Ram Muthiah | d4fd887 | 2024-08-02 17:44:46 +0100 | [diff] [blame] | 1 | #![allow(unused_imports)] |
| 2 | |
| 3 | use alloc::vec::Vec; |
| 4 | use alloc::{format, vec}; |
| 5 | |
| 6 | use crate::bitstream::BitStreamReader; |
| 7 | use crate::constants::{ |
| 8 | DEFLATE_BLOCKTYPE_DYNAMIC_HUFFMAN, DEFLATE_BLOCKTYPE_RESERVED, DEFLATE_BLOCKTYPE_STATIC, |
| 9 | DEFLATE_BLOCKTYPE_UNCOMPRESSED, DEFLATE_MAX_CODEWORD_LENGTH, |
| 10 | DEFLATE_MAX_LITLEN_CODEWORD_LENGTH, DEFLATE_MAX_NUM_SYMS, DEFLATE_MAX_OFFSET_CODEWORD_LENGTH, |
| 11 | DEFLATE_MAX_PRE_CODEWORD_LEN, DEFLATE_NUM_LITLEN_SYMS, DEFLATE_NUM_OFFSET_SYMS, |
| 12 | DEFLATE_NUM_PRECODE_SYMS, DEFLATE_PRECODE_LENS_PERMUTATION, DELFATE_MAX_LENS_OVERRUN, |
| 13 | FASTCOPY_BYTES, FASTLOOP_MAX_BYTES_WRITTEN, HUFFDEC_END_OF_BLOCK, HUFFDEC_EXCEPTIONAL, |
| 14 | HUFFDEC_LITERAL, HUFFDEC_SUITABLE_POINTER, LITLEN_DECODE_BITS, LITLEN_DECODE_RESULTS, |
| 15 | LITLEN_ENOUGH, LITLEN_TABLE_BITS, OFFSET_DECODE_RESULTS, OFFSET_ENOUGH, OFFSET_TABLEBITS, |
| 16 | PRECODE_DECODE_RESULTS, PRECODE_ENOUGH, PRECODE_TABLE_BITS |
| 17 | }; |
| 18 | use crate::errors::{DecodeErrorStatus, InflateDecodeErrors}; |
| 19 | #[cfg(feature = "gzip")] |
| 20 | use crate::gzip_constants::{ |
| 21 | GZIP_CM_DEFLATE, GZIP_FCOMMENT, GZIP_FEXTRA, GZIP_FHCRC, GZIP_FNAME, GZIP_FOOTER_SIZE, |
| 22 | GZIP_FRESERVED, GZIP_ID1, GZIP_ID2 |
| 23 | }; |
| 24 | use crate::utils::{copy_rep_matches, fixed_copy_within, make_decode_table_entry}; |
| 25 | |
| 26 | struct DeflateHeaderTables |
| 27 | { |
| 28 | litlen_decode_table: [u32; LITLEN_ENOUGH], |
| 29 | offset_decode_table: [u32; OFFSET_ENOUGH] |
| 30 | } |
| 31 | |
| 32 | impl Default for DeflateHeaderTables |
| 33 | { |
| 34 | fn default() -> Self |
| 35 | { |
| 36 | DeflateHeaderTables { |
| 37 | litlen_decode_table: [0; LITLEN_ENOUGH], |
| 38 | offset_decode_table: [0; OFFSET_ENOUGH] |
| 39 | } |
| 40 | } |
| 41 | } |
| 42 | |
| 43 | /// Options that can influence decompression |
| 44 | /// in Deflate/Zlib/Gzip |
| 45 | /// |
| 46 | /// To use them, pass a customized options to |
| 47 | /// the deflate decoder. |
| 48 | #[derive(Copy, Clone)] |
| 49 | pub struct DeflateOptions |
| 50 | { |
| 51 | limit: usize, |
| 52 | confirm_checksum: bool, |
| 53 | size_hint: usize |
| 54 | } |
| 55 | |
| 56 | impl Default for DeflateOptions |
| 57 | { |
| 58 | fn default() -> Self |
| 59 | { |
| 60 | DeflateOptions { |
| 61 | limit: 1 << 30, |
| 62 | confirm_checksum: true, |
| 63 | size_hint: 37000 |
| 64 | } |
| 65 | } |
| 66 | } |
| 67 | |
| 68 | impl DeflateOptions |
| 69 | { |
| 70 | /// Get deflate/zlib limit option |
| 71 | /// |
| 72 | /// The decoder won't extend the inbuilt limit and will |
| 73 | /// return an error if the limit is exceeded |
| 74 | /// |
| 75 | /// # Returns |
| 76 | /// The currently set limit of the instance |
| 77 | /// # Note |
| 78 | /// This is provided as a best effort, correctly quiting |
| 79 | /// is detrimental to speed and hence this should not be relied too much. |
| 80 | pub const fn get_limit(&self) -> usize |
| 81 | { |
| 82 | self.limit |
| 83 | } |
| 84 | /// Set a limit to the internal vector |
| 85 | /// used to store decoded zlib/deflate output. |
| 86 | /// |
| 87 | /// # Arguments |
| 88 | /// limit: The new decompressor limit |
| 89 | /// # Returns |
| 90 | /// A modified version of DeflateDecoder |
| 91 | /// |
| 92 | /// # Note |
| 93 | /// This is provided as a best effort, correctly quiting |
| 94 | /// is detrimental to speed and hence this should not be relied too much |
| 95 | #[must_use] |
| 96 | pub fn set_limit(mut self, limit: usize) -> Self |
| 97 | { |
| 98 | self.limit = limit; |
| 99 | self |
| 100 | } |
| 101 | |
| 102 | /// Get whether the decoder will confirm a checksum |
| 103 | /// after decoding |
| 104 | pub const fn get_confirm_checksum(&self) -> bool |
| 105 | { |
| 106 | self.confirm_checksum |
| 107 | } |
| 108 | /// Set whether the decoder should confirm a checksum |
| 109 | /// after decoding |
| 110 | /// |
| 111 | /// Note, you should definitely confirm your checksum, use |
| 112 | /// this with caution, otherwise data returned may be corrupt |
| 113 | /// |
| 114 | /// # Arguments |
| 115 | /// - yes: When true, the decoder will confirm checksum |
| 116 | /// when false, the decoder will skip checksum verification |
| 117 | /// # Notes |
| 118 | /// This does not have an influence for deflate decoding as |
| 119 | /// it does not have a checksum |
| 120 | pub fn set_confirm_checksum(mut self, yes: bool) -> Self |
| 121 | { |
| 122 | self.confirm_checksum = yes; |
| 123 | self |
| 124 | } |
| 125 | |
| 126 | /// Get the default set size hint for the decompressor |
| 127 | /// |
| 128 | /// The decompressor initializes the internal storage for decompressed bytes |
| 129 | /// with this size and will reallocate the vec if the decompressed size becomes bigger |
| 130 | /// than this, but when the user currently knows how big the output will be, can be used |
| 131 | /// to prevent unnecessary re-allocations |
| 132 | pub const fn get_size_hint(&self) -> usize |
| 133 | { |
| 134 | self.size_hint |
| 135 | } |
| 136 | /// Set the size hint for the decompressor |
| 137 | /// |
| 138 | /// This can be used to prevent multiple re-allocations |
| 139 | #[must_use] |
| 140 | pub const fn set_size_hint(mut self, hint: usize) -> Self |
| 141 | { |
| 142 | self.size_hint = hint; |
| 143 | self |
| 144 | } |
| 145 | } |
| 146 | |
| 147 | /// A deflate decoder instance. |
| 148 | /// |
| 149 | /// The decoder manages output buffer as opposed to requiring the caller to provide a pre-allocated buffer |
| 150 | /// it tracks number of bytes written and on successfully reaching the |
| 151 | /// end of the block, will return a vector with exactly |
| 152 | /// the number of decompressed bytes. |
| 153 | /// |
| 154 | /// This means that it may use up huge amounts of memory if not checked, but |
| 155 | /// there are [options] that can prevent that |
| 156 | /// |
| 157 | /// [options]: DeflateOptions |
| 158 | pub struct DeflateDecoder<'a> |
| 159 | { |
| 160 | data: &'a [u8], |
| 161 | position: usize, |
| 162 | stream: BitStreamReader<'a>, |
| 163 | is_last_block: bool, |
| 164 | static_codes_loaded: bool, |
| 165 | deflate_header_tables: DeflateHeaderTables, |
| 166 | options: DeflateOptions |
| 167 | } |
| 168 | |
| 169 | impl<'a> DeflateDecoder<'a> |
| 170 | { |
| 171 | /// Create a new decompressor that will read compressed |
| 172 | /// data from `data` and return a new vector containing new data |
| 173 | /// |
| 174 | /// # Arguments |
| 175 | /// - `data`: The compressed data. Data can be of any type |
| 176 | /// gzip,zlib or raw deflate. |
| 177 | /// |
| 178 | /// # Returns |
| 179 | /// A decoder instance which will pull compressed data from `data` to inflate the output output |
| 180 | /// |
| 181 | /// # Note |
| 182 | /// |
| 183 | /// The default output size limit is **1 GiB.** |
| 184 | /// this is to protect the end user against ddos attacks as deflate does not specify it's |
| 185 | /// output size upfront |
| 186 | /// |
| 187 | /// The checksum will be verified depending on the called function. |
| 188 | /// this only works for zlib and gzip since deflate does not have a checksum |
| 189 | /// |
| 190 | /// These defaults can be overridden via [new_with_options()](Self::new_with_options). |
| 191 | pub fn new(data: &'a [u8]) -> DeflateDecoder<'a> |
| 192 | { |
| 193 | let options = DeflateOptions::default(); |
| 194 | |
| 195 | Self::new_with_options(data, options) |
| 196 | } |
| 197 | /// Create new decoder with specified options |
| 198 | /// |
| 199 | /// This can be used to fine tune the decoder to the user's |
| 200 | /// needs. |
| 201 | /// |
| 202 | /// |
| 203 | /// # Arguments |
| 204 | /// - `data`: The compressed data. Data can be of any format i.e |
| 205 | /// gzip, zlib or raw deflate. |
| 206 | /// - `options` : A set of user defined options which tune how the decompressor |
| 207 | /// |
| 208 | /// # Returns |
| 209 | /// A decoder instance which will pull compressed data from `data` to inflate output |
| 210 | /// |
| 211 | /// # Example |
| 212 | /// ```no_run |
| 213 | /// use zune_inflate::{DeflateDecoder, DeflateOptions}; |
| 214 | /// let data = [37]; |
| 215 | /// let options = DeflateOptions::default() |
| 216 | /// .set_confirm_checksum(true) // confirm the checksum for zlib and gzip |
| 217 | /// .set_limit(1000); // how big I think the input will be |
| 218 | /// let mut decoder = DeflateDecoder::new_with_options(&data,options); |
| 219 | /// // do some stuff and then call decode |
| 220 | /// let data = decoder.decode_zlib(); |
| 221 | /// |
| 222 | /// ``` |
| 223 | pub fn new_with_options(data: &'a [u8], options: DeflateOptions) -> DeflateDecoder<'a> |
| 224 | { |
| 225 | // create stream |
| 226 | DeflateDecoder { |
| 227 | data, |
| 228 | position: 0, |
| 229 | stream: BitStreamReader::new(data), |
| 230 | is_last_block: false, |
| 231 | static_codes_loaded: false, |
| 232 | deflate_header_tables: DeflateHeaderTables::default(), |
| 233 | options |
| 234 | } |
| 235 | } |
| 236 | /// Decode zlib-encoded data returning the uncompressed in a `Vec<u8>` |
| 237 | /// or an error if something went wrong. |
| 238 | /// |
| 239 | /// Bytes consumed will be from the data passed when the |
| 240 | /// `new` method was called. |
| 241 | /// |
| 242 | /// # Arguments |
| 243 | /// - None |
| 244 | /// # Returns |
| 245 | /// Result type containing the decoded data. |
| 246 | /// |
| 247 | /// - `Ok(Vec<u8>)`: Decoded vector containing the uncompressed bytes |
| 248 | /// - `Err(InflateDecodeErrors)`: Error that occurred during decoding |
| 249 | /// |
| 250 | /// It's possible to recover bytes even after an error occurred, bytes up |
| 251 | /// to when error was encountered are stored in [InflateDecodeErrors] |
| 252 | /// |
| 253 | /// |
| 254 | /// # Note |
| 255 | /// This needs the `zlib` feature enabled to be available otherwise it's a |
| 256 | /// compile time error |
| 257 | /// |
| 258 | /// [InflateDecodeErrors]:crate::errors::InflateDecodeErrors |
| 259 | /// |
| 260 | #[cfg(feature = "zlib")] |
| 261 | pub fn decode_zlib(&mut self) -> Result<Vec<u8>, InflateDecodeErrors> |
| 262 | { |
| 263 | use crate::utils::calc_adler_hash; |
| 264 | |
| 265 | if self.data.len() |
| 266 | < 2 /* zlib header */ |
| 267 | + 4 |
| 268 | /* Deflate */ |
| 269 | { |
| 270 | return Err(InflateDecodeErrors::new_with_error( |
| 271 | DecodeErrorStatus::InsufficientData |
| 272 | )); |
| 273 | } |
| 274 | |
| 275 | // Zlib flags |
| 276 | // See https://www.ietf.org/rfc/rfc1950.txt for |
| 277 | // the RFC |
| 278 | let cmf = self.data[0]; |
| 279 | let flg = self.data[1]; |
| 280 | |
| 281 | let cm = cmf & 0xF; |
| 282 | let cinfo = cmf >> 4; |
| 283 | |
| 284 | // let fcheck = flg & 0xF; |
| 285 | // let fdict = (flg >> 4) & 1; |
| 286 | // let flevel = flg >> 5; |
| 287 | |
| 288 | // confirm we have the right deflate methods |
| 289 | if cm != 8 |
| 290 | { |
| 291 | if cm == 15 |
| 292 | { |
| 293 | return Err(InflateDecodeErrors::new_with_error(DecodeErrorStatus::Generic( |
| 294 | "CM of 15 is preserved by the standard,currently don't know how to handle it" |
| 295 | ))); |
| 296 | } |
| 297 | return Err(InflateDecodeErrors::new_with_error( |
| 298 | DecodeErrorStatus::GenericStr(format!("Unknown zlib compression method {cm}")) |
| 299 | )); |
| 300 | } |
| 301 | if cinfo > 7 |
| 302 | { |
| 303 | return Err(InflateDecodeErrors::new_with_error( |
| 304 | DecodeErrorStatus::GenericStr(format!( |
| 305 | "Unknown cinfo `{cinfo}` greater than 7, not allowed" |
| 306 | )) |
| 307 | )); |
| 308 | } |
| 309 | let flag_checks = (u16::from(cmf) * 256) + u16::from(flg); |
| 310 | |
| 311 | if flag_checks % 31 != 0 |
| 312 | { |
| 313 | return Err(InflateDecodeErrors::new_with_error( |
| 314 | DecodeErrorStatus::Generic("FCHECK integrity not preserved") |
| 315 | )); |
| 316 | } |
| 317 | |
| 318 | self.position = 2; |
| 319 | |
| 320 | let data = self.decode_deflate()?; |
| 321 | |
| 322 | if self.options.confirm_checksum |
| 323 | { |
| 324 | // Get number of consumed bytes from the input |
| 325 | let out_pos = self.stream.get_position() + self.position + self.stream.over_read; |
| 326 | |
| 327 | // read adler |
| 328 | if let Some(adler) = self.data.get(out_pos..out_pos + 4) |
| 329 | { |
| 330 | let adler_bits: [u8; 4] = adler.try_into().unwrap(); |
| 331 | |
| 332 | let adler32_expected = u32::from_be_bytes(adler_bits); |
| 333 | |
| 334 | let adler32_found = calc_adler_hash(&data); |
| 335 | |
| 336 | if adler32_expected != adler32_found |
| 337 | { |
| 338 | let err_msg = |
| 339 | DecodeErrorStatus::MismatchedAdler(adler32_expected, adler32_found); |
| 340 | let err = InflateDecodeErrors::new(err_msg, data); |
| 341 | |
| 342 | return Err(err); |
| 343 | } |
| 344 | } |
| 345 | else |
| 346 | { |
| 347 | let err = InflateDecodeErrors::new(DecodeErrorStatus::InsufficientData, data); |
| 348 | |
| 349 | return Err(err); |
| 350 | } |
| 351 | } |
| 352 | |
| 353 | Ok(data) |
| 354 | } |
| 355 | |
| 356 | /// Decode a gzip encoded data and return the uncompressed data in a |
| 357 | /// `Vec<u8>` or an error if something went wrong |
| 358 | /// |
| 359 | /// Bytes consumed will be from the data passed when the |
| 360 | /// `new` method was called. |
| 361 | /// |
| 362 | /// # Arguments |
| 363 | /// - None |
| 364 | /// # Returns |
| 365 | /// Result type containing the decoded data. |
| 366 | /// |
| 367 | /// - `Ok(Vec<u8>)`: Decoded vector containing the uncompressed bytes |
| 368 | /// - `Err(InflateDecodeErrors)`: Error that occurred during decoding |
| 369 | /// |
| 370 | /// It's possible to recover bytes even after an error occurred, bytes up |
| 371 | /// to when error was encountered are stored in [InflateDecodeErrors] |
| 372 | /// |
| 373 | /// # Note |
| 374 | /// This needs the `gzip` feature enabled to be available, otherwise it's a |
| 375 | /// compile time error |
| 376 | /// |
| 377 | /// [InflateDecodeErrors]:crate::errors::InflateDecodeErrors |
| 378 | /// |
| 379 | #[cfg(feature = "gzip")] |
| 380 | pub fn decode_gzip(&mut self) -> Result<Vec<u8>, InflateDecodeErrors> |
| 381 | { |
| 382 | if self.data.len() < 18 |
| 383 | { |
| 384 | return Err(InflateDecodeErrors::new_with_error( |
| 385 | DecodeErrorStatus::InsufficientData |
| 386 | )); |
| 387 | } |
| 388 | |
| 389 | if self.data[self.position] != GZIP_ID1 |
| 390 | { |
| 391 | return Err(InflateDecodeErrors::new_with_error( |
| 392 | DecodeErrorStatus::CorruptData |
| 393 | )); |
| 394 | } |
| 395 | self.position += 1; |
| 396 | if self.data[self.position] != GZIP_ID2 |
| 397 | { |
| 398 | return Err(InflateDecodeErrors::new_with_error( |
| 399 | DecodeErrorStatus::CorruptData |
| 400 | )); |
| 401 | } |
| 402 | self.position += 1; |
| 403 | |
| 404 | if self.data[self.position] != GZIP_CM_DEFLATE |
| 405 | { |
| 406 | return Err(InflateDecodeErrors::new_with_error( |
| 407 | DecodeErrorStatus::CorruptData |
| 408 | )); |
| 409 | } |
| 410 | self.position += 1; |
| 411 | |
| 412 | let flg = self.data[self.position]; |
| 413 | self.position += 1; |
| 414 | |
| 415 | // skip mtime |
| 416 | self.position += 4; |
| 417 | // skip xfl |
| 418 | self.position += 1; |
| 419 | // skip os |
| 420 | self.position += 1; |
| 421 | |
| 422 | if (flg & GZIP_FRESERVED) != 0 |
| 423 | { |
| 424 | return Err(InflateDecodeErrors::new_with_error( |
| 425 | DecodeErrorStatus::CorruptData |
| 426 | )); |
| 427 | } |
| 428 | // extra field |
| 429 | if (flg & GZIP_FEXTRA) != 0 |
| 430 | { |
| 431 | let len_bytes = self.data[self.position..self.position + 2] |
| 432 | .try_into() |
| 433 | .unwrap(); |
| 434 | let xlen = usize::from(u16::from_le_bytes(len_bytes)); |
| 435 | |
| 436 | self.position += 2; |
| 437 | |
| 438 | if self.data.len().saturating_sub(self.position) < xlen + GZIP_FOOTER_SIZE |
| 439 | { |
| 440 | return Err(InflateDecodeErrors::new_with_error( |
| 441 | DecodeErrorStatus::CorruptData |
| 442 | )); |
| 443 | } |
| 444 | self.position += xlen; |
| 445 | } |
| 446 | // original file name zero terminated |
| 447 | if (flg & GZIP_FNAME) != 0 |
| 448 | { |
| 449 | loop |
| 450 | { |
| 451 | if let Some(byte) = self.data.get(self.position) |
| 452 | { |
| 453 | self.position += 1; |
| 454 | |
| 455 | if *byte == 0 |
| 456 | { |
| 457 | break; |
| 458 | } |
| 459 | } |
| 460 | else |
| 461 | { |
| 462 | return Err(InflateDecodeErrors::new_with_error( |
| 463 | DecodeErrorStatus::InsufficientData |
| 464 | )); |
| 465 | } |
| 466 | } |
| 467 | } |
| 468 | // File comment zero terminated |
| 469 | if (flg & GZIP_FCOMMENT) != 0 |
| 470 | { |
| 471 | loop |
| 472 | { |
| 473 | if let Some(byte) = self.data.get(self.position) |
| 474 | { |
| 475 | self.position += 1; |
| 476 | |
| 477 | if *byte == 0 |
| 478 | { |
| 479 | break; |
| 480 | } |
| 481 | } |
| 482 | else |
| 483 | { |
| 484 | return Err(InflateDecodeErrors::new_with_error( |
| 485 | DecodeErrorStatus::InsufficientData |
| 486 | )); |
| 487 | } |
| 488 | } |
| 489 | } |
| 490 | // crc16 for gzip header |
| 491 | if (flg & GZIP_FHCRC) != 0 |
| 492 | { |
| 493 | self.position += 2; |
| 494 | } |
| 495 | |
| 496 | if self.position + GZIP_FOOTER_SIZE > self.data.len() |
| 497 | { |
| 498 | return Err(InflateDecodeErrors::new_with_error( |
| 499 | DecodeErrorStatus::InsufficientData |
| 500 | )); |
| 501 | } |
| 502 | |
| 503 | let data = self.decode_deflate()?; |
| 504 | |
| 505 | let mut out_pos = self.stream.get_position() + self.position + self.stream.over_read; |
| 506 | |
| 507 | if self.options.confirm_checksum |
| 508 | { |
| 509 | // Get number of consumed bytes from the input |
| 510 | |
| 511 | if let Some(crc) = self.data.get(out_pos..out_pos + 4) |
| 512 | { |
| 513 | let crc_bits: [u8; 4] = crc.try_into().unwrap(); |
| 514 | |
| 515 | let crc32_expected = u32::from_le_bytes(crc_bits); |
| 516 | |
| 517 | let crc32_found = !crate::crc::crc32(&data, !0); |
| 518 | |
| 519 | if crc32_expected != crc32_found |
| 520 | { |
| 521 | let err_msg = DecodeErrorStatus::MismatchedCRC(crc32_expected, crc32_found); |
| 522 | let err = InflateDecodeErrors::new(err_msg, data); |
| 523 | |
| 524 | return Err(err); |
| 525 | } |
| 526 | } |
| 527 | else |
| 528 | { |
| 529 | let err = InflateDecodeErrors::new(DecodeErrorStatus::InsufficientData, data); |
| 530 | |
| 531 | return Err(err); |
| 532 | } |
| 533 | } |
| 534 | //checksum |
| 535 | out_pos += 4; |
| 536 | |
| 537 | if let Some(val) = self.data.get(out_pos..out_pos + 4) |
| 538 | { |
| 539 | let actual_bytes: [u8; 4] = val.try_into().unwrap(); |
| 540 | let ac = u32::from_le_bytes(actual_bytes) as usize; |
| 541 | |
| 542 | if data.len() != ac |
| 543 | { |
| 544 | let err = DecodeErrorStatus::Generic("ISIZE does not match actual bytes"); |
| 545 | |
| 546 | let err = InflateDecodeErrors::new(err, data); |
| 547 | |
| 548 | return Err(err); |
| 549 | } |
| 550 | } |
| 551 | else |
| 552 | { |
| 553 | let err = InflateDecodeErrors::new(DecodeErrorStatus::InsufficientData, data); |
| 554 | |
| 555 | return Err(err); |
| 556 | } |
| 557 | |
| 558 | Ok(data) |
| 559 | } |
| 560 | /// Decode a deflate stream returning the data as `Vec<u8>` or an error |
| 561 | /// indicating what went wrong. |
| 562 | /// # Arguments |
| 563 | /// - None |
| 564 | /// # Returns |
| 565 | /// Result type containing the decoded data. |
| 566 | /// |
| 567 | /// - `Ok(Vec<u8>)`: Decoded vector containing the uncompressed bytes |
| 568 | /// - `Err(InflateDecodeErrors)`: Error that occurred during decoding |
| 569 | /// |
| 570 | /// It's possible to recover bytes even after an error occurred, bytes up |
| 571 | /// to when error was encountered are stored in [InflateDecodeErrors] |
| 572 | /// |
| 573 | /// |
| 574 | /// # Example |
| 575 | /// ```no_run |
| 576 | /// let data = [42]; // answer to life, the universe and everything |
| 577 | /// |
| 578 | /// let mut decoder = zune_inflate::DeflateDecoder::new(&data); |
| 579 | /// let bytes = decoder.decode_deflate().unwrap(); |
| 580 | /// ``` |
| 581 | /// |
| 582 | /// [InflateDecodeErrors]:crate::errors::InflateDecodeErrors |
| 583 | pub fn decode_deflate(&mut self) -> Result<Vec<u8>, InflateDecodeErrors> |
| 584 | { |
| 585 | self.start_deflate_block() |
| 586 | } |
| 587 | /// Main inner loop for decompressing deflate data |
| 588 | #[allow(unused_assignments)] |
| 589 | fn start_deflate_block(&mut self) -> Result<Vec<u8>, InflateDecodeErrors> |
| 590 | { |
| 591 | // start deflate decode |
| 592 | // re-read the stream so that we can remove code read by zlib |
| 593 | self.stream = BitStreamReader::new(&self.data[self.position..]); |
| 594 | |
| 595 | self.stream.refill(); |
| 596 | |
| 597 | // Output space for our decoded bytes. |
| 598 | let mut out_block = vec![0; self.options.size_hint]; |
| 599 | // bits used |
| 600 | |
| 601 | let mut src_offset = 0; |
| 602 | let mut dest_offset = 0; |
| 603 | |
| 604 | loop |
| 605 | { |
| 606 | self.stream.refill(); |
| 607 | |
| 608 | self.is_last_block = self.stream.get_bits(1) == 1; |
| 609 | let block_type = self.stream.get_bits(2); |
| 610 | |
| 611 | if block_type == DEFLATE_BLOCKTYPE_UNCOMPRESSED |
| 612 | { |
| 613 | /* |
| 614 | * Uncompressed block: copy 'len' bytes literally from the input |
| 615 | * buffer to the output buffer. |
| 616 | */ |
| 617 | /* |
| 618 | * The RFC says that |
| 619 | * skip any remaining bits in current partially |
| 620 | * processed byte |
| 621 | * read LEN and NLEN (see next section) |
| 622 | * copy LEN bytes of data to output |
| 623 | */ |
| 624 | |
| 625 | if self.stream.over_read > usize::from(self.stream.get_bits_left() >> 3) |
| 626 | { |
| 627 | out_block.truncate(dest_offset); |
| 628 | |
| 629 | let err_msg = DecodeErrorStatus::Generic("over-read stream"); |
| 630 | let error = InflateDecodeErrors::new(err_msg, out_block); |
| 631 | |
| 632 | return Err(error); |
| 633 | } |
| 634 | let partial_bits = self.stream.get_bits_left() & 7; |
| 635 | |
| 636 | self.stream.drop_bits(partial_bits); |
| 637 | |
| 638 | let len = self.stream.get_bits(16) as u16; |
| 639 | let nlen = self.stream.get_bits(16) as u16; |
| 640 | |
| 641 | // copy to deflate |
| 642 | if len != !nlen |
| 643 | { |
| 644 | out_block.truncate(dest_offset); |
| 645 | |
| 646 | let err_msg = DecodeErrorStatus::Generic("Len and nlen do not match"); |
| 647 | let error = InflateDecodeErrors::new(err_msg, out_block); |
| 648 | |
| 649 | return Err(error); |
| 650 | } |
| 651 | let len = len as usize; |
| 652 | |
| 653 | let start = self.stream.get_position() + self.position + self.stream.over_read; |
| 654 | |
| 655 | // ensure there is enough space for a fast copy |
| 656 | if dest_offset + len + FASTCOPY_BYTES > out_block.len() |
| 657 | { |
| 658 | // and if there is not, resize |
| 659 | let new_len = out_block.len() + RESIZE_BY + len; |
| 660 | |
| 661 | out_block.resize(new_len, 0); |
| 662 | } |
| 663 | |
| 664 | if self.data.get((start + len).saturating_sub(1)).is_none() |
| 665 | { |
| 666 | out_block.truncate(dest_offset); |
| 667 | |
| 668 | let err_msg = DecodeErrorStatus::CorruptData; |
| 669 | let error = InflateDecodeErrors::new(err_msg, out_block); |
| 670 | |
| 671 | return Err(error); |
| 672 | } |
| 673 | if dest_offset > self.options.limit |
| 674 | { |
| 675 | out_block.truncate(dest_offset); |
| 676 | |
| 677 | let err_msg = |
| 678 | DecodeErrorStatus::OutputLimitExceeded(self.options.limit, out_block.len()); |
| 679 | let error = InflateDecodeErrors::new(err_msg, out_block); |
| 680 | |
| 681 | return Err(error); |
| 682 | } |
| 683 | |
| 684 | out_block[dest_offset..dest_offset + len] |
| 685 | .copy_from_slice(&self.data[start..start + len]); |
| 686 | |
| 687 | dest_offset += len; |
| 688 | |
| 689 | // get the new position to write. |
| 690 | self.stream.position = |
| 691 | len + (self.stream.position - usize::from(self.stream.bits_left >> 3)); |
| 692 | |
| 693 | self.stream.reset(); |
| 694 | |
| 695 | if self.is_last_block |
| 696 | { |
| 697 | break; |
| 698 | } |
| 699 | |
| 700 | continue; |
| 701 | } |
| 702 | else if block_type == DEFLATE_BLOCKTYPE_RESERVED |
| 703 | { |
| 704 | out_block.truncate(dest_offset); |
| 705 | |
| 706 | let err_msg = DecodeErrorStatus::Generic("Reserved block type 0b11 encountered"); |
| 707 | let error = InflateDecodeErrors::new(err_msg, out_block); |
| 708 | |
| 709 | return Err(error); |
| 710 | } |
| 711 | |
| 712 | // build decode tables for static and dynamic tables |
| 713 | match self.build_decode_table(block_type) |
| 714 | { |
| 715 | Ok(_) => (), |
| 716 | Err(value) => |
| 717 | { |
| 718 | out_block.truncate(dest_offset); |
| 719 | |
| 720 | let err_msg = value; |
| 721 | let error = InflateDecodeErrors::new(err_msg, out_block); |
| 722 | |
| 723 | return Err(error); |
| 724 | } |
| 725 | }; |
| 726 | |
| 727 | // Tables are mutated into the struct, so at this point we know the tables |
| 728 | // are loaded, take a reference to them |
| 729 | let litlen_decode_table = &self.deflate_header_tables.litlen_decode_table; |
| 730 | let offset_decode_table = &self.deflate_header_tables.offset_decode_table; |
| 731 | |
| 732 | /* |
| 733 | * This is the "fast loop" for decoding literals and matches. It does |
| 734 | * bounds checks on in_next and out_next in the loop conditions so that |
| 735 | * additional bounds checks aren't needed inside the loop body. |
| 736 | * |
| 737 | * To reduce latency, the bit-buffer is refilled and the next litlen |
| 738 | * decode table entry is preloaded before each loop iteration. |
| 739 | */ |
| 740 | let (mut literal, mut length, mut offset, mut entry) = (0, 0, 0, 0); |
| 741 | |
| 742 | let mut saved_bitbuf; |
| 743 | |
| 744 | 'decode: loop |
| 745 | { |
| 746 | let close_src = 3 * FASTCOPY_BYTES < self.stream.remaining_bytes(); |
| 747 | |
| 748 | if close_src |
| 749 | { |
| 750 | self.stream.refill_inner_loop(); |
| 751 | |
| 752 | let lit_mask = self.stream.peek_bits::<LITLEN_DECODE_BITS>(); |
| 753 | |
| 754 | entry = litlen_decode_table[lit_mask]; |
| 755 | |
| 756 | 'sequence: loop |
| 757 | { |
| 758 | // Resize the output vector here to ensure we can always have |
| 759 | // enough space for sloppy copies |
| 760 | if dest_offset + FASTLOOP_MAX_BYTES_WRITTEN > out_block.len() |
| 761 | { |
| 762 | let curr_len = out_block.len(); |
| 763 | out_block.resize(curr_len + FASTLOOP_MAX_BYTES_WRITTEN + RESIZE_BY, 0) |
| 764 | } |
| 765 | // At this point entry contains the next value of the litlen |
| 766 | // This will always be the case so meaning all our exit paths need |
| 767 | // to load in the next entry. |
| 768 | |
| 769 | // recheck after every sequence |
| 770 | // when we hit continue, we need to recheck this |
| 771 | // as we are trying to emulate a do while |
| 772 | let new_check = self.stream.src.len() < self.stream.position + 8; |
| 773 | |
| 774 | if new_check |
| 775 | { |
| 776 | break 'sequence; |
| 777 | } |
| 778 | |
| 779 | self.stream.refill_inner_loop(); |
| 780 | /* |
| 781 | * Consume the bits for the litlen decode table entry. Save the |
| 782 | * original bit-buf for later, in case the extra match length |
| 783 | * bits need to be extracted from it. |
| 784 | */ |
| 785 | saved_bitbuf = self.stream.buffer; |
| 786 | |
| 787 | self.stream.drop_bits((entry & 0xFF) as u8); |
| 788 | |
| 789 | /* |
| 790 | * Begin by checking for a "fast" literal, i.e. a literal that |
| 791 | * doesn't need a subtable. |
| 792 | */ |
| 793 | if (entry & HUFFDEC_LITERAL) != 0 |
| 794 | { |
| 795 | /* |
| 796 | * On 64-bit platforms, we decode up to 2 extra fast |
| 797 | * literals in addition to the primary item, as this |
| 798 | * increases performance and still leaves enough bits |
| 799 | * remaining for what follows. We could actually do 3, |
| 800 | * assuming LITLEN_TABLEBITS=11, but that actually |
| 801 | * decreases performance slightly (perhaps by messing |
| 802 | * with the branch prediction of the conditional refill |
| 803 | * that happens later while decoding the match offset). |
| 804 | */ |
| 805 | |
| 806 | literal = entry >> 16; |
| 807 | |
| 808 | let new_pos = self.stream.peek_bits::<LITLEN_DECODE_BITS>(); |
| 809 | |
| 810 | entry = litlen_decode_table[new_pos]; |
| 811 | saved_bitbuf = self.stream.buffer; |
| 812 | |
| 813 | self.stream.drop_bits(entry as u8); |
| 814 | |
| 815 | let out: &mut [u8; 2] = out_block |
| 816 | .get_mut(dest_offset..dest_offset + 2) |
| 817 | .unwrap() |
| 818 | .try_into() |
| 819 | .unwrap(); |
| 820 | |
| 821 | out[0] = literal as u8; |
| 822 | dest_offset += 1; |
| 823 | |
| 824 | if (entry & HUFFDEC_LITERAL) != 0 |
| 825 | { |
| 826 | /* |
| 827 | * Another fast literal, but this one is in lieu of the |
| 828 | * primary item, so it doesn't count as one of the extras. |
| 829 | */ |
| 830 | |
| 831 | // load in the next entry. |
| 832 | literal = entry >> 16; |
| 833 | |
| 834 | let new_pos = self.stream.peek_bits::<LITLEN_DECODE_BITS>(); |
| 835 | |
| 836 | entry = litlen_decode_table[new_pos]; |
| 837 | |
| 838 | out[1] = literal as u8; |
| 839 | dest_offset += 1; |
| 840 | |
| 841 | continue; |
| 842 | } |
| 843 | } |
| 844 | /* |
| 845 | * It's not a literal entry, so it can be a length entry, a |
| 846 | * subtable pointer entry, or an end-of-block entry. Detect the |
| 847 | * two unlikely cases by testing the HUFFDEC_EXCEPTIONAL flag. |
| 848 | */ |
| 849 | if (entry & HUFFDEC_EXCEPTIONAL) != 0 |
| 850 | { |
| 851 | // Subtable pointer or end of block entry |
| 852 | if (entry & HUFFDEC_END_OF_BLOCK) != 0 |
| 853 | { |
| 854 | // block done |
| 855 | break 'decode; |
| 856 | } |
| 857 | /* |
| 858 | * A subtable is required. Load and consume the |
| 859 | * subtable entry. The subtable entry can be of any |
| 860 | * type: literal, length, or end-of-block. |
| 861 | */ |
| 862 | let entry_position = ((entry >> 8) & 0x3F) as usize; |
| 863 | let mut pos = (entry >> 16) as usize; |
| 864 | |
| 865 | saved_bitbuf = self.stream.buffer; |
| 866 | |
| 867 | pos += self.stream.peek_var_bits(entry_position); |
| 868 | entry = litlen_decode_table[pos.min(LITLEN_ENOUGH - 1)]; |
| 869 | |
| 870 | self.stream.drop_bits(entry as u8); |
| 871 | |
| 872 | if (entry & HUFFDEC_LITERAL) != 0 |
| 873 | { |
| 874 | // decode a literal that required a sub table |
| 875 | let new_pos = self.stream.peek_bits::<LITLEN_DECODE_BITS>(); |
| 876 | |
| 877 | literal = entry >> 16; |
| 878 | entry = litlen_decode_table[new_pos]; |
| 879 | |
| 880 | *out_block.get_mut(dest_offset).unwrap_or(&mut 0) = |
| 881 | (literal & 0xFF) as u8; |
| 882 | |
| 883 | dest_offset += 1; |
| 884 | |
| 885 | continue; |
| 886 | } |
| 887 | |
| 888 | if (entry & HUFFDEC_END_OF_BLOCK) != 0 |
| 889 | { |
| 890 | break 'decode; |
| 891 | } |
| 892 | } |
| 893 | |
| 894 | // At this point,we dropped at most 22 bits(LITLEN_DECODE is 11 and we |
| 895 | // can do it twice), we now just have 34 bits min remaining. |
| 896 | |
| 897 | /* |
| 898 | * Decode the match length: the length base value associated |
| 899 | * with the litlen symbol (which we extract from the decode |
| 900 | * table entry), plus the extra length bits. We don't need to |
| 901 | * consume the extra length bits here, as they were included in |
| 902 | * the bits consumed by the entry earlier. We also don't need |
| 903 | * to check for too-long matches here, as this is inside the |
| 904 | * fast loop where it's already been verified that the output |
| 905 | * buffer has enough space remaining to copy a max-length match. |
| 906 | */ |
| 907 | let entry_dup = entry; |
| 908 | |
| 909 | entry = offset_decode_table[self.stream.peek_bits::<OFFSET_TABLEBITS>()]; |
| 910 | length = (entry_dup >> 16) as usize; |
| 911 | |
| 912 | let mask = (1 << entry_dup as u8) - 1; |
| 913 | |
| 914 | length += (saved_bitbuf & mask) as usize >> ((entry_dup >> 8) as u8); |
| 915 | |
| 916 | // offset requires a subtable |
| 917 | if (entry & HUFFDEC_EXCEPTIONAL) != 0 |
| 918 | { |
| 919 | self.stream.drop_bits(OFFSET_TABLEBITS as u8); |
| 920 | let extra = self.stream.peek_var_bits(((entry >> 8) & 0x3F) as usize); |
| 921 | entry = offset_decode_table[((entry >> 16) as usize + extra) & 511]; |
| 922 | // refill to handle some weird edge case where we have |
| 923 | // less bits than needed for reading the lit-len |
| 924 | } |
| 925 | saved_bitbuf = self.stream.buffer; |
| 926 | |
| 927 | self.stream.drop_bits((entry & 0xFF) as u8); |
| 928 | |
| 929 | let mask = (1 << entry as u8) - 1; |
| 930 | |
| 931 | offset = (entry >> 16) as usize; |
| 932 | offset += (saved_bitbuf & mask) as usize >> (((entry >> 8) & 0xFF) as u8); |
| 933 | |
| 934 | if offset > dest_offset |
| 935 | { |
| 936 | out_block.truncate(dest_offset); |
| 937 | |
| 938 | let err_msg = DecodeErrorStatus::CorruptData; |
| 939 | let error = InflateDecodeErrors::new(err_msg, out_block); |
| 940 | |
| 941 | return Err(error); |
| 942 | } |
| 943 | |
| 944 | src_offset = dest_offset - offset; |
| 945 | |
| 946 | if self.stream.bits_left < 11 |
| 947 | { |
| 948 | self.stream.refill_inner_loop(); |
| 949 | } |
| 950 | // Copy some bytes unconditionally |
| 951 | // This makes us copy smaller match lengths quicker because we don't need |
| 952 | // a loop + don't send too much pressure to the Memory unit. |
| 953 | fixed_copy_within::<FASTCOPY_BYTES>( |
| 954 | &mut out_block, |
| 955 | src_offset, |
| 956 | dest_offset |
| 957 | ); |
| 958 | |
| 959 | entry = litlen_decode_table[self.stream.peek_bits::<LITLEN_DECODE_BITS>()]; |
| 960 | |
| 961 | let mut current_position = dest_offset; |
| 962 | |
| 963 | dest_offset += length; |
| 964 | |
| 965 | if offset == 1 |
| 966 | { |
| 967 | // RLE fill with a single byte |
| 968 | let byte_to_repeat = out_block[src_offset]; |
| 969 | out_block[current_position..dest_offset].fill(byte_to_repeat); |
| 970 | } |
| 971 | else if offset <= FASTCOPY_BYTES |
| 972 | && current_position + offset < dest_offset |
| 973 | { |
| 974 | // The second conditional ensures we only come |
| 975 | // here if the first copy didn't succeed to copy just enough bytes for a rep |
| 976 | // match to be valid, i.e we want this path to be taken the least amount |
| 977 | // of times possible |
| 978 | |
| 979 | // the unconditional copy above copied some bytes |
| 980 | // don't let it go into waste |
| 981 | // Increment the position we are in by the number of correct bytes |
| 982 | // currently copied |
| 983 | let mut src_position = src_offset + offset; |
| 984 | let mut dest_position = current_position + offset; |
| 985 | |
| 986 | // loop copying offset bytes in place |
| 987 | // notice this loop does fixed copies but increments in offset bytes :) |
| 988 | // that is intentional. |
| 989 | loop |
| 990 | { |
| 991 | fixed_copy_within::<FASTCOPY_BYTES>( |
| 992 | &mut out_block, |
| 993 | src_position, |
| 994 | dest_position |
| 995 | ); |
| 996 | |
| 997 | src_position += offset; |
| 998 | dest_position += offset; |
| 999 | |
| 1000 | if dest_position > dest_offset |
| 1001 | { |
| 1002 | break; |
| 1003 | } |
| 1004 | } |
| 1005 | } |
| 1006 | else if length > FASTCOPY_BYTES |
| 1007 | { |
| 1008 | current_position += FASTCOPY_BYTES; |
| 1009 | // fast non-overlapping copy |
| 1010 | // |
| 1011 | // We have enough space to write the ML+FAST_COPY bytes ahead |
| 1012 | // so we know this won't come to shoot us in the foot. |
| 1013 | // |
| 1014 | // An optimization is to copy FAST_COPY_BITS per invocation |
| 1015 | // Currently FASTCOPY_BYTES is 16, this fits in nicely as we |
| 1016 | // it's a single SIMD instruction on a lot of things, i.e x86,Arm and even |
| 1017 | // wasm. |
| 1018 | |
| 1019 | // current position of the match |
| 1020 | let mut dest_src_offset = src_offset + FASTCOPY_BYTES; |
| 1021 | |
| 1022 | // Number of bytes we are to copy |
| 1023 | // copy in batches of FAST_BYTES |
| 1024 | 'match_lengths: loop |
| 1025 | { |
| 1026 | // Safety: We resized out_block hence we know it can handle |
| 1027 | // sloppy copies without it being out of bounds |
| 1028 | // |
| 1029 | // Reason: This is a latency critical loop, even branches start |
| 1030 | // to matter |
| 1031 | fixed_copy_within::<FASTCOPY_BYTES>( |
| 1032 | &mut out_block, |
| 1033 | dest_src_offset, |
| 1034 | current_position |
| 1035 | ); |
| 1036 | |
| 1037 | dest_src_offset += FASTCOPY_BYTES; |
| 1038 | current_position += FASTCOPY_BYTES; |
| 1039 | |
| 1040 | if current_position > dest_offset |
| 1041 | { |
| 1042 | break 'match_lengths; |
| 1043 | } |
| 1044 | } |
| 1045 | } |
| 1046 | |
| 1047 | if dest_offset > self.options.limit |
| 1048 | { |
| 1049 | out_block.truncate(dest_offset); |
| 1050 | |
| 1051 | let err_msg = DecodeErrorStatus::OutputLimitExceeded( |
| 1052 | self.options.limit, |
| 1053 | dest_offset |
| 1054 | ); |
| 1055 | let error = InflateDecodeErrors::new(err_msg, out_block); |
| 1056 | |
| 1057 | return Err(error); |
| 1058 | } |
| 1059 | |
| 1060 | if self.stream.src.len() < self.stream.position + 8 |
| 1061 | { |
| 1062 | // close to input end, move to the slower one |
| 1063 | break 'sequence; |
| 1064 | } |
| 1065 | } |
| 1066 | } |
| 1067 | // generic loop that does things a bit slower but it's okay since it doesn't |
| 1068 | // deal with a lot of things |
| 1069 | // We can afford to be more careful here, checking that we do |
| 1070 | // not drop non-existent bits etc etc as we do not have the |
| 1071 | // assurances of the fast loop bits above. |
| 1072 | loop |
| 1073 | { |
| 1074 | self.stream.refill(); |
| 1075 | |
| 1076 | if self.stream.over_read > usize::from(self.stream.bits_left >> 3) |
| 1077 | { |
| 1078 | out_block.truncate(dest_offset); |
| 1079 | |
| 1080 | let err_msg = DecodeErrorStatus::CorruptData; |
| 1081 | let error = InflateDecodeErrors::new(err_msg, out_block); |
| 1082 | |
| 1083 | return Err(error); |
| 1084 | } |
| 1085 | |
| 1086 | let literal_mask = self.stream.peek_bits::<LITLEN_DECODE_BITS>(); |
| 1087 | |
| 1088 | entry = litlen_decode_table[literal_mask]; |
| 1089 | |
| 1090 | saved_bitbuf = self.stream.buffer; |
| 1091 | |
| 1092 | self.stream.drop_bits((entry & 0xFF) as u8); |
| 1093 | |
| 1094 | if (entry & HUFFDEC_SUITABLE_POINTER) != 0 |
| 1095 | { |
| 1096 | let extra = self.stream.peek_var_bits(((entry >> 8) & 0x3F) as usize); |
| 1097 | |
| 1098 | entry = litlen_decode_table[(entry >> 16) as usize + extra]; |
| 1099 | saved_bitbuf = self.stream.buffer; |
| 1100 | |
| 1101 | self.stream.drop_bits((entry & 0xFF) as u8); |
| 1102 | } |
| 1103 | |
| 1104 | length = (entry >> 16) as usize; |
| 1105 | |
| 1106 | if (entry & HUFFDEC_LITERAL) != 0 |
| 1107 | { |
| 1108 | resize_and_push(&mut out_block, dest_offset, length as u8); |
| 1109 | |
| 1110 | dest_offset += 1; |
| 1111 | |
| 1112 | continue; |
| 1113 | } |
| 1114 | |
| 1115 | if (entry & HUFFDEC_END_OF_BLOCK) != 0 |
| 1116 | { |
| 1117 | break 'decode; |
| 1118 | } |
| 1119 | |
| 1120 | let mask = (1 << entry as u8) - 1; |
| 1121 | |
| 1122 | length += (saved_bitbuf & mask) as usize >> ((entry >> 8) as u8); |
| 1123 | |
| 1124 | self.stream.refill(); |
| 1125 | |
| 1126 | entry = offset_decode_table[self.stream.peek_bits::<OFFSET_TABLEBITS>()]; |
| 1127 | |
| 1128 | if (entry & HUFFDEC_EXCEPTIONAL) != 0 |
| 1129 | { |
| 1130 | // offset requires a subtable |
| 1131 | self.stream.drop_bits(OFFSET_TABLEBITS as u8); |
| 1132 | |
| 1133 | let extra = self.stream.peek_var_bits(((entry >> 8) & 0x3F) as usize); |
| 1134 | |
| 1135 | entry = offset_decode_table[((entry >> 16) as usize + extra) & 511]; |
| 1136 | } |
| 1137 | |
| 1138 | // ensure there is enough space for a fast copy |
| 1139 | if dest_offset + length + FASTCOPY_BYTES > out_block.len() |
| 1140 | { |
| 1141 | let new_len = out_block.len() + RESIZE_BY + length; |
| 1142 | out_block.resize(new_len, 0); |
| 1143 | } |
| 1144 | saved_bitbuf = self.stream.buffer; |
| 1145 | |
| 1146 | let mask = (1 << (entry & 0xFF) as u8) - 1; |
| 1147 | |
| 1148 | offset = (entry >> 16) as usize; |
| 1149 | offset += (saved_bitbuf & mask) as usize >> ((entry >> 8) as u8); |
| 1150 | |
| 1151 | if offset > dest_offset |
| 1152 | { |
| 1153 | out_block.truncate(dest_offset); |
| 1154 | |
| 1155 | let err_msg = DecodeErrorStatus::CorruptData; |
| 1156 | let error = InflateDecodeErrors::new(err_msg, out_block); |
| 1157 | |
| 1158 | return Err(error); |
| 1159 | } |
| 1160 | |
| 1161 | src_offset = dest_offset - offset; |
| 1162 | |
| 1163 | self.stream.drop_bits(entry as u8); |
| 1164 | |
| 1165 | let (dest_src, dest_ptr) = out_block.split_at_mut(dest_offset); |
| 1166 | |
| 1167 | if src_offset + length + FASTCOPY_BYTES > dest_offset |
| 1168 | { |
| 1169 | // overlapping copy |
| 1170 | // do a simple rep match |
| 1171 | copy_rep_matches(&mut out_block, src_offset, dest_offset, length); |
| 1172 | } |
| 1173 | else |
| 1174 | { |
| 1175 | dest_ptr[0..length] |
| 1176 | .copy_from_slice(&dest_src[src_offset..src_offset + length]); |
| 1177 | } |
| 1178 | |
| 1179 | dest_offset += length; |
| 1180 | |
| 1181 | if dest_offset > self.options.limit |
| 1182 | { |
| 1183 | out_block.truncate(dest_offset); |
| 1184 | |
| 1185 | let err_msg = |
| 1186 | DecodeErrorStatus::OutputLimitExceeded(self.options.limit, dest_offset); |
| 1187 | let error = InflateDecodeErrors::new(err_msg, out_block); |
| 1188 | |
| 1189 | return Err(error); |
| 1190 | } |
| 1191 | } |
| 1192 | } |
| 1193 | /* |
| 1194 | * If any of the implicit appended zero bytes were consumed (not just |
| 1195 | * refilled) before hitting end of stream, then the data is bad. |
| 1196 | */ |
| 1197 | if self.stream.over_read > usize::from(self.stream.bits_left >> 3) |
| 1198 | { |
| 1199 | out_block.truncate(dest_offset); |
| 1200 | |
| 1201 | let err_msg = DecodeErrorStatus::CorruptData; |
| 1202 | let error = InflateDecodeErrors::new(err_msg, out_block); |
| 1203 | |
| 1204 | return Err(error); |
| 1205 | } |
| 1206 | |
| 1207 | if self.is_last_block |
| 1208 | { |
| 1209 | break; |
| 1210 | } |
| 1211 | } |
| 1212 | |
| 1213 | // decompression. DONE |
| 1214 | // Truncate data to match the number of actual |
| 1215 | // bytes written. |
| 1216 | out_block.truncate(dest_offset); |
| 1217 | |
| 1218 | Ok(out_block) |
| 1219 | } |
| 1220 | |
| 1221 | /// Build decode tables for static and dynamic |
| 1222 | /// huffman blocks. |
| 1223 | fn build_decode_table(&mut self, block_type: u64) -> Result<(), DecodeErrorStatus> |
| 1224 | { |
| 1225 | const COUNT: usize = |
| 1226 | DEFLATE_NUM_LITLEN_SYMS + DEFLATE_NUM_OFFSET_SYMS + DELFATE_MAX_LENS_OVERRUN; |
| 1227 | |
| 1228 | let mut lens = [0_u8; COUNT]; |
| 1229 | let mut precode_lens = [0; DEFLATE_NUM_PRECODE_SYMS]; |
| 1230 | let mut precode_decode_table = [0_u32; PRECODE_ENOUGH]; |
| 1231 | let mut litlen_decode_table = [0_u32; LITLEN_ENOUGH]; |
| 1232 | let mut offset_decode_table = [0; OFFSET_ENOUGH]; |
| 1233 | |
| 1234 | let mut num_litlen_syms = 0; |
| 1235 | let mut num_offset_syms = 0; |
| 1236 | |
| 1237 | if block_type == DEFLATE_BLOCKTYPE_DYNAMIC_HUFFMAN |
| 1238 | { |
| 1239 | const SINGLE_PRECODE: usize = 3; |
| 1240 | |
| 1241 | self.static_codes_loaded = false; |
| 1242 | |
| 1243 | // Dynamic Huffman block |
| 1244 | // Read codeword lengths |
| 1245 | if !self.stream.has(5 + 5 + 4) |
| 1246 | { |
| 1247 | return Err(DecodeErrorStatus::InsufficientData); |
| 1248 | } |
| 1249 | |
| 1250 | num_litlen_syms = 257 + (self.stream.get_bits(5)) as usize; |
| 1251 | num_offset_syms = 1 + (self.stream.get_bits(5)) as usize; |
| 1252 | |
| 1253 | let num_explicit_precode_lens = 4 + (self.stream.get_bits(4)) as usize; |
| 1254 | |
| 1255 | self.stream.refill(); |
| 1256 | |
| 1257 | if !self.stream.has(3) |
| 1258 | { |
| 1259 | return Err(DecodeErrorStatus::InsufficientData); |
| 1260 | } |
| 1261 | |
| 1262 | let first_precode = self.stream.get_bits(3) as u8; |
| 1263 | let expected = (SINGLE_PRECODE * num_explicit_precode_lens.saturating_sub(1)) as u8; |
| 1264 | |
| 1265 | precode_lens[usize::from(DEFLATE_PRECODE_LENS_PERMUTATION[0])] = first_precode; |
| 1266 | |
| 1267 | self.stream.refill(); |
| 1268 | |
| 1269 | if !self.stream.has(expected) |
| 1270 | { |
| 1271 | return Err(DecodeErrorStatus::InsufficientData); |
| 1272 | } |
| 1273 | |
| 1274 | for i in DEFLATE_PRECODE_LENS_PERMUTATION[1..] |
| 1275 | .iter() |
| 1276 | .take(num_explicit_precode_lens - 1) |
| 1277 | { |
| 1278 | let bits = self.stream.get_bits(3) as u8; |
| 1279 | |
| 1280 | precode_lens[usize::from(*i)] = bits; |
| 1281 | } |
| 1282 | |
| 1283 | self.build_decode_table_inner( |
| 1284 | &precode_lens, |
| 1285 | &PRECODE_DECODE_RESULTS, |
| 1286 | &mut precode_decode_table, |
| 1287 | PRECODE_TABLE_BITS, |
| 1288 | DEFLATE_NUM_PRECODE_SYMS, |
| 1289 | DEFLATE_MAX_CODEWORD_LENGTH |
| 1290 | )?; |
| 1291 | |
| 1292 | /* Decode the litlen and offset codeword lengths. */ |
| 1293 | |
| 1294 | let mut i = 0; |
| 1295 | |
| 1296 | loop |
| 1297 | { |
| 1298 | if i >= num_litlen_syms + num_offset_syms |
| 1299 | { |
| 1300 | // confirm here since with a continue loop stuff |
| 1301 | // breaks |
| 1302 | break; |
| 1303 | } |
| 1304 | |
| 1305 | let rep_val: u8; |
| 1306 | let rep_count: u64; |
| 1307 | |
| 1308 | if !self.stream.has(DEFLATE_MAX_PRE_CODEWORD_LEN + 7) |
| 1309 | { |
| 1310 | self.stream.refill(); |
| 1311 | } |
| 1312 | // decode next pre-code symbol |
| 1313 | let entry_pos = self |
| 1314 | .stream |
| 1315 | .peek_bits::<{ DEFLATE_MAX_PRE_CODEWORD_LEN as usize }>(); |
| 1316 | |
| 1317 | let entry = precode_decode_table[entry_pos]; |
| 1318 | let presym = entry >> 16; |
| 1319 | |
| 1320 | if !self.stream.has(entry as u8) |
| 1321 | { |
| 1322 | return Err(DecodeErrorStatus::InsufficientData); |
| 1323 | } |
| 1324 | |
| 1325 | self.stream.drop_bits(entry as u8); |
| 1326 | |
| 1327 | if presym < 16 |
| 1328 | { |
| 1329 | // explicit codeword length |
| 1330 | lens[i] = presym as u8; |
| 1331 | i += 1; |
| 1332 | continue; |
| 1333 | } |
| 1334 | |
| 1335 | /* Run-length encoded codeword lengths */ |
| 1336 | |
| 1337 | /* |
| 1338 | * Note: we don't need verify that the repeat count |
| 1339 | * doesn't overflow the number of elements, since we've |
| 1340 | * sized the lens array to have enough extra space to |
| 1341 | * allow for the worst-case overrun (138 zeroes when |
| 1342 | * only 1 length was remaining). |
| 1343 | * |
| 1344 | * In the case of the small repeat counts (presyms 16 |
| 1345 | * and 17), it is fastest to always write the maximum |
| 1346 | * number of entries. That gets rid of branches that |
| 1347 | * would otherwise be required. |
| 1348 | * |
| 1349 | * It is not just because of the numerical order that |
| 1350 | * our checks go in the order 'presym < 16', 'presym == |
| 1351 | * 16', and 'presym == 17'. For typical data this is |
| 1352 | * ordered from most frequent to least frequent case. |
| 1353 | */ |
| 1354 | if presym == 16 |
| 1355 | { |
| 1356 | if i == 0 |
| 1357 | { |
| 1358 | return Err(DecodeErrorStatus::CorruptData); |
| 1359 | } |
| 1360 | |
| 1361 | if !self.stream.has(2) |
| 1362 | { |
| 1363 | return Err(DecodeErrorStatus::InsufficientData); |
| 1364 | } |
| 1365 | |
| 1366 | // repeat previous length three to 6 times |
| 1367 | rep_val = lens[i - 1]; |
| 1368 | rep_count = 3 + self.stream.get_bits(2); |
| 1369 | lens[i..i + 6].fill(rep_val); |
| 1370 | i += rep_count as usize; |
| 1371 | } |
| 1372 | else if presym == 17 |
| 1373 | { |
| 1374 | if !self.stream.has(3) |
| 1375 | { |
| 1376 | return Err(DecodeErrorStatus::InsufficientData); |
| 1377 | } |
| 1378 | /* Repeat zero 3 - 10 times. */ |
| 1379 | rep_count = 3 + self.stream.get_bits(3); |
| 1380 | lens[i..i + 10].fill(0); |
| 1381 | i += rep_count as usize; |
| 1382 | } |
| 1383 | else |
| 1384 | { |
| 1385 | if !self.stream.has(7) |
| 1386 | { |
| 1387 | return Err(DecodeErrorStatus::InsufficientData); |
| 1388 | } |
| 1389 | // repeat zero 11-138 times. |
| 1390 | rep_count = 11 + self.stream.get_bits(7); |
| 1391 | lens[i..i + rep_count as usize].fill(0); |
| 1392 | i += rep_count as usize; |
| 1393 | } |
| 1394 | |
| 1395 | if i >= num_litlen_syms + num_offset_syms |
| 1396 | { |
| 1397 | break; |
| 1398 | } |
| 1399 | } |
| 1400 | } |
| 1401 | else if block_type == DEFLATE_BLOCKTYPE_STATIC |
| 1402 | { |
| 1403 | if self.static_codes_loaded |
| 1404 | { |
| 1405 | return Ok(()); |
| 1406 | } |
| 1407 | |
| 1408 | self.static_codes_loaded = true; |
| 1409 | |
| 1410 | lens[000..144].fill(8); |
| 1411 | lens[144..256].fill(9); |
| 1412 | lens[256..280].fill(7); |
| 1413 | lens[280..288].fill(8); |
| 1414 | lens[288..].fill(5); |
| 1415 | |
| 1416 | num_litlen_syms = 288; |
| 1417 | num_offset_syms = 32; |
| 1418 | } |
| 1419 | // build offset decode table |
| 1420 | self.build_decode_table_inner( |
| 1421 | &lens[num_litlen_syms..], |
| 1422 | &OFFSET_DECODE_RESULTS, |
| 1423 | &mut offset_decode_table, |
| 1424 | OFFSET_TABLEBITS, |
| 1425 | num_offset_syms, |
| 1426 | DEFLATE_MAX_OFFSET_CODEWORD_LENGTH |
| 1427 | )?; |
| 1428 | |
| 1429 | self.build_decode_table_inner( |
| 1430 | &lens, |
| 1431 | &LITLEN_DECODE_RESULTS, |
| 1432 | &mut litlen_decode_table, |
| 1433 | LITLEN_TABLE_BITS, |
| 1434 | num_litlen_syms, |
| 1435 | DEFLATE_MAX_LITLEN_CODEWORD_LENGTH |
| 1436 | )?; |
| 1437 | |
| 1438 | self.deflate_header_tables.offset_decode_table = offset_decode_table; |
| 1439 | self.deflate_header_tables.litlen_decode_table = litlen_decode_table; |
| 1440 | |
| 1441 | Ok(()) |
| 1442 | } |
| 1443 | /// Build the decode table for the precode |
| 1444 | #[allow(clippy::needless_range_loop)] |
| 1445 | fn build_decode_table_inner( |
| 1446 | &mut self, lens: &[u8], decode_results: &[u32], decode_table: &mut [u32], |
| 1447 | table_bits: usize, num_syms: usize, mut max_codeword_len: usize |
| 1448 | ) -> Result<(), DecodeErrorStatus> |
| 1449 | { |
| 1450 | const BITS: u32 = usize::BITS - 1; |
| 1451 | |
| 1452 | let mut len_counts: [u32; DEFLATE_MAX_CODEWORD_LENGTH + 1] = |
| 1453 | [0; DEFLATE_MAX_CODEWORD_LENGTH + 1]; |
| 1454 | let mut offsets: [u32; DEFLATE_MAX_CODEWORD_LENGTH + 1] = |
| 1455 | [0; DEFLATE_MAX_CODEWORD_LENGTH + 1]; |
| 1456 | let mut sorted_syms: [u16; DEFLATE_MAX_NUM_SYMS] = [0; DEFLATE_MAX_NUM_SYMS]; |
| 1457 | |
| 1458 | let mut i; |
| 1459 | |
| 1460 | // count how many codewords have each length, including 0. |
| 1461 | for sym in 0..num_syms |
| 1462 | { |
| 1463 | len_counts[usize::from(lens[sym])] += 1; |
| 1464 | } |
| 1465 | |
| 1466 | /* |
| 1467 | * Determine the actual maximum codeword length that was used, and |
| 1468 | * decrease table_bits to it if allowed. |
| 1469 | */ |
| 1470 | while max_codeword_len > 1 && len_counts[max_codeword_len] == 0 |
| 1471 | { |
| 1472 | max_codeword_len -= 1; |
| 1473 | } |
| 1474 | /* |
| 1475 | * Sort the symbols primarily by increasing codeword length and |
| 1476 | * A temporary array of length @num_syms. |
| 1477 | * secondarily by increasing symbol value; or equivalently by their |
| 1478 | * codewords in lexicographic order, since a canonical code is assumed. |
| 1479 | * |
| 1480 | * For efficiency, also compute 'codespace_used' in the same pass over |
| 1481 | * 'len_counts[]' used to build 'offsets[]' for sorting. |
| 1482 | */ |
| 1483 | offsets[0] = 0; |
| 1484 | offsets[1] = len_counts[0]; |
| 1485 | |
| 1486 | let mut codespace_used = 0_u32; |
| 1487 | |
| 1488 | for len in 1..max_codeword_len |
| 1489 | { |
| 1490 | offsets[len + 1] = offsets[len] + len_counts[len]; |
| 1491 | codespace_used = (codespace_used << 1) + len_counts[len]; |
| 1492 | } |
| 1493 | codespace_used = (codespace_used << 1) + len_counts[max_codeword_len]; |
| 1494 | |
| 1495 | for sym in 0..num_syms |
| 1496 | { |
| 1497 | let pos = usize::from(lens[sym]); |
| 1498 | sorted_syms[offsets[pos] as usize] = sym as u16; |
| 1499 | offsets[pos] += 1; |
| 1500 | } |
| 1501 | i = (offsets[0]) as usize; |
| 1502 | |
| 1503 | /* |
| 1504 | * Check whether the lengths form a complete code (exactly fills the |
| 1505 | * codespace), an incomplete code (doesn't fill the codespace), or an |
| 1506 | * overfull code (overflows the codespace). A codeword of length 'n' |
| 1507 | * uses proportion '1/(2^n)' of the codespace. An overfull code is |
| 1508 | * nonsensical, so is considered invalid. An incomplete code is |
| 1509 | * considered valid only in two specific cases; see below. |
| 1510 | */ |
| 1511 | |
| 1512 | // Overfull code |
| 1513 | if codespace_used > 1 << max_codeword_len |
| 1514 | { |
| 1515 | return Err(DecodeErrorStatus::Generic("Overflown code")); |
| 1516 | } |
| 1517 | // incomplete code |
| 1518 | if codespace_used < 1 << max_codeword_len |
| 1519 | { |
| 1520 | let entry = if codespace_used == 0 |
| 1521 | { |
| 1522 | /* |
| 1523 | * An empty code is allowed. This can happen for the |
| 1524 | * offset code in DEFLATE, since a dynamic Huffman block |
| 1525 | * need not contain any matches. |
| 1526 | */ |
| 1527 | |
| 1528 | /* sym=0, len=1 (arbitrary) */ |
| 1529 | make_decode_table_entry(decode_results, 0, 1) |
| 1530 | } |
| 1531 | else |
| 1532 | { |
| 1533 | /* |
| 1534 | * Allow codes with a single used symbol, with codeword |
| 1535 | * length 1. The DEFLATE RFC is unclear regarding this |
| 1536 | * case. What zlib's decompressor does is permit this |
| 1537 | * for the litlen and offset codes and assume the |
| 1538 | * codeword is '0' rather than '1'. We do the same |
| 1539 | * except we allow this for precodes too, since there's |
| 1540 | * no convincing reason to treat the codes differently. |
| 1541 | * We also assign both codewords '0' and '1' to the |
| 1542 | * symbol to avoid having to handle '1' specially. |
| 1543 | */ |
| 1544 | if codespace_used != 1 << (max_codeword_len - 1) || len_counts[1] != 1 |
| 1545 | { |
| 1546 | return Err(DecodeErrorStatus::Generic( |
| 1547 | "Cannot work with empty pre-code table" |
| 1548 | )); |
| 1549 | } |
| 1550 | make_decode_table_entry(decode_results, usize::from(sorted_syms[i]), 1) |
| 1551 | }; |
| 1552 | /* |
| 1553 | * Note: the decode table still must be fully initialized, in |
| 1554 | * case the stream is malformed and contains bits from the part |
| 1555 | * of the codespace the incomplete code doesn't use. |
| 1556 | */ |
| 1557 | decode_table.fill(entry); |
| 1558 | return Ok(()); |
| 1559 | } |
| 1560 | |
| 1561 | /* |
| 1562 | * The lengths form a complete code. Now, enumerate the codewords in |
| 1563 | * lexicographic order and fill the decode table entries for each one. |
| 1564 | * |
| 1565 | * First, process all codewords with len <= table_bits. Each one gets |
| 1566 | * '2^(table_bits-len)' direct entries in the table. |
| 1567 | * |
| 1568 | * Since DEFLATE uses bit-reversed codewords, these entries aren't |
| 1569 | * consecutive but rather are spaced '2^len' entries apart. This makes |
| 1570 | * filling them naively somewhat awkward and inefficient, since strided |
| 1571 | * stores are less cache-friendly and preclude the use of word or |
| 1572 | * vector-at-a-time stores to fill multiple entries per instruction. |
| 1573 | * |
| 1574 | * To optimize this, we incrementally double the table size. When |
| 1575 | * processing codewords with length 'len', the table is treated as |
| 1576 | * having only '2^len' entries, so each codeword uses just one entry. |
| 1577 | * Then, each time 'len' is incremented, the table size is doubled and |
| 1578 | * the first half is copied to the second half. This significantly |
| 1579 | * improves performance over naively doing strided stores. |
| 1580 | * |
| 1581 | * Note that some entries copied for each table doubling may not have |
| 1582 | * been initialized yet, but it doesn't matter since they're guaranteed |
| 1583 | * to be initialized later (because the Huffman code is complete). |
| 1584 | */ |
| 1585 | let mut codeword = 0; |
| 1586 | let mut len = 1; |
| 1587 | let mut count = len_counts[1]; |
| 1588 | |
| 1589 | while count == 0 |
| 1590 | { |
| 1591 | len += 1; |
| 1592 | |
| 1593 | if len >= len_counts.len() |
| 1594 | { |
| 1595 | break; |
| 1596 | } |
| 1597 | count = len_counts[len]; |
| 1598 | } |
| 1599 | |
| 1600 | let mut curr_table_end = 1 << len; |
| 1601 | |
| 1602 | while len <= table_bits |
| 1603 | { |
| 1604 | // Process all count codewords with length len |
| 1605 | loop |
| 1606 | { |
| 1607 | let entry = make_decode_table_entry( |
| 1608 | decode_results, |
| 1609 | usize::from(sorted_syms[i]), |
| 1610 | len as u32 |
| 1611 | ); |
| 1612 | i += 1; |
| 1613 | // fill first entry for current codeword |
| 1614 | decode_table[codeword] = entry; |
| 1615 | |
| 1616 | if codeword == curr_table_end - 1 |
| 1617 | { |
| 1618 | // last codeword (all 1's) |
| 1619 | for _ in len..table_bits |
| 1620 | { |
| 1621 | decode_table.copy_within(0..curr_table_end, curr_table_end); |
| 1622 | |
| 1623 | curr_table_end <<= 1; |
| 1624 | } |
| 1625 | return Ok(()); |
| 1626 | } |
| 1627 | /* |
| 1628 | * To advance to the lexicographically next codeword in |
| 1629 | * the canonical code, the codeword must be incremented, |
| 1630 | * then 0's must be appended to the codeword as needed |
| 1631 | * to match the next codeword's length. |
| 1632 | * |
| 1633 | * Since the codeword is bit-reversed, appending 0's is |
| 1634 | * a no-op. However, incrementing it is nontrivial. To |
| 1635 | * do so efficiently, use the 'bsr' instruction to find |
| 1636 | * the last (highest order) 0 bit in the codeword, set |
| 1637 | * it, and clear any later (higher order) 1 bits. But |
| 1638 | * 'bsr' actually finds the highest order 1 bit, so to |
| 1639 | * use it first flip all bits in the codeword by XOR' ing |
| 1640 | * it with (1U << len) - 1 == cur_table_end - 1. |
| 1641 | */ |
| 1642 | |
| 1643 | let adv = BITS - (codeword ^ (curr_table_end - 1)).leading_zeros(); |
| 1644 | let bit = 1 << adv; |
| 1645 | |
| 1646 | codeword &= bit - 1; |
| 1647 | codeword |= bit; |
| 1648 | count -= 1; |
| 1649 | |
| 1650 | if count == 0 |
| 1651 | { |
| 1652 | break; |
| 1653 | } |
| 1654 | } |
| 1655 | // advance to the next codeword length |
| 1656 | loop |
| 1657 | { |
| 1658 | len += 1; |
| 1659 | |
| 1660 | if len <= table_bits |
| 1661 | { |
| 1662 | // dest is decode_table[curr_table_end] |
| 1663 | // source is decode_table(start of table); |
| 1664 | // size is curr_table; |
| 1665 | |
| 1666 | decode_table.copy_within(0..curr_table_end, curr_table_end); |
| 1667 | |
| 1668 | //decode_table.copy_within(range, curr_table_end); |
| 1669 | curr_table_end <<= 1; |
| 1670 | } |
| 1671 | count = len_counts[len]; |
| 1672 | |
| 1673 | if count != 0 |
| 1674 | { |
| 1675 | break; |
| 1676 | } |
| 1677 | } |
| 1678 | } |
| 1679 | // process codewords with len > table_bits. |
| 1680 | // Require sub-tables |
| 1681 | curr_table_end = 1 << table_bits; |
| 1682 | |
| 1683 | let mut subtable_prefix = usize::MAX; |
| 1684 | let mut subtable_start = 0; |
| 1685 | let mut subtable_bits; |
| 1686 | |
| 1687 | loop |
| 1688 | { |
| 1689 | /* |
| 1690 | * Start a new sub-table if the first 'table_bits' bits of the |
| 1691 | * codeword don't match the prefix of the current subtable. |
| 1692 | */ |
| 1693 | if codeword & ((1_usize << table_bits) - 1) != subtable_prefix |
| 1694 | { |
| 1695 | subtable_prefix = codeword & ((1 << table_bits) - 1); |
| 1696 | subtable_start = curr_table_end; |
| 1697 | |
| 1698 | /* |
| 1699 | * Calculate the subtable length. If the codeword has |
| 1700 | * length 'table_bits + n', then the subtable needs |
| 1701 | * '2^n' entries. But it may need more; if fewer than |
| 1702 | * '2^n' codewords of length 'table_bits + n' remain, |
| 1703 | * then the length will need to be incremented to bring |
| 1704 | * in longer codewords until the subtable can be |
| 1705 | * completely filled. Note that because the Huffman |
| 1706 | * code is complete, it will always be possible to fill |
| 1707 | * the sub-table eventually. |
| 1708 | */ |
| 1709 | subtable_bits = len - table_bits; |
| 1710 | codespace_used = count; |
| 1711 | |
| 1712 | while codespace_used < (1 << subtable_bits) |
| 1713 | { |
| 1714 | subtable_bits += 1; |
| 1715 | |
| 1716 | if subtable_bits + table_bits > 15 |
| 1717 | { |
| 1718 | return Err(DecodeErrorStatus::CorruptData); |
| 1719 | } |
| 1720 | |
| 1721 | codespace_used = (codespace_used << 1) + len_counts[table_bits + subtable_bits]; |
| 1722 | } |
| 1723 | |
| 1724 | /* |
| 1725 | * Create the entry that points from the main table to |
| 1726 | * the subtable. |
| 1727 | */ |
| 1728 | decode_table[subtable_prefix] = (subtable_start as u32) << 16 |
| 1729 | | HUFFDEC_EXCEPTIONAL |
| 1730 | | HUFFDEC_SUITABLE_POINTER |
| 1731 | | (subtable_bits as u32) << 8 |
| 1732 | | table_bits as u32; |
| 1733 | |
| 1734 | curr_table_end = subtable_start + (1 << subtable_bits); |
| 1735 | } |
| 1736 | |
| 1737 | /* Fill the sub-table entries for the current codeword. */ |
| 1738 | |
| 1739 | let stride = 1 << (len - table_bits); |
| 1740 | |
| 1741 | let mut j = subtable_start + (codeword >> table_bits); |
| 1742 | |
| 1743 | let entry = make_decode_table_entry( |
| 1744 | decode_results, |
| 1745 | sorted_syms[i] as usize, |
| 1746 | (len - table_bits) as u32 |
| 1747 | ); |
| 1748 | i += 1; |
| 1749 | |
| 1750 | while j < curr_table_end |
| 1751 | { |
| 1752 | decode_table[j] = entry; |
| 1753 | j += stride; |
| 1754 | } |
| 1755 | //advance to the next codeword |
| 1756 | if codeword == (1 << len) - 1 |
| 1757 | { |
| 1758 | // last codeword |
| 1759 | return Ok(()); |
| 1760 | } |
| 1761 | |
| 1762 | let adv = BITS - (codeword ^ ((1 << len) - 1)).leading_zeros(); |
| 1763 | let bit = 1 << adv; |
| 1764 | |
| 1765 | codeword &= bit - 1; |
| 1766 | codeword |= bit; |
| 1767 | count -= 1; |
| 1768 | |
| 1769 | while count == 0 |
| 1770 | { |
| 1771 | len += 1; |
| 1772 | count = len_counts[len]; |
| 1773 | } |
| 1774 | } |
| 1775 | } |
| 1776 | } |
| 1777 | |
| 1778 | const RESIZE_BY: usize = 1024 * 4; // 4 kb |
| 1779 | |
| 1780 | /// Resize vector if its current space wont |
| 1781 | /// be able to store a new byte and then push an element to that new space |
| 1782 | #[inline(always)] |
| 1783 | fn resize_and_push(buf: &mut Vec<u8>, position: usize, elm: u8) |
| 1784 | { |
| 1785 | if buf.len() <= position |
| 1786 | { |
| 1787 | let new_len = buf.len() + RESIZE_BY; |
| 1788 | buf.resize(new_len, 0); |
| 1789 | } |
| 1790 | buf[position] = elm; |
| 1791 | } |