blob: 6b6a8b3ba8ba7543fe5989a5b444996bc8728ae4 [file] [log] [blame]
//! General purpose combinators
use nom::bytes::streaming::take;
use nom::combinator::map_parser;
use nom::error::{make_error, ErrorKind, ParseError};
use nom::{IResult, Needed, Parser};
use nom::{InputIter, InputTake};
use nom::{InputLength, ToUsize};
#[deprecated(since = "3.0.1", note = "please use `be_var_u64` instead")]
/// Read an entire slice as a big-endian value.
///
/// Returns the value as `u64`. This function checks for integer overflows, and returns a
/// `Result::Err` value if the value is too big.
pub fn bytes_to_u64(s: &[u8]) -> Result<u64, &'static str> {
let mut u: u64 = 0;
if s.is_empty() {
return Err("empty");
};
if s.len() > 8 {
return Err("overflow");
}
for &c in s {
let u1 = u << 8;
u = u1 | (c as u64);
}
Ok(u)
}
/// Read the entire slice as a big endian unsigned integer, up to 8 bytes
#[inline]
pub fn be_var_u64<'a, E: ParseError<&'a [u8]>>(input: &'a [u8]) -> IResult<&'a [u8], u64, E> {
if input.is_empty() {
return Err(nom::Err::Incomplete(Needed::new(1)));
}
if input.len() > 8 {
return Err(nom::Err::Error(make_error(input, ErrorKind::TooLarge)));
}
let mut res = 0u64;
for byte in input {
res = (res << 8) + *byte as u64;
}
Ok((&b""[..], res))
}
/// Read the entire slice as a little endian unsigned integer, up to 8 bytes
#[inline]
pub fn le_var_u64<'a, E: ParseError<&'a [u8]>>(input: &'a [u8]) -> IResult<&'a [u8], u64, E> {
if input.is_empty() {
return Err(nom::Err::Incomplete(Needed::new(1)));
}
if input.len() > 8 {
return Err(nom::Err::Error(make_error(input, ErrorKind::TooLarge)));
}
let mut res = 0u64;
for byte in input.iter().rev() {
res = (res << 8) + *byte as u64;
}
Ok((&b""[..], res))
}
/// Read a slice as a big-endian value.
#[inline]
pub fn parse_hex_to_u64<S>(i: &[u8], size: S) -> IResult<&[u8], u64>
where
S: ToUsize + Copy,
{
map_parser(take(size.to_usize()), be_var_u64)(i)
}
/// Apply combinator, automatically converts between errors if the underlying type supports it
pub fn upgrade_error<I, O, E1: ParseError<I>, E2: ParseError<I>, F>(
mut f: F,
) -> impl FnMut(I) -> IResult<I, O, E2>
where
F: FnMut(I) -> IResult<I, O, E1>,
E2: From<E1>,
{
move |i| f(i).map_err(nom::Err::convert)
}
/// Create a combinator that returns the provided value, and input unchanged
pub fn pure<I, O, E: ParseError<I>>(val: O) -> impl Fn(I) -> IResult<I, O, E>
where
O: Clone,
{
move |input: I| Ok((input, val.clone()))
}
/// Return a closure that takes `len` bytes from input, and applies `parser`.
pub fn flat_take<I, C, O, E: ParseError<I>, F>(
len: C,
mut parser: F,
) -> impl FnMut(I) -> IResult<I, O, E>
where
I: InputTake + InputLength + InputIter,
C: ToUsize + Copy,
F: Parser<I, O, E>,
{
// Note: this is the same as `map_parser(take(len), parser)`
move |input: I| {
let (input, o1) = take(len.to_usize())(input)?;
let (_, o2) = parser.parse(o1)?;
Ok((input, o2))
}
}
/// Take `len` bytes from `input`, and apply `parser`.
pub fn flat_takec<I, O, E: ParseError<I>, C, F>(input: I, len: C, parser: F) -> IResult<I, O, E>
where
C: ToUsize + Copy,
F: Parser<I, O, E>,
I: InputTake + InputLength + InputIter,
O: InputLength,
{
flat_take(len, parser)(input)
}
/// Helper macro for nom parsers: run first parser if condition is true, else second parser
pub fn cond_else<I, O, E: ParseError<I>, C, F, G>(
cond: C,
mut first: F,
mut second: G,
) -> impl FnMut(I) -> IResult<I, O, E>
where
C: Fn() -> bool,
F: Parser<I, O, E>,
G: Parser<I, O, E>,
{
move |input: I| {
if cond() {
first.parse(input)
} else {
second.parse(input)
}
}
}
/// Align input value to the next multiple of n bytes
/// Valid only if n is a power of 2
pub const fn align_n2(x: usize, n: usize) -> usize {
(x + (n - 1)) & !(n - 1)
}
/// Align input value to the next multiple of 4 bytes
pub const fn align32(x: usize) -> usize {
(x + 3) & !3
}
#[cfg(test)]
mod tests {
use super::{align32, be_var_u64, cond_else, flat_take, pure};
use nom::bytes::streaming::take;
use nom::number::streaming::{be_u16, be_u32, be_u8};
use nom::{Err, IResult, Needed};
#[test]
fn test_be_var_u64() {
let res: IResult<&[u8], u64> = be_var_u64(b"\x12\x34\x56");
let (_, v) = res.expect("be_var_u64 failed");
assert_eq!(v, 0x123456);
}
#[test]
fn test_flat_take() {
let input = &[0x00, 0x01, 0xff];
// read first 2 bytes and use correct combinator: OK
let res: IResult<&[u8], u16> = flat_take(2u8, be_u16)(input);
assert_eq!(res, Ok((&input[2..], 0x0001)));
// read 3 bytes and use 2: OK (some input is just lost)
let res: IResult<&[u8], u16> = flat_take(3u8, be_u16)(input);
assert_eq!(res, Ok((&b""[..], 0x0001)));
// read 2 bytes and a combinator requiring more bytes
let res: IResult<&[u8], u32> = flat_take(2u8, be_u32)(input);
assert_eq!(res, Err(Err::Incomplete(Needed::new(2))));
}
#[test]
fn test_flat_take_str() {
let input = "abcdef";
// read first 2 bytes and use correct combinator: OK
let res: IResult<&str, &str> = flat_take(2u8, take(2u8))(input);
assert_eq!(res, Ok(("cdef", "ab")));
// read 3 bytes and use 2: OK (some input is just lost)
let res: IResult<&str, &str> = flat_take(3u8, take(2u8))(input);
assert_eq!(res, Ok(("def", "ab")));
// read 2 bytes and a use combinator requiring more bytes
let res: IResult<&str, &str> = flat_take(2u8, take(4u8))(input);
assert_eq!(res, Err(Err::Incomplete(Needed::Unknown)));
}
#[test]
fn test_cond_else() {
let input = &[0x01][..];
let empty = &b""[..];
let a = 1;
fn parse_u8(i: &[u8]) -> IResult<&[u8], u8> {
be_u8(i)
}
assert_eq!(
cond_else(|| a == 1, parse_u8, pure(0x02))(input),
Ok((empty, 0x01))
);
assert_eq!(
cond_else(|| a == 1, parse_u8, pure(0x02))(input),
Ok((empty, 0x01))
);
assert_eq!(
cond_else(|| a == 2, parse_u8, pure(0x02))(input),
Ok((input, 0x02))
);
assert_eq!(
cond_else(|| a == 1, pure(0x02), parse_u8)(input),
Ok((input, 0x02))
);
let res: IResult<&[u8], u8> = cond_else(|| a == 1, parse_u8, parse_u8)(input);
assert_eq!(res, Ok((empty, 0x01)));
}
#[test]
fn test_align32() {
assert_eq!(align32(3), 4);
assert_eq!(align32(4), 4);
assert_eq!(align32(5), 8);
assert_eq!(align32(5usize), 8);
}
}