blob: b14487ac4cf0571c8a14299885d411d214cad669 [file] [log] [blame] [edit]
//! X.509 serial number
use core::{fmt::Display, marker::PhantomData};
use der::{
asn1::{self, Int},
DecodeValue, EncodeValue, ErrorKind, FixedTag, Header, Length, Reader, Result, Tag, ValueOrd,
Writer,
};
use crate::certificate::{Profile, Rfc5280};
/// [RFC 5280 Section 4.1.2.2.] Serial Number
///
/// The serial number MUST be a positive integer assigned by the CA to
/// each certificate. It MUST be unique for each certificate issued by a
/// given CA (i.e., the issuer name and serial number identify a unique
/// certificate). CAs MUST force the serialNumber to be a non-negative
/// integer.
///
/// Given the uniqueness requirements above, serial numbers can be
/// expected to contain long integers. Certificate users MUST be able to
/// handle serialNumber values up to 20 octets. Conforming CAs MUST NOT
/// use serialNumber values longer than 20 octets.
///
/// Note: Non-conforming CAs may issue certificates with serial numbers
/// that are negative or zero. Certificate users SHOULD be prepared to
/// gracefully handle such certificates.
#[derive(Clone, Debug, Eq, PartialEq, ValueOrd, PartialOrd, Ord)]
pub struct SerialNumber<P: Profile = Rfc5280> {
pub(crate) inner: Int,
_profile: PhantomData<P>,
}
impl<P: Profile> SerialNumber<P> {
/// Maximum length in bytes for a [`SerialNumber`]
pub const MAX_LEN: Length = Length::new(20);
/// See notes in `SerialNumber::new` and `SerialNumber::decode_value`.
pub(crate) const MAX_DECODE_LEN: Length = Length::new(21);
/// Create a new [`SerialNumber`] from a byte slice.
///
/// The byte slice **must** represent a positive integer.
pub fn new(bytes: &[u8]) -> Result<Self> {
let inner = asn1::Uint::new(bytes)?;
// The user might give us a 20 byte unsigned integer with a high MSB,
// which we'd then encode with 21 octets to preserve the sign bit.
// RFC 5280 is ambiguous about whether this is valid, so we limit
// `SerialNumber` *encodings* to 20 bytes or fewer while permitting
// `SerialNumber` *decodings* to have up to 21 bytes below.
if inner.value_len()? > Self::MAX_LEN {
return Err(ErrorKind::Overlength.into());
}
Ok(Self {
inner: inner.into(),
_profile: PhantomData,
})
}
/// Borrow the inner byte slice which contains the least significant bytes
/// of a big endian integer value with all leading zeros stripped.
pub fn as_bytes(&self) -> &[u8] {
self.inner.as_bytes()
}
}
impl<P: Profile> EncodeValue for SerialNumber<P> {
fn value_len(&self) -> Result<Length> {
self.inner.value_len()
}
fn encode_value(&self, writer: &mut impl Writer) -> Result<()> {
self.inner.encode_value(writer)
}
}
impl<'a, P: Profile> DecodeValue<'a> for SerialNumber<P> {
fn decode_value<R: Reader<'a>>(reader: &mut R, header: Header) -> Result<Self> {
let inner = Int::decode_value(reader, header)?;
let serial = Self {
inner,
_profile: PhantomData,
};
P::check_serial_number(&serial)?;
Ok(serial)
}
}
impl<P: Profile> FixedTag for SerialNumber<P> {
const TAG: Tag = <Int as FixedTag>::TAG;
}
impl Display for SerialNumber {
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
let mut iter = self.as_bytes().iter().peekable();
while let Some(byte) = iter.next() {
match iter.peek() {
Some(_) => write!(f, "{:02X}:", byte)?,
None => write!(f, "{:02X}", byte)?,
}
}
Ok(())
}
}
macro_rules! impl_from {
($source:ty) => {
impl From<$source> for SerialNumber {
fn from(inner: $source) -> SerialNumber {
let serial_number = &inner.to_be_bytes()[..];
let serial_number = asn1::Uint::new(serial_number).unwrap();
// This could only fail if the big endian representation was to be more than 20
// bytes long. Because it's only implemented for up to u64 / usize (8 bytes).
SerialNumber::new(serial_number.as_bytes()).unwrap()
}
}
};
}
impl_from!(u8);
impl_from!(u16);
impl_from!(u32);
impl_from!(u64);
impl_from!(usize);
// Implement by hand because the derive would create invalid values.
// Use the constructor to create a valid value.
#[cfg(feature = "arbitrary")]
impl<'a, P: Profile> arbitrary::Arbitrary<'a> for SerialNumber<P> {
fn arbitrary(u: &mut arbitrary::Unstructured<'a>) -> arbitrary::Result<Self> {
let len = u.int_in_range(0u32..=Self::MAX_LEN.into())?;
Self::new(u.bytes(len as usize)?).map_err(|_| arbitrary::Error::IncorrectFormat)
}
fn size_hint(depth: usize) -> (usize, Option<usize>) {
arbitrary::size_hint::and(u32::size_hint(depth), (0, None))
}
}
#[cfg(test)]
mod tests {
use alloc::string::ToString;
use super::*;
#[test]
fn serial_number_invariants() {
// Creating a new serial with an oversized encoding (due to high MSB) fails.
{
let too_big = [0x80; 20];
assert!(SerialNumber::<Rfc5280>::new(&too_big).is_err());
}
// Creating a new serial with the maximum encoding succeeds.
{
let just_enough = [
0x7F, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
];
assert!(SerialNumber::<Rfc5280>::new(&just_enough).is_ok());
}
}
#[test]
fn serial_number_display() {
{
let sn = SerialNumber::new(&[0x11, 0x22, 0x33]).unwrap();
assert_eq!(sn.to_string(), "11:22:33")
}
{
let sn = SerialNumber::new(&[0xAA, 0xBB, 0xCC, 0x01, 0x10, 0x00, 0x11]).unwrap();
// We force the user's serial to be positive if they give us a negative one.
assert_eq!(sn.to_string(), "00:AA:BB:CC:01:10:00:11")
}
{
let sn = SerialNumber::new(&[0x00, 0x00, 0x01]).unwrap();
// Leading zeroes are ignored, due to canonicalization.
assert_eq!(sn.to_string(), "01")
}
}
}