blob: 35ae6049b7406d55b75678add9be657cee05c0f0 [file] [log] [blame] [edit]
use crate::BackendCoord;
// Compute the tanginal and normal vectors of the given straight line.
fn get_dir_vector(from: BackendCoord, to: BackendCoord, flag: bool) -> ((f64, f64), (f64, f64)) {
let v = (i64::from(to.0 - from.0), i64::from(to.1 - from.1));
let l = ((v.0 * v.0 + v.1 * v.1) as f64).sqrt();
let v = (v.0 as f64 / l, v.1 as f64 / l);
if flag {
(v, (v.1, -v.0))
} else {
(v, (-v.1, v.0))
}
}
// Compute the polygonized vertex of the given angle
// d is the distance between the polygon edge and the actual line.
// d can be negative, this will emit a vertex on the other side of the line.
fn compute_polygon_vertex(triple: &[BackendCoord; 3], d: f64, buf: &mut Vec<BackendCoord>) {
buf.clear();
// Compute the tanginal and normal vectors of the given straight line.
let (a_t, a_n) = get_dir_vector(triple[0], triple[1], false);
let (b_t, b_n) = get_dir_vector(triple[2], triple[1], true);
// Compute a point that is d away from the line for line a and line b.
let a_p = (
f64::from(triple[1].0) + d * a_n.0,
f64::from(triple[1].1) + d * a_n.1,
);
let b_p = (
f64::from(triple[1].0) + d * b_n.0,
f64::from(triple[1].1) + d * b_n.1,
);
// If they are actually the same point, then the 3 points are colinear, so just emit the point.
if a_p.0 as i32 == b_p.0 as i32 && a_p.1 as i32 == b_p.1 as i32 {
buf.push((a_p.0 as i32, a_p.1 as i32));
return;
}
// So we are actually computing the intersection of two lines:
// a_p + u * a_t and b_p + v * b_t.
// We can solve the following vector equation:
// u * a_t + a_p = v * b_t + b_p
//
// which is actually a equation system:
// u * a_t.0 - v * b_t.0 = b_p.0 - a_p.0
// u * a_t.1 - v * b_t.1 = b_p.1 - a_p.1
// The following vars are coefficients of the linear equation system.
// a0*u + b0*v = c0
// a1*u + b1*v = c1
// in which x and y are the coordinates that two polygon edges intersect.
let a0 = a_t.0;
let b0 = -b_t.0;
let c0 = b_p.0 - a_p.0;
let a1 = a_t.1;
let b1 = -b_t.1;
let c1 = b_p.1 - a_p.1;
let mut x = f64::INFINITY;
let mut y = f64::INFINITY;
// Well if the determinant is not 0, then we can actuall get a intersection point.
if (a0 * b1 - a1 * b0).abs() > f64::EPSILON {
let u = (c0 * b1 - c1 * b0) / (a0 * b1 - a1 * b0);
x = a_p.0 + u * a_t.0;
y = a_p.1 + u * a_t.1;
}
let cross_product = a_t.0 * b_t.1 - a_t.1 * b_t.0;
if (cross_product < 0.0 && d < 0.0) || (cross_product > 0.0 && d > 0.0) {
// Then we are at the outter side of the angle, so we need to consider a cap.
let dist_square = (x - triple[1].0 as f64).powi(2) + (y - triple[1].1 as f64).powi(2);
// If the point is too far away from the line, we need to cap it.
if dist_square > d * d * 16.0 {
buf.push((a_p.0.round() as i32, a_p.1.round() as i32));
buf.push((b_p.0.round() as i32, b_p.1.round() as i32));
return;
}
}
buf.push((x.round() as i32, y.round() as i32));
}
fn traverse_vertices<'a>(
mut vertices: impl Iterator<Item = &'a BackendCoord>,
width: u32,
mut op: impl FnMut(BackendCoord),
) {
let mut a = vertices.next().unwrap();
let mut b = vertices.next().unwrap();
while a == b {
a = b;
if let Some(new_b) = vertices.next() {
b = new_b;
} else {
return;
}
}
let (_, n) = get_dir_vector(*a, *b, false);
op((
(f64::from(a.0) + n.0 * f64::from(width) / 2.0).round() as i32,
(f64::from(a.1) + n.1 * f64::from(width) / 2.0).round() as i32,
));
let mut recent = [(0, 0), *a, *b];
let mut vertex_buf = Vec::with_capacity(3);
for p in vertices {
if *p == recent[2] {
continue;
}
recent.swap(0, 1);
recent.swap(1, 2);
recent[2] = *p;
compute_polygon_vertex(&recent, f64::from(width) / 2.0, &mut vertex_buf);
vertex_buf.iter().cloned().for_each(&mut op);
}
let b = recent[1];
let a = recent[2];
let (_, n) = get_dir_vector(a, b, true);
op((
(f64::from(a.0) + n.0 * f64::from(width) / 2.0).round() as i32,
(f64::from(a.1) + n.1 * f64::from(width) / 2.0).round() as i32,
));
}
/// Covert a path with >1px stroke width into polygon.
pub fn polygonize(vertices: &[BackendCoord], stroke_width: u32) -> Vec<BackendCoord> {
if vertices.len() < 2 {
return vec![];
}
let mut ret = vec![];
traverse_vertices(vertices.iter(), stroke_width, |v| ret.push(v));
traverse_vertices(vertices.iter().rev(), stroke_width, |v| ret.push(v));
ret
}