| use core::ops::{Div, Rem}; |
| |
| pub trait Euclid: Sized + Div<Self, Output = Self> + Rem<Self, Output = Self> { |
| /// Calculates Euclidean division, the matching method for `rem_euclid`. |
| /// |
| /// This computes the integer `n` such that |
| /// `self = n * v + self.rem_euclid(v)`. |
| /// In other words, the result is `self / v` rounded to the integer `n` |
| /// such that `self >= n * v`. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use num_traits::Euclid; |
| /// |
| /// let a: i32 = 7; |
| /// let b: i32 = 4; |
| /// assert_eq!(Euclid::div_euclid(&a, &b), 1); // 7 > 4 * 1 |
| /// assert_eq!(Euclid::div_euclid(&-a, &b), -2); // -7 >= 4 * -2 |
| /// assert_eq!(Euclid::div_euclid(&a, &-b), -1); // 7 >= -4 * -1 |
| /// assert_eq!(Euclid::div_euclid(&-a, &-b), 2); // -7 >= -4 * 2 |
| /// ``` |
| fn div_euclid(&self, v: &Self) -> Self; |
| |
| /// Calculates the least nonnegative remainder of `self (mod v)`. |
| /// |
| /// In particular, the return value `r` satisfies `0.0 <= r < v.abs()` in |
| /// most cases. However, due to a floating point round-off error it can |
| /// result in `r == v.abs()`, violating the mathematical definition, if |
| /// `self` is much smaller than `v.abs()` in magnitude and `self < 0.0`. |
| /// This result is not an element of the function's codomain, but it is the |
| /// closest floating point number in the real numbers and thus fulfills the |
| /// property `self == self.div_euclid(v) * v + self.rem_euclid(v)` |
| /// approximatively. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use num_traits::Euclid; |
| /// |
| /// let a: i32 = 7; |
| /// let b: i32 = 4; |
| /// assert_eq!(Euclid::rem_euclid(&a, &b), 3); |
| /// assert_eq!(Euclid::rem_euclid(&-a, &b), 1); |
| /// assert_eq!(Euclid::rem_euclid(&a, &-b), 3); |
| /// assert_eq!(Euclid::rem_euclid(&-a, &-b), 1); |
| /// ``` |
| fn rem_euclid(&self, v: &Self) -> Self; |
| } |
| |
| macro_rules! euclid_forward_impl { |
| ($($t:ty)*) => {$( |
| #[cfg(has_div_euclid)] |
| impl Euclid for $t { |
| #[inline] |
| fn div_euclid(&self, v: &$t) -> Self { |
| <$t>::div_euclid(*self, *v) |
| } |
| |
| #[inline] |
| fn rem_euclid(&self, v: &$t) -> Self { |
| <$t>::rem_euclid(*self, *v) |
| } |
| } |
| )*} |
| } |
| |
| macro_rules! euclid_int_impl { |
| ($($t:ty)*) => {$( |
| euclid_forward_impl!($t); |
| |
| #[cfg(not(has_div_euclid))] |
| impl Euclid for $t { |
| #[inline] |
| fn div_euclid(&self, v: &$t) -> Self { |
| let q = self / v; |
| if self % v < 0 { |
| return if *v > 0 { q - 1 } else { q + 1 } |
| } |
| q |
| } |
| |
| #[inline] |
| fn rem_euclid(&self, v: &$t) -> Self { |
| let r = self % v; |
| if r < 0 { |
| if *v < 0 { |
| r - v |
| } else { |
| r + v |
| } |
| } else { |
| r |
| } |
| } |
| } |
| )*} |
| } |
| |
| macro_rules! euclid_uint_impl { |
| ($($t:ty)*) => {$( |
| euclid_forward_impl!($t); |
| |
| #[cfg(not(has_div_euclid))] |
| impl Euclid for $t { |
| #[inline] |
| fn div_euclid(&self, v: &$t) -> Self { |
| self / v |
| } |
| |
| #[inline] |
| fn rem_euclid(&self, v: &$t) -> Self { |
| self % v |
| } |
| } |
| )*} |
| } |
| |
| euclid_int_impl!(isize i8 i16 i32 i64 i128); |
| euclid_uint_impl!(usize u8 u16 u32 u64 u128); |
| |
| #[cfg(all(has_div_euclid, feature = "std"))] |
| euclid_forward_impl!(f32 f64); |
| |
| #[cfg(not(all(has_div_euclid, feature = "std")))] |
| impl Euclid for f32 { |
| #[inline] |
| fn div_euclid(&self, v: &f32) -> f32 { |
| let q = <f32 as crate::float::FloatCore>::trunc(self / v); |
| if self % v < 0.0 { |
| return if *v > 0.0 { q - 1.0 } else { q + 1.0 }; |
| } |
| q |
| } |
| |
| #[inline] |
| fn rem_euclid(&self, v: &f32) -> f32 { |
| let r = self % v; |
| if r < 0.0 { |
| r + <f32 as crate::float::FloatCore>::abs(*v) |
| } else { |
| r |
| } |
| } |
| } |
| |
| #[cfg(not(all(has_div_euclid, feature = "std")))] |
| impl Euclid for f64 { |
| #[inline] |
| fn div_euclid(&self, v: &f64) -> f64 { |
| let q = <f64 as crate::float::FloatCore>::trunc(self / v); |
| if self % v < 0.0 { |
| return if *v > 0.0 { q - 1.0 } else { q + 1.0 }; |
| } |
| q |
| } |
| |
| #[inline] |
| fn rem_euclid(&self, v: &f64) -> f64 { |
| let r = self % v; |
| if r < 0.0 { |
| r + <f64 as crate::float::FloatCore>::abs(*v) |
| } else { |
| r |
| } |
| } |
| } |
| |
| pub trait CheckedEuclid: Euclid { |
| /// Performs euclid division that returns `None` instead of panicking on division by zero |
| /// and instead of wrapping around on underflow and overflow. |
| fn checked_div_euclid(&self, v: &Self) -> Option<Self>; |
| |
| /// Finds the euclid remainder of dividing two numbers, checking for underflow, overflow and |
| /// division by zero. If any of that happens, `None` is returned. |
| fn checked_rem_euclid(&self, v: &Self) -> Option<Self>; |
| } |
| |
| macro_rules! checked_euclid_forward_impl { |
| ($($t:ty)*) => {$( |
| #[cfg(has_div_euclid)] |
| impl CheckedEuclid for $t { |
| #[inline] |
| fn checked_div_euclid(&self, v: &$t) -> Option<Self> { |
| <$t>::checked_div_euclid(*self, *v) |
| } |
| |
| #[inline] |
| fn checked_rem_euclid(&self, v: &$t) -> Option<Self> { |
| <$t>::checked_rem_euclid(*self, *v) |
| } |
| } |
| )*} |
| } |
| |
| macro_rules! checked_euclid_int_impl { |
| ($($t:ty)*) => {$( |
| checked_euclid_forward_impl!($t); |
| |
| #[cfg(not(has_div_euclid))] |
| impl CheckedEuclid for $t { |
| #[inline] |
| fn checked_div_euclid(&self, v: &$t) -> Option<$t> { |
| if *v == 0 || (*self == Self::min_value() && *v == -1) { |
| None |
| } else { |
| Some(Euclid::div_euclid(self, v)) |
| } |
| } |
| |
| #[inline] |
| fn checked_rem_euclid(&self, v: &$t) -> Option<$t> { |
| if *v == 0 || (*self == Self::min_value() && *v == -1) { |
| None |
| } else { |
| Some(Euclid::rem_euclid(self, v)) |
| } |
| } |
| } |
| )*} |
| } |
| |
| macro_rules! checked_euclid_uint_impl { |
| ($($t:ty)*) => {$( |
| checked_euclid_forward_impl!($t); |
| |
| #[cfg(not(has_div_euclid))] |
| impl CheckedEuclid for $t { |
| #[inline] |
| fn checked_div_euclid(&self, v: &$t) -> Option<$t> { |
| if *v == 0 { |
| None |
| } else { |
| Some(Euclid::div_euclid(self, v)) |
| } |
| } |
| |
| #[inline] |
| fn checked_rem_euclid(&self, v: &$t) -> Option<$t> { |
| if *v == 0 { |
| None |
| } else { |
| Some(Euclid::rem_euclid(self, v)) |
| } |
| } |
| } |
| )*} |
| } |
| |
| checked_euclid_int_impl!(isize i8 i16 i32 i64 i128); |
| checked_euclid_uint_impl!(usize u8 u16 u32 u64 u128); |
| |
| #[cfg(test)] |
| mod tests { |
| use super::*; |
| |
| #[test] |
| fn euclid_unsigned() { |
| macro_rules! test_euclid { |
| ($($t:ident)+) => { |
| $( |
| { |
| let x: $t = 10; |
| let y: $t = 3; |
| assert_eq!(Euclid::div_euclid(&x, &y), 3); |
| assert_eq!(Euclid::rem_euclid(&x, &y), 1); |
| } |
| )+ |
| }; |
| } |
| |
| test_euclid!(usize u8 u16 u32 u64); |
| } |
| |
| #[test] |
| fn euclid_signed() { |
| macro_rules! test_euclid { |
| ($($t:ident)+) => { |
| $( |
| { |
| let x: $t = 10; |
| let y: $t = -3; |
| assert_eq!(Euclid::div_euclid(&x, &y), -3); |
| assert_eq!(Euclid::div_euclid(&-x, &y), 4); |
| assert_eq!(Euclid::rem_euclid(&x, &y), 1); |
| assert_eq!(Euclid::rem_euclid(&-x, &y), 2); |
| let x: $t = $t::min_value() + 1; |
| let y: $t = -1; |
| assert_eq!(Euclid::div_euclid(&x, &y), $t::max_value()); |
| } |
| )+ |
| }; |
| } |
| |
| test_euclid!(isize i8 i16 i32 i64 i128); |
| } |
| |
| #[test] |
| fn euclid_float() { |
| macro_rules! test_euclid { |
| ($($t:ident)+) => { |
| $( |
| { |
| let x: $t = 12.1; |
| let y: $t = 3.2; |
| assert!(Euclid::div_euclid(&x, &y) * y + Euclid::rem_euclid(&x, &y) - x |
| <= 46.4 * <$t as crate::float::FloatCore>::epsilon()); |
| assert!(Euclid::div_euclid(&x, &-y) * -y + Euclid::rem_euclid(&x, &-y) - x |
| <= 46.4 * <$t as crate::float::FloatCore>::epsilon()); |
| assert!(Euclid::div_euclid(&-x, &y) * y + Euclid::rem_euclid(&-x, &y) + x |
| <= 46.4 * <$t as crate::float::FloatCore>::epsilon()); |
| assert!(Euclid::div_euclid(&-x, &-y) * -y + Euclid::rem_euclid(&-x, &-y) + x |
| <= 46.4 * <$t as crate::float::FloatCore>::epsilon()); |
| } |
| )+ |
| }; |
| } |
| |
| test_euclid!(f32 f64); |
| } |
| |
| #[test] |
| fn euclid_checked() { |
| macro_rules! test_euclid_checked { |
| ($($t:ident)+) => { |
| $( |
| { |
| assert_eq!(CheckedEuclid::checked_div_euclid(&$t::min_value(), &-1), None); |
| assert_eq!(CheckedEuclid::checked_rem_euclid(&$t::min_value(), &-1), None); |
| assert_eq!(CheckedEuclid::checked_div_euclid(&1, &0), None); |
| assert_eq!(CheckedEuclid::checked_rem_euclid(&1, &0), None); |
| } |
| )+ |
| }; |
| } |
| |
| test_euclid_checked!(isize i8 i16 i32 i64 i128); |
| } |
| } |