blob: 62065a9e9cf161ffe6553552482efbee17f2c920 [file] [log] [blame]
//! The block decompression algorithm.
use crate::block::{DecompressError, MINMATCH};
use crate::fastcpy_unsafe;
use crate::sink::SliceSink;
use crate::sink::{PtrSink, Sink};
use alloc::vec::Vec;
/// Copies data to output_ptr by self-referential copy from start and match_length
#[inline]
unsafe fn duplicate(
output_ptr: &mut *mut u8,
output_end: *mut u8,
start: *const u8,
match_length: usize,
) {
// We cannot simply use memcpy or `extend_from_slice`, because these do not allow
// self-referential copies: http://ticki.github.io/img/lz4_runs_encoding_diagram.svg
// Considering that `wild_copy_match_16` can copy up to `16 - 1` extra bytes.
// Defer to `duplicate_overlapping` in case of an overlapping match
// OR the if the wild copy would copy beyond the end of the output.
if (output_ptr.offset_from(start) as usize) < match_length + 16 - 1
|| (output_end.offset_from(*output_ptr) as usize) < match_length + 16 - 1
{
duplicate_overlapping(output_ptr, start, match_length);
} else {
debug_assert!(
output_ptr.add(match_length / 16 * 16 + ((match_length % 16) != 0) as usize * 16)
<= output_end
);
wild_copy_from_src_16(start, *output_ptr, match_length);
*output_ptr = output_ptr.add(match_length);
}
}
#[inline]
fn wild_copy_from_src_16(mut source: *const u8, mut dst_ptr: *mut u8, num_items: usize) {
// Note: if the compiler auto-vectorizes this it'll hurt performance!
// It's not the case for 16 bytes stepsize, but for 8 bytes.
unsafe {
let dst_ptr_end = dst_ptr.add(num_items);
loop {
core::ptr::copy_nonoverlapping(source, dst_ptr, 16);
source = source.add(16);
dst_ptr = dst_ptr.add(16);
if dst_ptr >= dst_ptr_end {
break;
}
}
}
}
/// Copy function, if the data start + match_length overlaps into output_ptr
#[inline]
#[cfg_attr(nightly, optimize(size))] // to avoid loop unrolling
unsafe fn duplicate_overlapping(
output_ptr: &mut *mut u8,
mut start: *const u8,
match_length: usize,
) {
// There is an edge case when output_ptr == start, which causes the decoder to potentially
// expose up to match_length bytes of uninitialized data in the decompression buffer.
// To prevent that we write a dummy zero to output, which will zero out output in such cases.
// This is the same strategy used by the reference C implementation https://github.com/lz4/lz4/pull/772
output_ptr.write(0u8);
let dst_ptr_end = output_ptr.add(match_length);
while output_ptr.add(1) < dst_ptr_end {
// Note that this loop unrolling is done, so that the compiler doesn't do it in a awful
// way.
// Without that the compiler will unroll/auto-vectorize the copy with a lot of branches.
// This is not what we want, as large overlapping copies are not that common.
core::ptr::copy(start, *output_ptr, 1);
start = start.add(1);
*output_ptr = output_ptr.add(1);
core::ptr::copy(start, *output_ptr, 1);
start = start.add(1);
*output_ptr = output_ptr.add(1);
}
if *output_ptr < dst_ptr_end {
core::ptr::copy(start, *output_ptr, 1);
*output_ptr = output_ptr.add(1);
}
}
#[inline]
unsafe fn copy_from_dict(
output_base: *mut u8,
output_ptr: &mut *mut u8,
ext_dict: &[u8],
offset: usize,
match_length: usize,
) -> usize {
// If we're here we know offset > output pos, so we have at least 1 byte to copy from dict
debug_assert!(output_ptr.offset_from(output_base) >= 0);
debug_assert!(offset > output_ptr.offset_from(output_base) as usize);
// If unchecked-decode is not disabled we also know that the offset falls within ext_dict
debug_assert!(ext_dict.len() + output_ptr.offset_from(output_base) as usize >= offset);
let dict_offset = ext_dict.len() + output_ptr.offset_from(output_base) as usize - offset;
// Can't copy past ext_dict len, the match may cross dict and output
let dict_match_length = match_length.min(ext_dict.len() - dict_offset);
// TODO test fastcpy_unsafe
core::ptr::copy_nonoverlapping(
ext_dict.as_ptr().add(dict_offset),
*output_ptr,
dict_match_length,
);
*output_ptr = output_ptr.add(dict_match_length);
dict_match_length
}
/// Read an integer.
///
/// In LZ4, we encode small integers in a way that we can have an arbitrary number of bytes. In
/// particular, we add the bytes repeatedly until we hit a non-0xFF byte. When we do, we add
/// this byte to our sum and terminate the loop.
///
/// # Example
///
/// ```notest
/// 255, 255, 255, 4, 2, 3, 4, 6, 7
/// ```
///
/// is encoded to _255 + 255 + 255 + 4 = 769_. The bytes after the first 4 is ignored, because
/// 4 is the first non-0xFF byte.
#[inline]
fn read_integer_ptr(
input_ptr: &mut *const u8,
_input_ptr_end: *const u8,
) -> Result<u32, DecompressError> {
// We start at zero and count upwards.
let mut n: u32 = 0;
// If this byte takes value 255 (the maximum value it can take), another byte is read
// and added to the sum. This repeats until a byte lower than 255 is read.
loop {
// We add the next byte until we get a byte which we add to the counting variable.
#[cfg(not(feature = "unchecked-decode"))]
{
if *input_ptr >= _input_ptr_end {
return Err(DecompressError::ExpectedAnotherByte);
}
}
let extra = unsafe { input_ptr.read() };
*input_ptr = unsafe { input_ptr.add(1) };
n += extra as u32;
// We continue if we got 255, break otherwise.
if extra != 0xFF {
break;
}
}
// 255, 255, 255, 8
// 111, 111, 111, 101
Ok(n)
}
/// Read a little-endian 16-bit integer from the input stream.
#[inline]
fn read_u16_ptr(input_ptr: &mut *const u8) -> u16 {
let mut num: u16 = 0;
unsafe {
core::ptr::copy_nonoverlapping(*input_ptr, &mut num as *mut u16 as *mut u8, 2);
*input_ptr = input_ptr.add(2);
}
u16::from_le(num)
}
const FIT_TOKEN_MASK_LITERAL: u8 = 0b00001111;
const FIT_TOKEN_MASK_MATCH: u8 = 0b11110000;
#[test]
fn check_token() {
assert!(!does_token_fit(15));
assert!(does_token_fit(14));
assert!(does_token_fit(114));
assert!(!does_token_fit(0b11110000));
assert!(does_token_fit(0b10110000));
}
/// The token consists of two parts, the literal length (upper 4 bits) and match_length (lower 4
/// bits) if the literal length and match_length are both below 15, we don't need to read additional
/// data, so the token does fit the metadata in a single u8.
#[inline]
fn does_token_fit(token: u8) -> bool {
!((token & FIT_TOKEN_MASK_LITERAL) == FIT_TOKEN_MASK_LITERAL
|| (token & FIT_TOKEN_MASK_MATCH) == FIT_TOKEN_MASK_MATCH)
}
/// Decompress all bytes of `input` into `output`.
///
/// Returns the number of bytes written (decompressed) into `output`.
#[inline]
pub(crate) fn decompress_internal<const USE_DICT: bool, S: Sink>(
input: &[u8],
output: &mut S,
ext_dict: &[u8],
) -> Result<usize, DecompressError> {
// Prevent segfault for empty input
if input.is_empty() {
return Err(DecompressError::ExpectedAnotherByte);
}
let ext_dict = if USE_DICT {
ext_dict
} else {
// ensure optimizer knows ext_dict length is 0 if !USE_DICT
debug_assert!(ext_dict.is_empty());
&[]
};
let output_base = unsafe { output.base_mut_ptr() };
let output_end = unsafe { output_base.add(output.capacity()) };
let output_start_pos_ptr = unsafe { output.base_mut_ptr().add(output.pos()) as *mut u8 };
let mut output_ptr = output_start_pos_ptr;
let mut input_ptr = input.as_ptr();
let input_ptr_end = unsafe { input.as_ptr().add(input.len()) };
let safe_distance_from_end = (16 /* literal copy */ + 2 /* u16 match offset */ + 1 /* The next token to read (we can skip the check) */).min(input.len()) ;
let input_ptr_safe = unsafe { input_ptr_end.sub(safe_distance_from_end) };
let safe_output_ptr = unsafe {
let mut output_num_safe_bytes = output
.capacity()
.saturating_sub(16 /* literal copy */ + 18 /* match copy */);
if USE_DICT {
// In the dictionary case the output pointer is moved by the match length in the dictionary.
// This may be up to 17 bytes without exiting the loop. So we need to ensure that we have
// at least additional 17 bytes of space left in the output buffer in the fast loop.
output_num_safe_bytes = output_num_safe_bytes.saturating_sub(17);
};
output_base.add(output_num_safe_bytes)
};
// Exhaust the decoder by reading and decompressing all blocks until the remaining buffer is
// empty.
loop {
// Read the token. The token is the first byte in a block. It is divided into two 4-bit
// subtokens, the higher and the lower.
// This token contains to 4-bit "fields", a higher and a lower, representing the literals'
// length and the back reference's length, respectively.
let token = unsafe { input_ptr.read() };
input_ptr = unsafe { input_ptr.add(1) };
// Checking for hot-loop.
// In most cases the metadata does fit in a single 1byte token (statistically) and we are in
// a safe-distance to the end. This enables some optimized handling.
//
// Ideally we want to check for safe output pos like: output.pos() <= safe_output_pos; But
// that doesn't work when the safe_output_ptr is == output_ptr due to insufficient
// capacity. So we use `<` instead of `<=`, which covers that case.
if does_token_fit(token)
&& (input_ptr as usize) <= input_ptr_safe as usize
&& output_ptr < safe_output_ptr
{
let literal_length = (token >> 4) as usize;
let mut match_length = MINMATCH + (token & 0xF) as usize;
// output_ptr <= safe_output_ptr should guarantee we have enough space in output
debug_assert!(
unsafe { output_ptr.add(literal_length + match_length) } <= output_end,
"{literal_length} + {match_length} {} wont fit ",
literal_length + match_length
);
// Copy the literal
// The literal is at max 16 bytes, and the is_safe_distance check assures
// that we are far away enough from the end so we can safely copy 16 bytes
unsafe {
core::ptr::copy_nonoverlapping(input_ptr, output_ptr, 16);
input_ptr = input_ptr.add(literal_length);
output_ptr = output_ptr.add(literal_length);
}
// input_ptr <= input_ptr_safe should guarantee we have enough space in input
debug_assert!(input_ptr_end as usize - input_ptr as usize >= 2);
let offset = read_u16_ptr(&mut input_ptr) as usize;
let output_len = unsafe { output_ptr.offset_from(output_base) as usize };
let offset = offset.min(output_len + ext_dict.len());
// Check if part of the match is in the external dict
if USE_DICT && offset > output_len {
let copied = unsafe {
copy_from_dict(output_base, &mut output_ptr, ext_dict, offset, match_length)
};
if copied == match_length {
continue;
}
// match crosses ext_dict and output
match_length -= copied;
}
// Calculate the start of this duplicate segment. At this point offset was already
// checked to be in bounds and the external dictionary copy, if any, was
// already copied and subtracted from match_length.
let start_ptr = unsafe { output_ptr.sub(offset) };
debug_assert!(start_ptr >= output_base);
debug_assert!(start_ptr < output_end);
debug_assert!(unsafe { output_end.offset_from(start_ptr) as usize } >= match_length);
// In this branch we know that match_length is at most 18 (14 + MINMATCH).
// But the blocks can overlap, so make sure they are at least 18 bytes apart
// to enable an optimized copy of 18 bytes.
if offset >= match_length {
unsafe {
// _copy_, not copy_non_overlaping, as it may overlap.
// Compiles to the same assembly on x68_64.
core::ptr::copy(start_ptr, output_ptr, 18);
output_ptr = output_ptr.add(match_length);
}
} else {
unsafe {
duplicate_overlapping(&mut output_ptr, start_ptr, match_length);
}
}
continue;
}
// Now, we read the literals section.
// Literal Section
// If the initial value is 15, it is indicated that another byte will be read and added to
// it
let mut literal_length = (token >> 4) as usize;
if literal_length != 0 {
if literal_length == 15 {
// The literal_length length took the maximal value, indicating that there is more
// than 15 literal_length bytes. We read the extra integer.
literal_length += read_integer_ptr(&mut input_ptr, input_ptr_end)? as usize;
}
#[cfg(not(feature = "unchecked-decode"))]
{
// Check if literal is out of bounds for the input, and if there is enough space on
// the output
if literal_length > input_ptr_end as usize - input_ptr as usize {
return Err(DecompressError::LiteralOutOfBounds);
}
if literal_length > unsafe { output_end.offset_from(output_ptr) as usize } {
return Err(DecompressError::OutputTooSmall {
expected: unsafe { output_ptr.offset_from(output_base) as usize }
+ literal_length,
actual: output.capacity(),
});
}
}
unsafe {
fastcpy_unsafe::slice_copy(input_ptr, output_ptr, literal_length);
output_ptr = output_ptr.add(literal_length);
input_ptr = input_ptr.add(literal_length);
}
}
// If the input stream is emptied, we break out of the loop. This is only the case
// in the end of the stream, since the block is intact otherwise.
if input_ptr >= input_ptr_end {
break;
}
// Read duplicate section
#[cfg(not(feature = "unchecked-decode"))]
{
if (input_ptr_end as usize) - (input_ptr as usize) < 2 {
return Err(DecompressError::ExpectedAnotherByte);
}
}
let offset = read_u16_ptr(&mut input_ptr) as usize;
// Obtain the initial match length. The match length is the length of the duplicate segment
// which will later be copied from data previously decompressed into the output buffer. The
// initial length is derived from the second part of the token (the lower nibble), we read
// earlier. Since having a match length of less than 4 would mean negative compression
// ratio, we start at 4 (MINMATCH).
// The initial match length can maximally be 19 (MINMATCH + 15). As with the literal length,
// this indicates that there are more bytes to read.
let mut match_length = MINMATCH + (token & 0xF) as usize;
if match_length == MINMATCH + 15 {
// The match length took the maximal value, indicating that there is more bytes. We
// read the extra integer.
match_length += read_integer_ptr(&mut input_ptr, input_ptr_end)? as usize;
}
// We now copy from the already decompressed buffer. This allows us for storing duplicates
// by simply referencing the other location.
let output_len = unsafe { output_ptr.offset_from(output_base) as usize };
// We'll do a bounds check except unchecked-decode is enabled.
#[cfg(not(feature = "unchecked-decode"))]
{
if offset > output_len + ext_dict.len() {
return Err(DecompressError::OffsetOutOfBounds);
}
if match_length > unsafe { output_end.offset_from(output_ptr) as usize } {
return Err(DecompressError::OutputTooSmall {
expected: output_len + match_length,
actual: output.capacity(),
});
}
}
if USE_DICT && offset > output_len {
let copied = unsafe {
copy_from_dict(output_base, &mut output_ptr, ext_dict, offset, match_length)
};
if copied == match_length {
#[cfg(not(feature = "unchecked-decode"))]
{
if input_ptr >= input_ptr_end {
return Err(DecompressError::ExpectedAnotherByte);
}
}
continue;
}
// match crosses ext_dict and output
match_length -= copied;
}
// Calculate the start of this duplicate segment. At this point offset was already checked
// to be in bounds and the external dictionary copy, if any, was already copied and
// subtracted from match_length.
let start_ptr = unsafe { output_ptr.sub(offset) };
debug_assert!(start_ptr >= output_base);
debug_assert!(start_ptr < output_end);
debug_assert!(unsafe { output_end.offset_from(start_ptr) as usize } >= match_length);
unsafe {
duplicate(&mut output_ptr, output_end, start_ptr, match_length);
}
#[cfg(not(feature = "unchecked-decode"))]
{
if input_ptr >= input_ptr_end {
return Err(DecompressError::ExpectedAnotherByte);
}
}
}
unsafe {
output.set_pos(output_ptr.offset_from(output_base) as usize);
Ok(output_ptr.offset_from(output_start_pos_ptr) as usize)
}
}
/// Decompress all bytes of `input` into `output`.
/// `output` should be preallocated with a size of of the uncompressed data.
#[inline]
pub fn decompress_into(input: &[u8], output: &mut [u8]) -> Result<usize, DecompressError> {
decompress_internal::<false, _>(input, &mut SliceSink::new(output, 0), b"")
}
/// Decompress all bytes of `input` into `output`.
///
/// Returns the number of bytes written (decompressed) into `output`.
#[inline]
pub fn decompress_into_with_dict(
input: &[u8],
output: &mut [u8],
ext_dict: &[u8],
) -> Result<usize, DecompressError> {
decompress_internal::<true, _>(input, &mut SliceSink::new(output, 0), ext_dict)
}
/// Decompress all bytes of `input` into a new vec.
/// The passed parameter `min_uncompressed_size` needs to be equal or larger than the uncompressed size.
///
/// # Panics
/// May panic if the parameter `min_uncompressed_size` is smaller than the
/// uncompressed data.
#[inline]
pub fn decompress_with_dict(
input: &[u8],
min_uncompressed_size: usize,
ext_dict: &[u8],
) -> Result<Vec<u8>, DecompressError> {
// Allocate a vector to contain the decompressed stream.
let mut vec = Vec::with_capacity(min_uncompressed_size);
let decomp_len =
decompress_internal::<true, _>(input, &mut PtrSink::from_vec(&mut vec, 0), ext_dict)?;
unsafe {
vec.set_len(decomp_len);
}
Ok(vec)
}
/// Decompress all bytes of `input` into a new vec. The first 4 bytes are the uncompressed size in
/// little endian. Can be used in conjunction with `compress_prepend_size`
#[inline]
pub fn decompress_size_prepended(input: &[u8]) -> Result<Vec<u8>, DecompressError> {
let (uncompressed_size, input) = super::uncompressed_size(input)?;
decompress(input, uncompressed_size)
}
/// Decompress all bytes of `input` into a new vec.
/// The passed parameter `min_uncompressed_size` needs to be equal or larger than the uncompressed size.
///
/// # Panics
/// May panic if the parameter `min_uncompressed_size` is smaller than the
/// uncompressed data.
#[inline]
pub fn decompress(input: &[u8], min_uncompressed_size: usize) -> Result<Vec<u8>, DecompressError> {
// Allocate a vector to contain the decompressed stream.
let mut vec = Vec::with_capacity(min_uncompressed_size);
let decomp_len =
decompress_internal::<true, _>(input, &mut PtrSink::from_vec(&mut vec, 0), b"")?;
unsafe {
vec.set_len(decomp_len);
}
Ok(vec)
}
/// Decompress all bytes of `input` into a new vec. The first 4 bytes are the uncompressed size in
/// little endian. Can be used in conjunction with `compress_prepend_size_with_dict`
#[inline]
pub fn decompress_size_prepended_with_dict(
input: &[u8],
ext_dict: &[u8],
) -> Result<Vec<u8>, DecompressError> {
let (uncompressed_size, input) = super::uncompressed_size(input)?;
decompress_with_dict(input, uncompressed_size, ext_dict)
}
#[cfg(test)]
mod test {
use super::*;
#[test]
fn all_literal() {
assert_eq!(decompress(&[0x30, b'a', b'4', b'9'], 3).unwrap(), b"a49");
}
// this error test is only valid with checked-decode.
#[cfg(not(feature = "unchecked-decode"))]
#[test]
fn offset_oob() {
decompress(&[0x10, b'a', 2, 0], 4).unwrap_err();
decompress(&[0x40, b'a', 1, 0], 4).unwrap_err();
}
}