blob: ff9146fc127d1bfaae1352aa429712f128c7f9b3 [file] [log] [blame] [edit]
use std::collections::VecDeque;
use std::hash::Hash;
use crate::visit::{
EdgeRef, GraphBase, IntoEdges, IntoNeighbors, IntoNodeIdentifiers, NodeCount, NodeIndexable,
VisitMap, Visitable,
};
/// Computed
/// [*matching*](https://en.wikipedia.org/wiki/Matching_(graph_theory)#Definitions)
/// of the graph.
pub struct Matching<G: GraphBase> {
graph: G,
mate: Vec<Option<G::NodeId>>,
n_edges: usize,
}
impl<G> Matching<G>
where
G: GraphBase,
{
fn new(graph: G, mate: Vec<Option<G::NodeId>>, n_edges: usize) -> Self {
Self {
graph,
mate,
n_edges,
}
}
}
impl<G> Matching<G>
where
G: NodeIndexable,
{
/// Gets the matched counterpart of given node, if there is any.
///
/// Returns `None` if the node is not matched or does not exist.
pub fn mate(&self, node: G::NodeId) -> Option<G::NodeId> {
self.mate.get(self.graph.to_index(node)).and_then(|&id| id)
}
/// Iterates over all edges from the matching.
///
/// An edge is represented by its endpoints. The graph is considered
/// undirected and every pair of matched nodes is reported only once.
pub fn edges(&self) -> MatchedEdges<'_, G> {
MatchedEdges {
graph: &self.graph,
mate: self.mate.as_slice(),
current: 0,
}
}
/// Iterates over all nodes from the matching.
pub fn nodes(&self) -> MatchedNodes<'_, G> {
MatchedNodes {
graph: &self.graph,
mate: self.mate.as_slice(),
current: 0,
}
}
/// Returns `true` if given edge is in the matching, or `false` otherwise.
///
/// If any of the nodes does not exist, `false` is returned.
pub fn contains_edge(&self, a: G::NodeId, b: G::NodeId) -> bool {
match self.mate(a) {
Some(mate) => mate == b,
None => false,
}
}
/// Returns `true` if given node is in the matching, or `false` otherwise.
///
/// If the node does not exist, `false` is returned.
pub fn contains_node(&self, node: G::NodeId) -> bool {
self.mate(node).is_some()
}
/// Gets the number of matched **edges**.
pub fn len(&self) -> usize {
self.n_edges
}
/// Returns `true` if the number of matched **edges** is 0.
pub fn is_empty(&self) -> bool {
self.len() == 0
}
}
impl<G> Matching<G>
where
G: NodeCount,
{
/// Returns `true` if the matching is perfect.
///
/// A matching is
/// [*perfect*](https://en.wikipedia.org/wiki/Matching_(graph_theory)#Definitions)
/// if every node in the graph is incident to an edge from the matching.
pub fn is_perfect(&self) -> bool {
let n_nodes = self.graph.node_count();
n_nodes % 2 == 0 && self.n_edges == n_nodes / 2
}
}
trait WithDummy: NodeIndexable {
fn dummy_idx(&self) -> usize;
fn node_bound_with_dummy(&self) -> usize;
/// Convert `i` to a node index, returns None for the dummy node
fn try_from_index(&self, i: usize) -> Option<Self::NodeId>;
}
impl<G: NodeIndexable> WithDummy for G {
fn dummy_idx(&self) -> usize {
// Gabow numbers the vertices from 1 to n, and uses 0 as the dummy
// vertex. Our vertex indices are zero-based and so we use the node
// bound as the dummy node.
self.node_bound()
}
fn node_bound_with_dummy(&self) -> usize {
self.node_bound() + 1
}
fn try_from_index(&self, i: usize) -> Option<Self::NodeId> {
if i != self.dummy_idx() {
Some(self.from_index(i))
} else {
None
}
}
}
pub struct MatchedNodes<'a, G: GraphBase> {
graph: &'a G,
mate: &'a [Option<G::NodeId>],
current: usize,
}
impl<G> Iterator for MatchedNodes<'_, G>
where
G: NodeIndexable,
{
type Item = G::NodeId;
fn next(&mut self) -> Option<Self::Item> {
while self.current != self.mate.len() {
let current = self.current;
self.current += 1;
if self.mate[current].is_some() {
return Some(self.graph.from_index(current));
}
}
None
}
}
pub struct MatchedEdges<'a, G: GraphBase> {
graph: &'a G,
mate: &'a [Option<G::NodeId>],
current: usize,
}
impl<G> Iterator for MatchedEdges<'_, G>
where
G: NodeIndexable,
{
type Item = (G::NodeId, G::NodeId);
fn next(&mut self) -> Option<Self::Item> {
while self.current != self.mate.len() {
let current = self.current;
self.current += 1;
if let Some(mate) = self.mate[current] {
// Check if the mate is a node after the current one. If not, then
// do not report that edge since it has been already reported (the
// graph is considered undirected).
if self.graph.to_index(mate) > current {
let this = self.graph.from_index(current);
return Some((this, mate));
}
}
}
None
}
}
/// \[Generic\] Compute a
/// [*matching*](https://en.wikipedia.org/wiki/Matching_(graph_theory)) using a
/// greedy heuristic.
///
/// The input graph is treated as if undirected. The underlying heuristic is
/// unspecified, but is guaranteed to be bounded by *O(|V| + |E|)*. No
/// guarantees about the output are given other than that it is a valid
/// matching.
///
/// If you require a maximum matching, use [`maximum_matching`][1] function
/// instead.
///
/// [1]: fn.maximum_matching.html
pub fn greedy_matching<G>(graph: G) -> Matching<G>
where
G: Visitable + IntoNodeIdentifiers + NodeIndexable + IntoNeighbors,
G::NodeId: Eq + Hash,
G::EdgeId: Eq + Hash,
{
let (mates, n_edges) = greedy_matching_inner(&graph);
Matching::new(graph, mates, n_edges)
}
#[inline]
fn greedy_matching_inner<G>(graph: &G) -> (Vec<Option<G::NodeId>>, usize)
where
G: Visitable + IntoNodeIdentifiers + NodeIndexable + IntoNeighbors,
{
let mut mate = vec![None; graph.node_bound()];
let mut n_edges = 0;
let visited = &mut graph.visit_map();
for start in graph.node_identifiers() {
let mut last = Some(start);
// Function non_backtracking_dfs does not expand the node if it has been
// already visited.
non_backtracking_dfs(graph, start, visited, |next| {
// Alternate matched and unmatched edges.
if let Some(pred) = last.take() {
mate[graph.to_index(pred)] = Some(next);
mate[graph.to_index(next)] = Some(pred);
n_edges += 1;
} else {
last = Some(next);
}
});
}
(mate, n_edges)
}
fn non_backtracking_dfs<G, F>(graph: &G, source: G::NodeId, visited: &mut G::Map, mut visitor: F)
where
G: Visitable + IntoNeighbors,
F: FnMut(G::NodeId),
{
if visited.visit(source) {
for target in graph.neighbors(source) {
if !visited.is_visited(&target) {
visitor(target);
non_backtracking_dfs(graph, target, visited, visitor);
// Non-backtracking traversal, stop iterating over the
// neighbors.
break;
}
}
}
}
#[derive(Clone, Copy)]
enum Label<G: GraphBase> {
None,
Start,
// If node v is outer node, then label(v) = w is another outer node on path
// from v to start u.
Vertex(G::NodeId),
// If node v is outer node, then label(v) = (r, s) are two outer vertices
// (connected by an edge)
Edge(G::EdgeId, [G::NodeId; 2]),
// Flag is a special label used in searching for the join vertex of two
// paths.
Flag(G::EdgeId),
}
impl<G: GraphBase> Label<G> {
fn is_outer(&self) -> bool {
self != &Label::None
&& !match self {
Label::Flag(_) => true,
_ => false,
}
}
fn is_inner(&self) -> bool {
!self.is_outer()
}
fn to_vertex(&self) -> Option<G::NodeId> {
match *self {
Label::Vertex(v) => Some(v),
_ => None,
}
}
fn is_flagged(&self, edge: G::EdgeId) -> bool {
match self {
Label::Flag(flag) if flag == &edge => true,
_ => false,
}
}
}
impl<G: GraphBase> Default for Label<G> {
fn default() -> Self {
Label::None
}
}
impl<G: GraphBase> PartialEq for Label<G> {
fn eq(&self, other: &Self) -> bool {
match (self, other) {
(Label::None, Label::None) => true,
(Label::Start, Label::Start) => true,
(Label::Vertex(v1), Label::Vertex(v2)) => v1 == v2,
(Label::Edge(e1, _), Label::Edge(e2, _)) => e1 == e2,
(Label::Flag(e1), Label::Flag(e2)) => e1 == e2,
_ => false,
}
}
}
/// \[Generic\] Compute the [*maximum
/// matching*](https://en.wikipedia.org/wiki/Matching_(graph_theory)) using
/// [Gabow's algorithm][1].
///
/// [1]: https://dl.acm.org/doi/10.1145/321941.321942
///
/// The input graph is treated as if undirected. The algorithm runs in
/// *O(|V|³)*. An algorithm with a better time complexity might be used in the
/// future.
///
/// **Panics** if `g.node_bound()` is `std::usize::MAX`.
///
/// # Examples
///
/// ```
/// use petgraph::prelude::*;
/// use petgraph::algo::maximum_matching;
///
/// // The example graph:
/// //
/// // +-- b ---- d ---- f
/// // / | |
/// // a | |
/// // \ | |
/// // +-- c ---- e
/// //
/// // Maximum matching: { (a, b), (c, e), (d, f) }
///
/// let mut graph: UnGraph<(), ()> = UnGraph::new_undirected();
/// let a = graph.add_node(());
/// let b = graph.add_node(());
/// let c = graph.add_node(());
/// let d = graph.add_node(());
/// let e = graph.add_node(());
/// let f = graph.add_node(());
/// graph.extend_with_edges(&[(a, b), (a, c), (b, c), (b, d), (c, e), (d, e), (d, f)]);
///
/// let matching = maximum_matching(&graph);
/// assert!(matching.contains_edge(a, b));
/// assert!(matching.contains_edge(c, e));
/// assert_eq!(matching.mate(d), Some(f));
/// assert_eq!(matching.mate(f), Some(d));
/// ```
pub fn maximum_matching<G>(graph: G) -> Matching<G>
where
G: Visitable + NodeIndexable + IntoNodeIdentifiers + IntoEdges,
{
// The dummy identifier needs an unused index
assert_ne!(
graph.node_bound(),
std::usize::MAX,
"The input graph capacity should be strictly less than std::usize::MAX."
);
// Greedy algorithm should create a fairly good initial matching. The hope
// is that it speeds up the computation by doing les work in the complex
// algorithm.
let (mut mate, mut n_edges) = greedy_matching_inner(&graph);
// Gabow's algorithm uses a dummy node in the mate array.
mate.push(None);
let len = graph.node_bound() + 1;
debug_assert_eq!(mate.len(), len);
let mut label: Vec<Label<G>> = vec![Label::None; len];
let mut first_inner = vec![std::usize::MAX; len];
let visited = &mut graph.visit_map();
for start in 0..graph.node_bound() {
if mate[start].is_some() {
// The vertex is already matched. A start must be a free vertex.
continue;
}
// Begin search from the node.
label[start] = Label::Start;
first_inner[start] = graph.dummy_idx();
graph.reset_map(visited);
// start is never a dummy index
let start = graph.from_index(start);
// Queue will contain outer vertices that should be processed next. The
// start vertex is considered an outer vertex.
let mut queue = VecDeque::new();
queue.push_back(start);
// Mark the start vertex so it is not processed repeatedly.
visited.visit(start);
'search: while let Some(outer_vertex) = queue.pop_front() {
for edge in graph.edges(outer_vertex) {
if edge.source() == edge.target() {
// Ignore self-loops.
continue;
}
let other_vertex = edge.target();
let other_idx = graph.to_index(other_vertex);
if mate[other_idx].is_none() && other_vertex != start {
// An augmenting path was found. Augment the matching. If
// `other` is actually the start node, then the augmentation
// must not be performed, because the start vertex would be
// incident to two edges, which violates the matching
// property.
mate[other_idx] = Some(outer_vertex);
augment_path(&graph, outer_vertex, other_vertex, &mut mate, &label);
n_edges += 1;
// The path is augmented, so the start is no longer free
// vertex. We need to begin with a new start.
break 'search;
} else if label[other_idx].is_outer() {
// The `other` is an outer vertex (a label has been set to
// it). An odd cycle (blossom) was found. Assign this edge
// as a label to all inner vertices in paths P(outer) and
// P(other).
find_join(
&graph,
edge,
&mate,
&mut label,
&mut first_inner,
|labeled| {
if visited.visit(labeled) {
queue.push_back(labeled);
}
},
);
} else {
let mate_vertex = mate[other_idx];
let mate_idx = mate_vertex.map_or(graph.dummy_idx(), |id| graph.to_index(id));
if label[mate_idx].is_inner() {
// Mate of `other` vertex is inner (no label has been
// set to it so far). But it actually is an outer vertex
// (it is on a path to the start vertex that begins with
// a matched edge, since it is a mate of `other`).
// Assign the label of this mate to the `outer` vertex,
// so the path for it can be reconstructed using `mate`
// and this label.
label[mate_idx] = Label::Vertex(outer_vertex);
first_inner[mate_idx] = other_idx;
}
// Add the vertex to the queue only if it's not the dummy and this is its first
// discovery.
if let Some(mate_vertex) = mate_vertex {
if visited.visit(mate_vertex) {
queue.push_back(mate_vertex);
}
}
}
}
}
// Reset the labels. All vertices are inner for the next search.
for lbl in label.iter_mut() {
*lbl = Label::None;
}
}
// Discard the dummy node.
mate.pop();
Matching::new(graph, mate, n_edges)
}
fn find_join<G, F>(
graph: &G,
edge: G::EdgeRef,
mate: &[Option<G::NodeId>],
label: &mut [Label<G>],
first_inner: &mut [usize],
mut visitor: F,
) where
G: IntoEdges + NodeIndexable + Visitable,
F: FnMut(G::NodeId),
{
// Simultaneously traverse the inner vertices on paths P(source) and
// P(target) to find a join vertex - an inner vertex that is shared by these
// paths.
let source = graph.to_index(edge.source());
let target = graph.to_index(edge.target());
let mut left = first_inner[source];
let mut right = first_inner[target];
if left == right {
// No vertices can be labeled, since both paths already refer to a
// common vertex - the join.
return;
}
// Flag the (first) inner vertices. This ensures that they are assigned the
// join as their first inner vertex.
let flag = Label::Flag(edge.id());
label[left] = flag;
label[right] = flag;
// Find the join.
let join = loop {
// Swap the sides. Do not swap if the right side is already finished.
if right != graph.dummy_idx() {
std::mem::swap(&mut left, &mut right);
}
// Set left to the next inner vertex in P(source) or P(target).
// The unwraps are safe because left is not the dummy node.
let left_mate = graph.to_index(mate[left].unwrap());
let next_inner = label[left_mate].to_vertex().unwrap();
left = first_inner[graph.to_index(next_inner)];
if !label[left].is_flagged(edge.id()) {
// The inner vertex is not flagged yet, so flag it.
label[left] = flag;
} else {
// The inner vertex is already flagged. It means that the other side
// had to visit it already. Therefore it is the join vertex.
break left;
}
};
// Label all inner vertices on P(source) and P(target) with the found join.
for endpoint in [source, target].iter().copied() {
let mut inner = first_inner[endpoint];
while inner != join {
// Notify the caller about labeling a vertex.
if let Some(ix) = graph.try_from_index(inner) {
visitor(ix);
}
label[inner] = Label::Edge(edge.id(), [edge.source(), edge.target()]);
first_inner[inner] = join;
let inner_mate = graph.to_index(mate[inner].unwrap());
let next_inner = label[inner_mate].to_vertex().unwrap();
inner = first_inner[graph.to_index(next_inner)];
}
}
for (vertex_idx, vertex_label) in label.iter().enumerate() {
// To all outer vertices that are on paths P(source) and P(target) until
// the join, se the join as their first inner vertex.
if vertex_idx != graph.dummy_idx()
&& vertex_label.is_outer()
&& label[first_inner[vertex_idx]].is_outer()
{
first_inner[vertex_idx] = join;
}
}
}
fn augment_path<G>(
graph: &G,
outer: G::NodeId,
other: G::NodeId,
mate: &mut [Option<G::NodeId>],
label: &[Label<G>],
) where
G: NodeIndexable,
{
let outer_idx = graph.to_index(outer);
let temp = mate[outer_idx];
let temp_idx = temp.map_or(graph.dummy_idx(), |id| graph.to_index(id));
mate[outer_idx] = Some(other);
if mate[temp_idx] != Some(outer) {
// We are at the end of the path and so the entire path is completely
// rematched/augmented.
} else if let Label::Vertex(vertex) = label[outer_idx] {
// The outer vertex has a vertex label which refers to another outer
// vertex on the path. So we set this another outer node as the mate for
// the previous mate of the outer node.
mate[temp_idx] = Some(vertex);
if let Some(temp) = temp {
augment_path(graph, vertex, temp, mate, label);
}
} else if let Label::Edge(_, [source, target]) = label[outer_idx] {
// The outer vertex has an edge label which refers to an edge in a
// blossom. We need to augment both directions along the blossom.
augment_path(graph, source, target, mate, label);
augment_path(graph, target, source, mate, label);
} else {
panic!("Unexpected label when augmenting path");
}
}