| // Copyright 2019 The Fuchsia Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| //! Byte order-aware numeric primitives. |
| //! |
| //! This module contains equivalents of the native multi-byte integer types with |
| //! no alignment requirement and supporting byte order conversions. |
| //! |
| //! For each native multi-byte integer type - `u16`, `i16`, `u32`, etc - an |
| //! equivalent type is defined by this module - [`U16`], [`I16`], [`U32`], etc. |
| //! Unlike their native counterparts, these types have alignment 1, and take a |
| //! type parameter specifying the byte order in which the bytes are stored in |
| //! memory. Each type implements the [`FromBytes`], [`AsBytes`], and |
| //! [`Unaligned`] traits. |
| //! |
| //! These two properties, taken together, make these types very useful for |
| //! defining data structures whose memory layout matches a wire format such as |
| //! that of a network protocol or a file format. Such formats often have |
| //! multi-byte values at offsets that do not respect the alignment requirements |
| //! of the equivalent native types, and stored in a byte order not necessarily |
| //! the same as that of the target platform. |
| //! |
| //! # Example |
| //! |
| //! One use of these types is for representing network packet formats, such as |
| //! UDP: |
| //! |
| //! ```edition2018 |
| //! # use zerocopy::*; |
| //! use ::byteorder::NetworkEndian; |
| //! |
| //! #[derive(FromBytes, AsBytes, Unaligned)] |
| //! #[repr(C)] |
| //! struct UdpHeader { |
| //! src_port: U16<NetworkEndian>, |
| //! dst_port: U16<NetworkEndian>, |
| //! length: U16<NetworkEndian>, |
| //! checksum: U16<NetworkEndian>, |
| //! } |
| //! |
| //! struct UdpPacket<B: ByteSlice> { |
| //! header: LayoutVerified<B, UdpHeader>, |
| //! body: B, |
| //! } |
| //! |
| //! impl<B: ByteSlice> UdpPacket<B> { |
| //! fn parse(bytes: B) -> Option<UdpPacket<B>> { |
| //! let (header, body) = LayoutVerified::new_from_prefix(bytes)?; |
| //! Some(UdpPacket { header, body }) |
| //! } |
| //! |
| //! fn src_port(&self) -> u16 { |
| //! self.header.src_port.get() |
| //! } |
| //! |
| //! // more getters... |
| //! } |
| //! ``` |
| |
| use core::convert::{TryFrom, TryInto}; |
| use core::fmt::{self, Binary, Debug, Display, Formatter, LowerHex, Octal, UpperHex}; |
| use core::marker::PhantomData; |
| use core::num::TryFromIntError; |
| |
| use zerocopy_derive::*; |
| |
| use crate::AsBytes; |
| // This allows the custom derives to work. See the comment on this module for an |
| // explanation. |
| use crate::zerocopy; |
| |
| // NOTE: We don't reexport `WriteBytesExt` or `ReadBytesExt` because those are |
| // only available with the `std` feature enabled, and zerocopy is `no_std` by |
| // default. |
| pub use byteorder::{BigEndian, ByteOrder, LittleEndian, NativeEndian, NetworkEndian, BE, LE}; |
| |
| macro_rules! impl_fmt_trait { |
| ($name:ident, $native:ident, $trait:ident) => { |
| impl<O: ByteOrder> $trait for $name<O> { |
| fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result { |
| $trait::fmt(&self.get(), f) |
| } |
| } |
| }; |
| } |
| |
| macro_rules! doc_comment { |
| ($x:expr, $($tt:tt)*) => { |
| #[doc = $x] |
| $($tt)* |
| }; |
| } |
| |
| macro_rules! define_max_value_constant { |
| ($name:ident, $bytes:expr, unsigned) => { |
| /// The maximum value. |
| /// |
| /// This constant should be preferred to constructing a new value using |
| /// `new`, as `new` may perform an endianness swap depending on the |
| /// endianness `O` and the endianness of the platform. |
| pub const MAX_VALUE: $name<O> = $name([0xFFu8; $bytes], PhantomData); |
| }; |
| ($name:ident, $bytes:expr, signed) => { |
| // We don't provide maximum and minimum value constants for signed |
| // values because there's no way to do it generically - it would require |
| // a different value depending on the value of the ByteOrder type |
| // parameter. Currently, one workaround would be to provide |
| // implementations for concrete implementations of that trait. In the |
| // long term, if we are ever able to make the `new` constructor a const |
| // fn, we could use that instead. |
| }; |
| } |
| |
| macro_rules! define_type { |
| ($article:ident, |
| $name:ident, |
| $native:ident, |
| $bits:expr, |
| $bytes:expr, |
| $read_method:ident, |
| $write_method:ident, |
| $sign:ident, |
| [$($larger_native:ty),*], |
| [$($larger_byteorder:ident),*]) => { |
| doc_comment! { |
| concat!("A ", stringify!($bits), "-bit ", stringify!($sign), " integer |
| stored in `O` byte order. |
| |
| `", stringify!($name), "` is like the native `", stringify!($native), "` type with |
| two major differences: First, it has no alignment requirement (its alignment is 1). |
| Second, the endianness of its memory layout is given by the type parameter `O`. |
| |
| ", stringify!($article), " `", stringify!($name), "` can be constructed using |
| the [`new`] method, and its contained value can be obtained as a native |
| `",stringify!($native), "` using the [`get`] method, or updated in place with |
| the [`set`] method. In all cases, if the endianness `O` is not the same as the |
| endianness of the current platform, an endianness swap will be performed in |
| order to uphold the invariants that a) the layout of `", stringify!($name), "` |
| has endianness `O` and that, b) the layout of `", stringify!($native), "` has |
| the platform's native endianness. |
| |
| `", stringify!($name), "` implements [`FromBytes`], [`AsBytes`], and [`Unaligned`], |
| making it useful for parsing and serialization. See the module documentation for an |
| example of how it can be used for parsing UDP packets. |
| |
| [`new`]: crate::byteorder::", stringify!($name), "::new |
| [`get`]: crate::byteorder::", stringify!($name), "::get |
| [`set`]: crate::byteorder::", stringify!($name), "::set |
| [`FromBytes`]: crate::FromBytes |
| [`AsBytes`]: crate::AsBytes |
| [`Unaligned`]: crate::Unaligned"), |
| #[derive(FromBytes, Unaligned, Copy, Clone, Eq, PartialEq, Hash)] |
| #[repr(transparent)] |
| pub struct $name<O>([u8; $bytes], PhantomData<O>); |
| } |
| |
| impl<O> Default for $name<O> { |
| fn default() -> $name<O> { |
| $name::ZERO |
| } |
| } |
| |
| // TODO(joshlf): Replace this with #[derive(AsBytes)] once that derive |
| // supports type parameters. |
| unsafe impl<O: ByteOrder> AsBytes for $name<O> { |
| fn only_derive_is_allowed_to_implement_this_trait() |
| where |
| Self: Sized, |
| { |
| } |
| } |
| |
| impl<O> $name<O> { |
| /// The value zero. |
| /// |
| /// This constant should be preferred to constructing a new value |
| /// using `new`, as `new` may perform an endianness swap depending |
| /// on the endianness and platform. |
| pub const ZERO: $name<O> = $name([0u8; $bytes], PhantomData); |
| |
| define_max_value_constant!($name, $bytes, $sign); |
| |
| /// Constructs a new value from bytes which are already in the |
| /// endianness `O`. |
| pub const fn from_bytes(bytes: [u8; $bytes]) -> $name<O> { |
| $name(bytes, PhantomData) |
| } |
| } |
| |
| impl<O: ByteOrder> $name<O> { |
| // TODO(joshlf): Make these const fns if the ByteOrder methods ever |
| // become const fns. |
| |
| /// Constructs a new value, possibly performing an endianness swap |
| /// to guarantee that the returned value has endianness `O`. |
| pub fn new(n: $native) -> $name<O> { |
| let mut out = $name::default(); |
| O::$write_method(&mut out.0[..], n); |
| out |
| } |
| |
| /// Returns the value as a primitive type, possibly performing an |
| /// endianness swap to guarantee that the return value has the |
| /// endianness of the native platform. |
| pub fn get(self) -> $native { |
| O::$read_method(&self.0[..]) |
| } |
| |
| /// Updates the value in place as a primitive type, possibly |
| /// performing an endianness swap to guarantee that the stored value |
| /// has the endianness `O`. |
| pub fn set(&mut self, n: $native) { |
| O::$write_method(&mut self.0[..], n); |
| } |
| } |
| |
| // NOTE: The reasoning behind which traits to implement here is to only |
| // implement traits which won't cause inference issues. Notably, |
| // comparison traits like PartialEq and PartialOrd tend to cause |
| // inference issues. |
| |
| impl<O: ByteOrder> From<$name<O>> for [u8; $bytes] { |
| fn from(x: $name<O>) -> [u8; $bytes] { |
| x.0 |
| } |
| } |
| |
| impl<O: ByteOrder> From<[u8; $bytes]> for $name<O> { |
| fn from(bytes: [u8; $bytes]) -> $name<O> { |
| $name(bytes, PhantomData) |
| } |
| } |
| |
| impl<O: ByteOrder> From<$name<O>> for $native { |
| fn from(x: $name<O>) -> $native { |
| x.get() |
| } |
| } |
| |
| impl<O: ByteOrder> From<$native> for $name<O> { |
| fn from(x: $native) -> $name<O> { |
| $name::new(x) |
| } |
| } |
| |
| $( |
| impl<O: ByteOrder> From<$name<O>> for $larger_native { |
| fn from(x: $name<O>) -> $larger_native { |
| x.get().into() |
| } |
| } |
| |
| impl<O: ByteOrder> TryFrom<$larger_native> for $name<O> { |
| type Error = TryFromIntError; |
| fn try_from(x: $larger_native) -> Result<$name<O>, TryFromIntError> { |
| $native::try_from(x).map($name::new) |
| } |
| } |
| )* |
| |
| $( |
| impl<O: ByteOrder, P: ByteOrder> From<$name<O>> for $larger_byteorder<P> { |
| fn from(x: $name<O>) -> $larger_byteorder<P> { |
| $larger_byteorder::new(x.get().into()) |
| } |
| } |
| |
| impl<O: ByteOrder, P: ByteOrder> TryFrom<$larger_byteorder<P>> for $name<O> { |
| type Error = TryFromIntError; |
| fn try_from(x: $larger_byteorder<P>) -> Result<$name<O>, TryFromIntError> { |
| x.get().try_into().map($name::new) |
| } |
| } |
| )* |
| |
| impl<O: ByteOrder> AsRef<[u8; $bytes]> for $name<O> { |
| fn as_ref(&self) -> &[u8; $bytes] { |
| &self.0 |
| } |
| } |
| |
| impl<O: ByteOrder> AsMut<[u8; $bytes]> for $name<O> { |
| fn as_mut(&mut self) -> &mut [u8; $bytes] { |
| &mut self.0 |
| } |
| } |
| |
| impl<O: ByteOrder> PartialEq<$name<O>> for [u8; $bytes] { |
| fn eq(&self, other: &$name<O>) -> bool { |
| self.eq(&other.0) |
| } |
| } |
| |
| impl<O: ByteOrder> PartialEq<[u8; $bytes]> for $name<O> { |
| fn eq(&self, other: &[u8; $bytes]) -> bool { |
| self.0.eq(other) |
| } |
| } |
| |
| impl_fmt_trait!($name, $native, Display); |
| impl_fmt_trait!($name, $native, Octal); |
| impl_fmt_trait!($name, $native, LowerHex); |
| impl_fmt_trait!($name, $native, UpperHex); |
| impl_fmt_trait!($name, $native, Binary); |
| |
| impl<O: ByteOrder> Debug for $name<O> { |
| fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result { |
| // This results in a format like "U16(42)" |
| write!(f, concat!(stringify!($name), "({})"), self.get()) |
| } |
| } |
| }; |
| } |
| |
| define_type!( |
| A, |
| U16, |
| u16, |
| 16, |
| 2, |
| read_u16, |
| write_u16, |
| unsigned, |
| [u32, u64, u128, usize], |
| [U32, U64, U128] |
| ); |
| define_type!(A, U32, u32, 32, 4, read_u32, write_u32, unsigned, [u64, u128], [U64, U128]); |
| define_type!(A, U64, u64, 64, 8, read_u64, write_u64, unsigned, [u128], [U128]); |
| define_type!(A, U128, u128, 128, 16, read_u128, write_u128, unsigned, [], []); |
| define_type!( |
| An, |
| I16, |
| i16, |
| 16, |
| 2, |
| read_i16, |
| write_i16, |
| signed, |
| [i32, i64, i128, isize], |
| [I32, I64, I128] |
| ); |
| define_type!(An, I32, i32, 32, 4, read_i32, write_i32, signed, [i64, i128], [I64, I128]); |
| define_type!(An, I64, i64, 64, 8, read_i64, write_i64, signed, [i128], [I128]); |
| define_type!(An, I128, i128, 128, 16, read_i128, write_i128, signed, [], []); |
| |
| #[cfg(test)] |
| mod tests { |
| use byteorder::NativeEndian; |
| |
| use super::*; |
| use crate::{AsBytes, FromBytes, Unaligned}; |
| |
| // A native integer type (u16, i32, etc) |
| trait Native: FromBytes + AsBytes + Copy + Eq + Debug { |
| const ZERO: Self; |
| const MAX_VALUE: Self; |
| |
| fn rand() -> Self; |
| } |
| |
| trait ByteArray: |
| FromBytes + AsBytes + Copy + AsRef<[u8]> + AsMut<[u8]> + Debug + Default + Eq |
| { |
| /// Invert the order of the bytes in the array. |
| fn invert(self) -> Self; |
| } |
| |
| trait ByteOrderType: FromBytes + AsBytes + Unaligned + Copy + Eq + Debug { |
| type Native: Native; |
| type ByteArray: ByteArray; |
| |
| const ZERO: Self; |
| |
| fn new(native: Self::Native) -> Self; |
| fn get(self) -> Self::Native; |
| fn set(&mut self, native: Self::Native); |
| fn from_bytes(bytes: Self::ByteArray) -> Self; |
| fn into_bytes(self) -> Self::ByteArray; |
| } |
| |
| trait ByteOrderTypeUnsigned: ByteOrderType { |
| const MAX_VALUE: Self; |
| } |
| |
| macro_rules! impl_byte_array { |
| ($bytes:expr) => { |
| impl ByteArray for [u8; $bytes] { |
| fn invert(mut self) -> [u8; $bytes] { |
| self.reverse(); |
| self |
| } |
| } |
| }; |
| } |
| |
| impl_byte_array!(2); |
| impl_byte_array!(4); |
| impl_byte_array!(8); |
| impl_byte_array!(16); |
| |
| macro_rules! impl_byte_order_type_unsigned { |
| ($name:ident, unsigned) => { |
| impl<O: ByteOrder> ByteOrderTypeUnsigned for $name<O> { |
| const MAX_VALUE: $name<O> = $name::MAX_VALUE; |
| } |
| }; |
| ($name:ident, signed) => {}; |
| } |
| |
| macro_rules! impl_traits { |
| ($name:ident, $native:ident, $bytes:expr, $sign:ident) => { |
| impl Native for $native { |
| const ZERO: $native = 0; |
| const MAX_VALUE: $native = ::core::$native::MAX; |
| |
| fn rand() -> $native { |
| rand::random() |
| } |
| } |
| |
| impl<O: ByteOrder> ByteOrderType for $name<O> { |
| type Native = $native; |
| type ByteArray = [u8; $bytes]; |
| |
| const ZERO: $name<O> = $name::ZERO; |
| |
| fn new(native: $native) -> $name<O> { |
| $name::new(native) |
| } |
| |
| fn get(self) -> $native { |
| $name::get(self) |
| } |
| |
| fn set(&mut self, native: $native) { |
| $name::set(self, native) |
| } |
| |
| fn from_bytes(bytes: [u8; $bytes]) -> $name<O> { |
| $name::from(bytes) |
| } |
| |
| fn into_bytes(self) -> [u8; $bytes] { |
| <[u8; $bytes]>::from(self) |
| } |
| } |
| |
| impl_byte_order_type_unsigned!($name, $sign); |
| }; |
| } |
| |
| impl_traits!(U16, u16, 2, unsigned); |
| impl_traits!(U32, u32, 4, unsigned); |
| impl_traits!(U64, u64, 8, unsigned); |
| impl_traits!(U128, u128, 16, unsigned); |
| impl_traits!(I16, i16, 2, signed); |
| impl_traits!(I32, i32, 4, signed); |
| impl_traits!(I64, i64, 8, signed); |
| impl_traits!(I128, i128, 16, signed); |
| |
| macro_rules! call_for_all_types { |
| ($fn:ident, $byteorder:ident) => { |
| $fn::<U16<$byteorder>>(); |
| $fn::<U32<$byteorder>>(); |
| $fn::<U64<$byteorder>>(); |
| $fn::<U128<$byteorder>>(); |
| $fn::<I16<$byteorder>>(); |
| $fn::<I32<$byteorder>>(); |
| $fn::<I64<$byteorder>>(); |
| $fn::<I128<$byteorder>>(); |
| }; |
| } |
| |
| macro_rules! call_for_unsigned_types { |
| ($fn:ident, $byteorder:ident) => { |
| $fn::<U16<$byteorder>>(); |
| $fn::<U32<$byteorder>>(); |
| $fn::<U64<$byteorder>>(); |
| $fn::<U128<$byteorder>>(); |
| }; |
| } |
| |
| #[cfg(target_endian = "big")] |
| type NonNativeEndian = byteorder::LittleEndian; |
| #[cfg(target_endian = "little")] |
| type NonNativeEndian = byteorder::BigEndian; |
| |
| #[test] |
| fn test_zero() { |
| fn test_zero<T: ByteOrderType>() { |
| assert_eq!(T::ZERO.get(), T::Native::ZERO); |
| } |
| |
| call_for_all_types!(test_zero, NativeEndian); |
| call_for_all_types!(test_zero, NonNativeEndian); |
| } |
| |
| #[test] |
| fn test_max_value() { |
| fn test_max_value<T: ByteOrderTypeUnsigned>() { |
| assert_eq!(T::MAX_VALUE.get(), T::Native::MAX_VALUE); |
| } |
| |
| call_for_unsigned_types!(test_max_value, NativeEndian); |
| call_for_unsigned_types!(test_max_value, NonNativeEndian); |
| } |
| |
| #[test] |
| fn test_native_endian() { |
| fn test_native_endian<T: ByteOrderType>() { |
| for _ in 0..1024 { |
| let native = T::Native::rand(); |
| let mut bytes = T::ByteArray::default(); |
| bytes.as_bytes_mut().copy_from_slice(native.as_bytes()); |
| let mut from_native = T::new(native); |
| let from_bytes = T::from_bytes(bytes); |
| assert_eq!(from_native, from_bytes); |
| assert_eq!(from_native.get(), native); |
| assert_eq!(from_bytes.get(), native); |
| assert_eq!(from_native.into_bytes(), bytes); |
| assert_eq!(from_bytes.into_bytes(), bytes); |
| |
| let updated = T::Native::rand(); |
| from_native.set(updated); |
| assert_eq!(from_native.get(), updated); |
| } |
| } |
| |
| call_for_all_types!(test_native_endian, NativeEndian); |
| } |
| |
| #[test] |
| fn test_non_native_endian() { |
| fn test_non_native_endian<T: ByteOrderType>() { |
| for _ in 0..1024 { |
| let native = T::Native::rand(); |
| let mut bytes = T::ByteArray::default(); |
| bytes.as_bytes_mut().copy_from_slice(native.as_bytes()); |
| bytes = bytes.invert(); |
| let mut from_native = T::new(native); |
| let from_bytes = T::from_bytes(bytes); |
| assert_eq!(from_native, from_bytes); |
| assert_eq!(from_native.get(), native); |
| assert_eq!(from_bytes.get(), native); |
| assert_eq!(from_native.into_bytes(), bytes); |
| assert_eq!(from_bytes.into_bytes(), bytes); |
| |
| let updated = T::Native::rand(); |
| from_native.set(updated); |
| assert_eq!(from_native.get(), updated); |
| } |
| } |
| |
| call_for_all_types!(test_non_native_endian, NonNativeEndian); |
| } |
| } |