blob: 8658813896e935845970c0c9b5fd6fb9831a80c4 [file] [log] [blame]
use crate::time::driver::{Handle, TimerEntry};
use crate::time::{error::Error, Duration, Instant};
use pin_project_lite::pin_project;
use std::future::Future;
use std::pin::Pin;
use std::task::{self, Poll};
/// Waits until `deadline` is reached.
///
/// No work is performed while awaiting on the sleep future to complete. `Sleep`
/// operates at millisecond granularity and should not be used for tasks that
/// require high-resolution timers.
///
/// # Cancellation
///
/// Canceling a sleep instance is done by dropping the returned future. No additional
/// cleanup work is required.
// Alias for old name in 0.x
#[cfg_attr(docsrs, doc(alias = "delay_until"))]
pub fn sleep_until(deadline: Instant) -> Sleep {
Sleep::new_timeout(deadline)
}
/// Waits until `duration` has elapsed.
///
/// Equivalent to `sleep_until(Instant::now() + duration)`. An asynchronous
/// analog to `std::thread::sleep`.
///
/// No work is performed while awaiting on the sleep future to complete. `Sleep`
/// operates at millisecond granularity and should not be used for tasks that
/// require high-resolution timers.
///
/// To run something regularly on a schedule, see [`interval`].
///
/// The maximum duration for a sleep is 68719476734 milliseconds (approximately 2.2 years).
///
/// # Cancellation
///
/// Canceling a sleep instance is done by dropping the returned future. No additional
/// cleanup work is required.
///
/// # Examples
///
/// Wait 100ms and print "100 ms have elapsed".
///
/// ```
/// use tokio::time::{sleep, Duration};
///
/// #[tokio::main]
/// async fn main() {
/// sleep(Duration::from_millis(100)).await;
/// println!("100 ms have elapsed");
/// }
/// ```
///
/// [`interval`]: crate::time::interval()
// Alias for old name in 0.x
#[cfg_attr(docsrs, doc(alias = "delay_for"))]
pub fn sleep(duration: Duration) -> Sleep {
match Instant::now().checked_add(duration) {
Some(deadline) => sleep_until(deadline),
None => sleep_until(Instant::far_future()),
}
}
pin_project! {
/// Future returned by [`sleep`](sleep) and [`sleep_until`](sleep_until).
///
/// This type does not implement the `Unpin` trait, which means that if you
/// use it with [`select!`] or by calling `poll`, you have to pin it first.
/// If you use it with `.await`, this does not apply.
///
/// # Examples
///
/// Wait 100ms and print "100 ms have elapsed".
///
/// ```
/// use tokio::time::{sleep, Duration};
///
/// #[tokio::main]
/// async fn main() {
/// sleep(Duration::from_millis(100)).await;
/// println!("100 ms have elapsed");
/// }
/// ```
///
/// Use with [`select!`]. Pinning the `Sleep` with [`tokio::pin!`] is
/// necessary when the same `Sleep` is selected on multiple times.
/// ```no_run
/// use tokio::time::{self, Duration, Instant};
///
/// #[tokio::main]
/// async fn main() {
/// let sleep = time::sleep(Duration::from_millis(10));
/// tokio::pin!(sleep);
///
/// loop {
/// tokio::select! {
/// () = &mut sleep => {
/// println!("timer elapsed");
/// sleep.as_mut().reset(Instant::now() + Duration::from_millis(50));
/// },
/// }
/// }
/// }
/// ```
/// Use in a struct with boxing. By pinning the `Sleep` with a `Box`, the
/// `HasSleep` struct implements `Unpin`, even though `Sleep` does not.
/// ```
/// use std::future::Future;
/// use std::pin::Pin;
/// use std::task::{Context, Poll};
/// use tokio::time::Sleep;
///
/// struct HasSleep {
/// sleep: Pin<Box<Sleep>>,
/// }
///
/// impl Future for HasSleep {
/// type Output = ();
///
/// fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<()> {
/// self.sleep.as_mut().poll(cx)
/// }
/// }
/// ```
/// Use in a struct with pin projection. This method avoids the `Box`, but
/// the `HasSleep` struct will not be `Unpin` as a consequence.
/// ```
/// use std::future::Future;
/// use std::pin::Pin;
/// use std::task::{Context, Poll};
/// use tokio::time::Sleep;
/// use pin_project_lite::pin_project;
///
/// pin_project! {
/// struct HasSleep {
/// #[pin]
/// sleep: Sleep,
/// }
/// }
///
/// impl Future for HasSleep {
/// type Output = ();
///
/// fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<()> {
/// self.project().sleep.poll(cx)
/// }
/// }
/// ```
///
/// [`select!`]: ../macro.select.html
/// [`tokio::pin!`]: ../macro.pin.html
// Alias for old name in 0.2
#[cfg_attr(docsrs, doc(alias = "Delay"))]
#[derive(Debug)]
#[must_use = "futures do nothing unless you `.await` or poll them"]
pub struct Sleep {
deadline: Instant,
// The link between the `Sleep` instance and the timer that drives it.
#[pin]
entry: TimerEntry,
}
}
impl Sleep {
pub(crate) fn new_timeout(deadline: Instant) -> Sleep {
let handle = Handle::current();
let entry = TimerEntry::new(&handle, deadline);
Sleep { deadline, entry }
}
pub(crate) fn far_future() -> Sleep {
Self::new_timeout(Instant::far_future())
}
/// Returns the instant at which the future will complete.
pub fn deadline(&self) -> Instant {
self.deadline
}
/// Returns `true` if `Sleep` has elapsed.
///
/// A `Sleep` instance is elapsed when the requested duration has elapsed.
pub fn is_elapsed(&self) -> bool {
self.entry.is_elapsed()
}
/// Resets the `Sleep` instance to a new deadline.
///
/// Calling this function allows changing the instant at which the `Sleep`
/// future completes without having to create new associated state.
///
/// This function can be called both before and after the future has
/// completed.
///
/// To call this method, you will usually combine the call with
/// [`Pin::as_mut`], which lets you call the method without consuming the
/// `Sleep` itself.
///
/// # Example
///
/// ```
/// use tokio::time::{Duration, Instant};
///
/// # #[tokio::main(flavor = "current_thread")]
/// # async fn main() {
/// let sleep = tokio::time::sleep(Duration::from_millis(10));
/// tokio::pin!(sleep);
///
/// sleep.as_mut().reset(Instant::now() + Duration::from_millis(20));
/// # }
/// ```
///
/// [`Pin::as_mut`]: fn@std::pin::Pin::as_mut
pub fn reset(self: Pin<&mut Self>, deadline: Instant) {
let me = self.project();
me.entry.reset(deadline);
*me.deadline = deadline;
}
fn poll_elapsed(self: Pin<&mut Self>, cx: &mut task::Context<'_>) -> Poll<Result<(), Error>> {
let me = self.project();
// Keep track of task budget
let coop = ready!(crate::coop::poll_proceed(cx));
me.entry.poll_elapsed(cx).map(move |r| {
coop.made_progress();
r
})
}
}
impl Future for Sleep {
type Output = ();
fn poll(mut self: Pin<&mut Self>, cx: &mut task::Context<'_>) -> Poll<Self::Output> {
// `poll_elapsed` can return an error in two cases:
//
// - AtCapacity: this is a pathological case where far too many
// sleep instances have been scheduled.
// - Shutdown: No timer has been setup, which is a mis-use error.
//
// Both cases are extremely rare, and pretty accurately fit into
// "logic errors", so we just panic in this case. A user couldn't
// really do much better if we passed the error onwards.
match ready!(self.as_mut().poll_elapsed(cx)) {
Ok(()) => Poll::Ready(()),
Err(e) => panic!("timer error: {}", e),
}
}
}