| use std::cell::RefCell; |
| use std::fmt; |
| use std::mem; |
| use std::rc::Rc; |
| |
| use dense; |
| use state_id::{dead_id, StateID}; |
| |
| type DFARepr<S> = dense::Repr<Vec<S>, S>; |
| |
| /// An implementation of Hopcroft's algorithm for minimizing DFAs. |
| /// |
| /// The algorithm implemented here is mostly taken from Wikipedia: |
| /// https://en.wikipedia.org/wiki/DFA_minimization#Hopcroft's_algorithm |
| /// |
| /// This code has had some light optimization attention paid to it, |
| /// particularly in the form of reducing allocation as much as possible. |
| /// However, it is still generally slow. Future optimization work should |
| /// probably focus on the bigger picture rather than micro-optimizations. For |
| /// example: |
| /// |
| /// 1. Figure out how to more intelligently create initial partitions. That is, |
| /// Hopcroft's algorithm starts by creating two partitions of DFA states |
| /// that are known to NOT be equivalent: match states and non-match states. |
| /// The algorithm proceeds by progressively refining these partitions into |
| /// smaller partitions. If we could start with more partitions, then we |
| /// could reduce the amount of work that Hopcroft's algorithm needs to do. |
| /// 2. For every partition that we visit, we find all incoming transitions to |
| /// every state in the partition for *every* element in the alphabet. (This |
| /// is why using byte classes can significantly decrease minimization times, |
| /// since byte classes shrink the alphabet.) This is quite costly and there |
| /// is perhaps some redundant work being performed depending on the specific |
| /// states in the set. For example, we might be able to only visit some |
| /// elements of the alphabet based on the transitions. |
| /// 3. Move parts of minimization into determinization. If minimization has |
| /// fewer states to deal with, then it should run faster. A prime example |
| /// of this might be large Unicode classes, which are generated in way that |
| /// can create a lot of redundant states. (Some work has been done on this |
| /// point during NFA compilation via the algorithm described in the |
| /// "Incremental Construction of MinimalAcyclic Finite-State Automata" |
| /// paper.) |
| pub(crate) struct Minimizer<'a, S: 'a> { |
| dfa: &'a mut DFARepr<S>, |
| in_transitions: Vec<Vec<Vec<S>>>, |
| partitions: Vec<StateSet<S>>, |
| waiting: Vec<StateSet<S>>, |
| } |
| |
| impl<'a, S: StateID> fmt::Debug for Minimizer<'a, S> { |
| fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { |
| f.debug_struct("Minimizer") |
| .field("dfa", &self.dfa) |
| .field("in_transitions", &self.in_transitions) |
| .field("partitions", &self.partitions) |
| .field("waiting", &self.waiting) |
| .finish() |
| } |
| } |
| |
| /// A set of states. A state set makes up a single partition in Hopcroft's |
| /// algorithm. |
| /// |
| /// It is represented by an ordered set of state identifiers. We use shared |
| /// ownership so that a single state set can be in both the set of partitions |
| /// and in the set of waiting sets simultaneously without an additional |
| /// allocation. Generally, once a state set is built, it becomes immutable. |
| /// |
| /// We use this representation because it avoids the overhead of more |
| /// traditional set data structures (HashSet/BTreeSet), and also because |
| /// computing intersection/subtraction on this representation is especially |
| /// fast. |
| #[derive(Clone, Debug, Eq, PartialEq, PartialOrd, Ord)] |
| struct StateSet<S>(Rc<RefCell<Vec<S>>>); |
| |
| impl<'a, S: StateID> Minimizer<'a, S> { |
| pub fn new(dfa: &'a mut DFARepr<S>) -> Minimizer<'a, S> { |
| let in_transitions = Minimizer::incoming_transitions(dfa); |
| let partitions = Minimizer::initial_partitions(dfa); |
| let waiting = vec![partitions[0].clone()]; |
| |
| Minimizer { dfa, in_transitions, partitions, waiting } |
| } |
| |
| pub fn run(mut self) { |
| let mut incoming = StateSet::empty(); |
| let mut scratch1 = StateSet::empty(); |
| let mut scratch2 = StateSet::empty(); |
| let mut newparts = vec![]; |
| |
| while let Some(set) = self.waiting.pop() { |
| for b in (0..self.dfa.alphabet_len()).map(|b| b as u8) { |
| self.find_incoming_to(b, &set, &mut incoming); |
| |
| for p in 0..self.partitions.len() { |
| self.partitions[p].intersection(&incoming, &mut scratch1); |
| if scratch1.is_empty() { |
| newparts.push(self.partitions[p].clone()); |
| continue; |
| } |
| |
| self.partitions[p].subtract(&incoming, &mut scratch2); |
| if scratch2.is_empty() { |
| newparts.push(self.partitions[p].clone()); |
| continue; |
| } |
| |
| let (x, y) = |
| (scratch1.deep_clone(), scratch2.deep_clone()); |
| newparts.push(x.clone()); |
| newparts.push(y.clone()); |
| match self.find_waiting(&self.partitions[p]) { |
| Some(i) => { |
| self.waiting[i] = x; |
| self.waiting.push(y); |
| } |
| None => { |
| if x.len() <= y.len() { |
| self.waiting.push(x); |
| } else { |
| self.waiting.push(y); |
| } |
| } |
| } |
| } |
| newparts = mem::replace(&mut self.partitions, newparts); |
| newparts.clear(); |
| } |
| } |
| |
| // At this point, we now have a minimal partitioning of states, where |
| // each partition is an equivalence class of DFA states. Now we need to |
| // use this partioning to update the DFA to only contain one state for |
| // each partition. |
| |
| // Create a map from DFA state ID to the representative ID of the |
| // equivalence class to which it belongs. The representative ID of an |
| // equivalence class of states is the minimum ID in that class. |
| let mut state_to_part = vec![dead_id(); self.dfa.state_count()]; |
| for p in &self.partitions { |
| p.iter(|id| state_to_part[id.to_usize()] = p.min()); |
| } |
| |
| // Generate a new contiguous sequence of IDs for minimal states, and |
| // create a map from equivalence IDs to the new IDs. Thus, the new |
| // minimal ID of *any* state in the unminimized DFA can be obtained |
| // with minimals_ids[state_to_part[old_id]]. |
| let mut minimal_ids = vec![dead_id(); self.dfa.state_count()]; |
| let mut new_id = S::from_usize(0); |
| for (id, _) in self.dfa.states() { |
| if state_to_part[id.to_usize()] == id { |
| minimal_ids[id.to_usize()] = new_id; |
| new_id = S::from_usize(new_id.to_usize() + 1); |
| } |
| } |
| // The total number of states in the minimal DFA. |
| let minimal_count = new_id.to_usize(); |
| |
| // Re-map this DFA in place such that the only states remaining |
| // correspond to the representative states of every equivalence class. |
| for id in (0..self.dfa.state_count()).map(S::from_usize) { |
| // If this state isn't a representative for an equivalence class, |
| // then we skip it since it won't appear in the minimal DFA. |
| if state_to_part[id.to_usize()] != id { |
| continue; |
| } |
| for (_, next) in self.dfa.get_state_mut(id).iter_mut() { |
| *next = minimal_ids[state_to_part[next.to_usize()].to_usize()]; |
| } |
| self.dfa.swap_states(id, minimal_ids[id.to_usize()]); |
| } |
| // Trim off all unused states from the pre-minimized DFA. This |
| // represents all states that were merged into a non-singleton |
| // equivalence class of states, and appeared after the first state |
| // in each such class. (Because the state with the smallest ID in each |
| // equivalence class is its representative ID.) |
| self.dfa.truncate_states(minimal_count); |
| |
| // Update the new start state, which is now just the minimal ID of |
| // whatever state the old start state was collapsed into. |
| let old_start = self.dfa.start_state(); |
| self.dfa.set_start_state( |
| minimal_ids[state_to_part[old_start.to_usize()].to_usize()], |
| ); |
| |
| // In order to update the ID of the maximum match state, we need to |
| // find the maximum ID among all of the match states in the minimized |
| // DFA. This is not necessarily the new ID of the unminimized maximum |
| // match state, since that could have been collapsed with a much |
| // earlier match state. Therefore, to find the new max match state, |
| // we iterate over all previous match states, find their corresponding |
| // new minimal ID, and take the maximum of those. |
| let old_max = self.dfa.max_match_state(); |
| self.dfa.set_max_match_state(dead_id()); |
| for id in (0..(old_max.to_usize() + 1)).map(S::from_usize) { |
| let part = state_to_part[id.to_usize()]; |
| let new_id = minimal_ids[part.to_usize()]; |
| if new_id > self.dfa.max_match_state() { |
| self.dfa.set_max_match_state(new_id); |
| } |
| } |
| } |
| |
| fn find_waiting(&self, set: &StateSet<S>) -> Option<usize> { |
| self.waiting.iter().position(|s| s == set) |
| } |
| |
| fn find_incoming_to( |
| &self, |
| b: u8, |
| set: &StateSet<S>, |
| incoming: &mut StateSet<S>, |
| ) { |
| incoming.clear(); |
| set.iter(|id| { |
| for &inid in &self.in_transitions[id.to_usize()][b as usize] { |
| incoming.add(inid); |
| } |
| }); |
| incoming.canonicalize(); |
| } |
| |
| fn initial_partitions(dfa: &DFARepr<S>) -> Vec<StateSet<S>> { |
| let mut is_match = StateSet::empty(); |
| let mut no_match = StateSet::empty(); |
| for (id, _) in dfa.states() { |
| if dfa.is_match_state(id) { |
| is_match.add(id); |
| } else { |
| no_match.add(id); |
| } |
| } |
| |
| let mut sets = vec![is_match]; |
| if !no_match.is_empty() { |
| sets.push(no_match); |
| } |
| sets.sort_by_key(|s| s.len()); |
| sets |
| } |
| |
| fn incoming_transitions(dfa: &DFARepr<S>) -> Vec<Vec<Vec<S>>> { |
| let mut incoming = vec![]; |
| for _ in dfa.states() { |
| incoming.push(vec![vec![]; dfa.alphabet_len()]); |
| } |
| for (id, state) in dfa.states() { |
| for (b, next) in state.transitions() { |
| incoming[next.to_usize()][b as usize].push(id); |
| } |
| } |
| incoming |
| } |
| } |
| |
| impl<S: StateID> StateSet<S> { |
| fn empty() -> StateSet<S> { |
| StateSet(Rc::new(RefCell::new(vec![]))) |
| } |
| |
| fn add(&mut self, id: S) { |
| self.0.borrow_mut().push(id); |
| } |
| |
| fn min(&self) -> S { |
| self.0.borrow()[0] |
| } |
| |
| fn canonicalize(&mut self) { |
| self.0.borrow_mut().sort(); |
| self.0.borrow_mut().dedup(); |
| } |
| |
| fn clear(&mut self) { |
| self.0.borrow_mut().clear(); |
| } |
| |
| fn len(&self) -> usize { |
| self.0.borrow().len() |
| } |
| |
| fn is_empty(&self) -> bool { |
| self.len() == 0 |
| } |
| |
| fn deep_clone(&self) -> StateSet<S> { |
| let ids = self.0.borrow().iter().cloned().collect(); |
| StateSet(Rc::new(RefCell::new(ids))) |
| } |
| |
| fn iter<F: FnMut(S)>(&self, mut f: F) { |
| for &id in self.0.borrow().iter() { |
| f(id); |
| } |
| } |
| |
| fn intersection(&self, other: &StateSet<S>, dest: &mut StateSet<S>) { |
| dest.clear(); |
| if self.is_empty() || other.is_empty() { |
| return; |
| } |
| |
| let (seta, setb) = (self.0.borrow(), other.0.borrow()); |
| let (mut ita, mut itb) = (seta.iter().cloned(), setb.iter().cloned()); |
| let (mut a, mut b) = (ita.next().unwrap(), itb.next().unwrap()); |
| loop { |
| if a == b { |
| dest.add(a); |
| a = match ita.next() { |
| None => break, |
| Some(a) => a, |
| }; |
| b = match itb.next() { |
| None => break, |
| Some(b) => b, |
| }; |
| } else if a < b { |
| a = match ita.next() { |
| None => break, |
| Some(a) => a, |
| }; |
| } else { |
| b = match itb.next() { |
| None => break, |
| Some(b) => b, |
| }; |
| } |
| } |
| } |
| |
| fn subtract(&self, other: &StateSet<S>, dest: &mut StateSet<S>) { |
| dest.clear(); |
| if self.is_empty() || other.is_empty() { |
| self.iter(|s| dest.add(s)); |
| return; |
| } |
| |
| let (seta, setb) = (self.0.borrow(), other.0.borrow()); |
| let (mut ita, mut itb) = (seta.iter().cloned(), setb.iter().cloned()); |
| let (mut a, mut b) = (ita.next().unwrap(), itb.next().unwrap()); |
| loop { |
| if a == b { |
| a = match ita.next() { |
| None => break, |
| Some(a) => a, |
| }; |
| b = match itb.next() { |
| None => { |
| dest.add(a); |
| break; |
| } |
| Some(b) => b, |
| }; |
| } else if a < b { |
| dest.add(a); |
| a = match ita.next() { |
| None => break, |
| Some(a) => a, |
| }; |
| } else { |
| b = match itb.next() { |
| None => { |
| dest.add(a); |
| break; |
| } |
| Some(b) => b, |
| }; |
| } |
| } |
| for a in ita { |
| dest.add(a); |
| } |
| } |
| } |