |
| if (flush == Z_FINISH) { |
| FLUSH_BLOCK(s, 1); |
| return finish_done; |
| } |
| if (s->sym_next) |
| FLUSH_BLOCK(s, 0); |
| return block_done; |
| } |
| |
| /* =========================================================================== |
| * For Z_HUFFMAN_ONLY, do not look for matches. Do not maintain a hash table. |
| * (It will be regenerated if this run of deflate switches away from Huffman.) |
| */ |
| static block_state deflate_huff(deflate_state *s, int flush) { |
| int bflush = 0; /* set if current block must be flushed */ |
| |
| for (;;) { |
| /* Make sure that we have a literal to write. */ |
| if (s->lookahead == 0) { |
| fill_window(s); |
| if (s->lookahead == 0) { |
| if (flush == Z_NO_FLUSH) |
| return need_more; |
| break; /* flush the current block */ |
| } |
| } |
| |
| /* Output a literal byte */ |
| bflush = zng_tr_tally_lit(s, s->window[s->strstart]); |
| s->lookahead--; |
| s->strstart++; |
| if (bflush) |
| FLUSH_BLOCK(s, 0); |
| } |
| s->insert = 0; |
| if (flush == Z_FINISH) { |
| FLUSH_BLOCK(s, 1); |
| return finish_done; |
| } |
| if (s->sym_next) |
| FLUSH_BLOCK(s, 0); |
| return block_done; |
| } |
| |
| #ifndef ZLIB_COMPAT |
| /* ========================================================================= |
| * Checks whether buffer size is sufficient and whether this parameter is a duplicate. |
| */ |
| static int32_t deflateSetParamPre(zng_deflate_param_value **out, size_t min_size, zng_deflate_param_value *param) { |
| int32_t buf_error = param->size < min_size; |
| |
| if (*out != NULL) { |
| (*out)->status = Z_BUF_ERROR; |
| buf_error = 1; |
| } |
| *out = param; |
| return buf_error; |
| } |
| |
| /* ========================================================================= */ |
| int32_t Z_EXPORT zng_deflateSetParams(zng_stream *strm, zng_deflate_param_value *params, size_t count) { |
| size_t i; |
| deflate_state *s; |
| zng_deflate_param_value *new_level = NULL; |
| zng_deflate_param_value *new_strategy = NULL; |
| zng_deflate_param_value *new_reproducible = NULL; |
| int param_buf_error; |
| int version_error = 0; |
| int buf_error = 0; |
| int stream_error = 0; |
| int ret; |
| int val; |
| |
| /* Initialize the statuses. */ |
| for (i = 0; i < count; i++) |
| params[i].status = Z_OK; |
| |
| /* Check whether the stream state is consistent. */ |
| if (deflateStateCheck(strm)) |
| return Z_STREAM_ERROR; |
| s = strm->state; |
| |
| /* Check buffer sizes and detect duplicates. */ |
| for (i = 0; i < count; i++) { |
| switch (params[i].param) { |
| case Z_DEFLATE_LEVEL: |
| param_buf_error = deflateSetParamPre(&new_level, sizeof(int), ¶ms[i]); |
| break; |
| case Z_DEFLATE_STRATEGY: |
| param_buf_error = deflateSetParamPre(&new_strategy, sizeof(int), ¶ms[i]); |
| break; |
| case Z_DEFLATE_REPRODUCIBLE: |
| param_buf_error = deflateSetParamPre(&new_reproducible, sizeof(int), ¶ms[i]); |
| break; |
| default: |
| params[i].status = Z_VERSION_ERROR; |
| version_error = 1; |
| param_buf_error = 0; |
| break; |
| } |
| if (param_buf_error) { |
| params[i].status = Z_BUF_ERROR; |
| buf_error = 1; |
| } |
| } |
| /* Exit early if small buffers or duplicates are detected. */ |
| if (buf_error) |
| return Z_BUF_ERROR; |
| |
| /* Apply changes, remember if there were errors. */ |
| if (new_level != NULL || new_strategy != NULL) { |
| ret = PREFIX(deflateParams)(strm, new_level == NULL ? s->level : *(int *)new_level->buf, |
| new_strategy == NULL ? s->strategy : *(int *)new_strategy->buf); |
| if (ret != Z_OK) { |
| if (new_level != NULL) |
| new_level->status = Z_STREAM_ERROR; |
| if (new_strategy != NULL) |
| new_strategy->status = Z_STREAM_ERROR; |
| stream_error = 1; |
| } |
| } |
| if (new_reproducible != NULL) { |
| val = *(int *)new_reproducible->buf; |
| if (DEFLATE_CAN_SET_REPRODUCIBLE(strm, val)) { |
| s->reproducible = val; |
| } else { |
| new_reproducible->status = Z_STREAM_ERROR; |
| stream_error = 1; |
| } |
| } |
| |
| /* Report version errors only if there are no real errors. */ |
| return stream_error ? Z_STREAM_ERROR : (version_error ? Z_VERSION_ERROR : Z_OK); |
| } |
| |
| /* ========================================================================= */ |
| int32_t Z_EXPORT zng_deflateGetParams(zng_stream *strm, zng_deflate_param_value *params, size_t count) { |
| deflate_state *s; |
| size_t i; |
| int32_t buf_error = 0; |
| int32_t version_error = 0; |
| |
| /* Initialize the statuses. */ |
| for (i = 0; i < count; i++) |
| params[i].status = Z_OK; |
| |
| /* Check whether the stream state is consistent. */ |
| if (deflateStateCheck(strm)) |
| return Z_STREAM_ERROR; |
| s = strm->state; |
| |
| for (i = 0; i < count; i++) { |
| switch (params[i].param) { |
| case Z_DEFLATE_LEVEL: |
| if (params[i].size < sizeof(int)) |
| params[i].status = Z_BUF_ERROR; |
| else |
| *(int *)params[i].buf = s->level; |
| break; |
| case Z_DEFLATE_STRATEGY: |
| if (params[i].size < sizeof(int)) |
| params[i].status = Z_BUF_ERROR; |
| else |
| *(int *)params[i].buf = s->strategy; |
| break; |
| case Z_DEFLATE_REPRODUCIBLE: |
| if (params[i].size < sizeof(int)) |
| params[i].status = Z_BUF_ERROR; |
| else |
| *(int *)params[i].buf = s->reproducible; |
| break; |
| default: |
| params[i].status = Z_VERSION_ERROR; |
| version_error = 1; |
| break; |
| } |
| if (params[i].status == Z_BUF_ERROR) |
| buf_error = 1; |
| } |
| return buf_error ? Z_BUF_ERROR : (version_error ? Z_VERSION_ERROR : Z_OK); |
| } |
| #endif |