| /* |
| * Copyright 2006 Google Inc. |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| package com.google.common.geometry; |
| |
| import com.google.common.collect.Lists; |
| import com.google.common.collect.Maps; |
| import com.google.common.collect.Sets; |
| |
| import java.util.List; |
| import java.util.Map; |
| import java.util.Set; |
| import java.util.logging.Logger; |
| |
| /** |
| * Tests for {@link S2Loop}. |
| * |
| * Note that testLoopRelations2() is suppressed because it fails in corner |
| * cases due to a problem with S2.robustCCW(). |
| * |
| */ |
| public strictfp class S2LoopTest extends GeometryTestCase { |
| private static final Logger log = Logger.getLogger(S2LoopTest.class.getCanonicalName()); |
| |
| // A stripe that slightly over-wraps the equator. |
| private S2Loop candyCane = makeLoop("-20:150, -20:-70, 0:70, 10:-150, 10:70, -10:-70"); |
| |
| // A small clockwise loop in the northern & eastern hemisperes. |
| private S2Loop smallNeCw = makeLoop("35:20, 45:20, 40:25"); |
| |
| // Loop around the north pole at 80 degrees. |
| private S2Loop arctic80 = makeLoop("80:-150, 80:-30, 80:90"); |
| |
| // Loop around the south pole at 80 degrees. |
| private S2Loop antarctic80 = makeLoop("-80:120, -80:0, -80:-120"); |
| |
| // The northern hemisphere, defined using two pairs of antipodal points. |
| private S2Loop northHemi = makeLoop("0:-180, 0:-90, 0:0, 0:90"); |
| |
| // The northern hemisphere, defined using three points 120 degrees apart. |
| private S2Loop northHemi3 = makeLoop("0:-180, 0:-60, 0:60"); |
| |
| // The western hemisphere, defined using two pairs of antipodal points. |
| private S2Loop westHemi = makeLoop("0:-180, -90:0, 0:0, 90:0"); |
| |
| // The "near" hemisphere, defined using two pairs of antipodal points. |
| private S2Loop nearHemi = makeLoop("0:-90, -90:0, 0:90, 90:0"); |
| |
| // A diamond-shaped loop around the point 0:180. |
| private S2Loop loopA = makeLoop("0:178, -1:180, 0:-179, 1:-180"); |
| |
| // Another diamond-shaped loop around the point 0:180. |
| private S2Loop loopB = makeLoop("0:179, -1:180, 0:-178, 1:-180"); |
| |
| // The intersection of A and B. |
| private S2Loop aIntersectB = makeLoop("0:179, -1:180, 0:-179, 1:-180"); |
| |
| // The union of A and B. |
| private S2Loop aUnionB = makeLoop("0:178, -1:180, 0:-178, 1:-180"); |
| |
| // A minus B (concave) |
| private S2Loop aMinusB = makeLoop("0:178, -1:180, 0:179, 1:-180"); |
| |
| // B minus A (concave) |
| private S2Loop bMinusA = makeLoop("0:-179, -1:180, 0:-178, 1:-180"); |
| |
| // A self-crossing loop with a duplicated vertex |
| private S2Loop bowtie = makeLoop("0:0, 2:0, 1:1, 0:2, 2:2, 1:1"); |
| |
| // Initialized below. |
| private S2Loop southHemi; |
| private S2Loop eastHemi; |
| private S2Loop farHemi; |
| |
| @Override |
| public void setUp() { |
| super.setUp(); |
| southHemi = new S2Loop(northHemi); |
| southHemi.invert(); |
| |
| eastHemi = new S2Loop(westHemi); |
| eastHemi.invert(); |
| |
| farHemi = new S2Loop(nearHemi); |
| farHemi.invert(); |
| } |
| |
| public void testBounds() { |
| assertTrue(candyCane.getRectBound().lng().isFull()); |
| assertTrue(candyCane.getRectBound().latLo().degrees() < -20); |
| assertTrue(candyCane.getRectBound().latHi().degrees() > 10); |
| assertTrue(smallNeCw.getRectBound().isFull()); |
| assertEquals(arctic80.getRectBound(), |
| new S2LatLngRect(S2LatLng.fromDegrees(80, -180), S2LatLng.fromDegrees(90, 180))); |
| assertEquals(antarctic80.getRectBound(), |
| new S2LatLngRect(S2LatLng.fromDegrees(-90, -180), S2LatLng.fromDegrees(-80, 180))); |
| |
| arctic80.invert(); |
| // The highest latitude of each edge is attained at its midpoint. |
| S2Point mid = S2Point.mul(S2Point.add(arctic80.vertex(0), arctic80.vertex(1)), 0.5); |
| assertDoubleNear(arctic80.getRectBound().latHi().radians(), new S2LatLng(mid).lat().radians()); |
| arctic80.invert(); |
| |
| assertTrue(southHemi.getRectBound().lng().isFull()); |
| assertEquals(southHemi.getRectBound().lat(), new R1Interval(-S2.M_PI_2, 0)); |
| } |
| |
| public void testAreaCentroid() { |
| assertDoubleNear(northHemi.getArea(), 2 * S2.M_PI); |
| assertDoubleNear(eastHemi.getArea(), 2 * S2.M_PI); |
| |
| // Construct spherical caps of random height, and approximate their boundary |
| // with closely spaces vertices. Then check that the area and centroid are |
| // correct. |
| |
| for (int i = 0; i < 100; ++i) { |
| // Choose a coordinate frame for the spherical cap. |
| S2Point x = randomPoint(); |
| S2Point y = S2Point.normalize(S2Point.crossProd(x, randomPoint())); |
| S2Point z = S2Point.normalize(S2Point.crossProd(x, y)); |
| |
| // Given two points at latitude phi and whose longitudes differ by dtheta, |
| // the geodesic between the two points has a maximum latitude of |
| // atan(tan(phi) / cos(dtheta/2)). This can be derived by positioning |
| // the two points at (-dtheta/2, phi) and (dtheta/2, phi). |
| // |
| // We want to position the vertices close enough together so that their |
| // maximum distance from the boundary of the spherical cap is kMaxDist. |
| // Thus we want fabs(atan(tan(phi) / cos(dtheta/2)) - phi) <= kMaxDist. |
| double kMaxDist = 1e-6; |
| double height = 2 * rand.nextDouble(); |
| double phi = Math.asin(1 - height); |
| double maxDtheta = |
| 2 * Math.acos(Math.tan(Math.abs(phi)) / Math.tan(Math.abs(phi) + kMaxDist)); |
| maxDtheta = Math.min(S2.M_PI, maxDtheta); // At least 3 vertices. |
| |
| List<S2Point> vertices = Lists.newArrayList(); |
| for (double theta = 0; theta < 2 * S2.M_PI; theta += rand.nextDouble() * maxDtheta) { |
| |
| S2Point xCosThetaCosPhi = S2Point.mul(x, (Math.cos(theta) * Math.cos(phi))); |
| S2Point ySinThetaCosPhi = S2Point.mul(y, (Math.sin(theta) * Math.cos(phi))); |
| S2Point zSinPhi = S2Point.mul(z, Math.sin(phi)); |
| |
| S2Point sum = S2Point.add(S2Point.add(xCosThetaCosPhi, ySinThetaCosPhi), zSinPhi); |
| |
| vertices.add(sum); |
| } |
| |
| S2Loop loop = new S2Loop(vertices); |
| S2AreaCentroid areaCentroid = loop.getAreaAndCentroid(); |
| |
| double area = loop.getArea(); |
| S2Point centroid = loop.getCentroid(); |
| double expectedArea = 2 * S2.M_PI * height; |
| assertTrue(areaCentroid.getArea() == area); |
| assertTrue(centroid.equals(areaCentroid.getCentroid())); |
| assertTrue(Math.abs(area - expectedArea) <= 2 * S2.M_PI * kMaxDist); |
| |
| // high probability |
| assertTrue(Math.abs(area - expectedArea) >= 0.01 * kMaxDist); |
| |
| S2Point expectedCentroid = S2Point.mul(z, expectedArea * (1 - 0.5 * height)); |
| |
| assertTrue(S2Point.sub(centroid, expectedCentroid).norm() <= 2 * kMaxDist); |
| } |
| } |
| |
| private S2Loop rotate(S2Loop loop) { |
| List<S2Point> vertices = Lists.newArrayList(); |
| for (int i = 1; i <= loop.numVertices(); ++i) { |
| vertices.add(loop.vertex(i)); |
| } |
| return new S2Loop(vertices); |
| } |
| |
| public void testContains() { |
| assertTrue(candyCane.contains(S2LatLng.fromDegrees(5, 71).toPoint())); |
| for (int i = 0; i < 4; ++i) { |
| assertTrue(northHemi.contains(new S2Point(0, 0, 1))); |
| assertTrue(!northHemi.contains(new S2Point(0, 0, -1))); |
| assertTrue(!southHemi.contains(new S2Point(0, 0, 1))); |
| assertTrue(southHemi.contains(new S2Point(0, 0, -1))); |
| assertTrue(!westHemi.contains(new S2Point(0, 1, 0))); |
| assertTrue(westHemi.contains(new S2Point(0, -1, 0))); |
| assertTrue(eastHemi.contains(new S2Point(0, 1, 0))); |
| assertTrue(!eastHemi.contains(new S2Point(0, -1, 0))); |
| northHemi = rotate(northHemi); |
| southHemi = rotate(southHemi); |
| eastHemi = rotate(eastHemi); |
| westHemi = rotate(westHemi); |
| } |
| |
| // This code checks each cell vertex is contained by exactly one of |
| // the adjacent cells. |
| for (int level = 0; level < 3; ++level) { |
| List<S2Loop> loops = Lists.newArrayList(); |
| List<S2Point> loopVertices = Lists.newArrayList(); |
| Set<S2Point> points = Sets.newHashSet(); |
| for (S2CellId id = S2CellId.begin(level); !id.equals(S2CellId.end(level)); id = id.next()) { |
| S2Cell cell = new S2Cell(id); |
| points.add(cell.getCenter()); |
| for (int k = 0; k < 4; ++k) { |
| loopVertices.add(cell.getVertex(k)); |
| points.add(cell.getVertex(k)); |
| } |
| loops.add(new S2Loop(loopVertices)); |
| loopVertices.clear(); |
| } |
| for (S2Point point : points) { |
| int count = 0; |
| for (int j = 0; j < loops.size(); ++j) { |
| if (loops.get(j).contains(point)) { |
| ++count; |
| } |
| } |
| assertEquals(count, 1); |
| } |
| } |
| } |
| |
| private S2CellId advance(S2CellId id, int n) { |
| while (id.isValid() && --n >= 0) { |
| id = id.next(); |
| } |
| return id; |
| } |
| |
| private S2Loop makeCellLoop(S2CellId begin, S2CellId end) { |
| // Construct a CCW polygon whose boundary is the union of the cell ids |
| // in the range [begin, end). We add the edges one by one, removing |
| // any edges that are already present in the opposite direction. |
| |
| Map<S2Point, Set<S2Point>> edges = Maps.newHashMap(); |
| for (S2CellId id = begin; !id.equals(end); id = id.next()) { |
| S2Cell cell = new S2Cell(id); |
| for (int k = 0; k < 4; ++k) { |
| S2Point a = cell.getVertex(k); |
| S2Point b = cell.getVertex((k + 1) & 3); |
| if (edges.get(b) == null) { |
| edges.put(b, Sets.<S2Point>newHashSet()); |
| } |
| // if a is in b's set, remove it and remove b's set if it's empty |
| // otherwise, add b to a's set |
| if (!edges.get(b).remove(a)) { |
| if (edges.get(a) == null) { |
| edges.put(a, Sets.<S2Point>newHashSet()); |
| } |
| edges.get(a).add(b); |
| } else if (edges.get(b).isEmpty()) { |
| edges.remove(b); |
| } |
| } |
| } |
| |
| // The remaining edges form a single loop. We simply follow it starting |
| // at an arbitrary vertex and build up a list of vertices. |
| |
| List<S2Point> vertices = Lists.newArrayList(); |
| S2Point p = edges.keySet().iterator().next(); |
| while (!edges.isEmpty()) { |
| assertEquals(1, edges.get(p).size()); |
| S2Point next = edges.get(p).iterator().next(); |
| vertices.add(p); |
| edges.remove(p); |
| p = next; |
| } |
| return new S2Loop(vertices); |
| } |
| |
| private void assertRelation( |
| S2Loop a, S2Loop b, int containsOrCrosses, boolean intersects, boolean nestable) { |
| assertEquals(a.contains(b), containsOrCrosses == 1); |
| assertEquals(a.intersects(b), intersects); |
| if (nestable) { |
| assertEquals(a.containsNested(b), a.contains(b)); |
| } |
| if (containsOrCrosses >= -1) { |
| assertEquals(a.containsOrCrosses(b), containsOrCrosses); |
| } |
| } |
| |
| public void testLoopRelations() { |
| assertRelation(northHemi, northHemi, 1, true, false); |
| assertRelation(northHemi, southHemi, 0, false, false); |
| assertRelation(northHemi, eastHemi, -1, true, false); |
| assertRelation(northHemi, arctic80, 1, true, true); |
| assertRelation(northHemi, antarctic80, 0, false, true); |
| assertRelation(northHemi, candyCane, -1, true, false); |
| |
| // We can't compare northHemi3 vs. northHemi or southHemi. |
| assertRelation(northHemi3, northHemi3, 1, true, false); |
| assertRelation(northHemi3, eastHemi, -1, true, false); |
| assertRelation(northHemi3, arctic80, 1, true, true); |
| assertRelation(northHemi3, antarctic80, 0, false, true); |
| assertRelation(northHemi3, candyCane, -1, true, false); |
| |
| assertRelation(southHemi, northHemi, 0, false, false); |
| assertRelation(southHemi, southHemi, 1, true, false); |
| assertRelation(southHemi, farHemi, -1, true, false); |
| assertRelation(southHemi, arctic80, 0, false, true); |
| assertRelation(southHemi, antarctic80, 1, true, true); |
| assertRelation(southHemi, candyCane, -1, true, false); |
| |
| assertRelation(candyCane, northHemi, -1, true, false); |
| assertRelation(candyCane, southHemi, -1, true, false); |
| assertRelation(candyCane, arctic80, 0, false, true); |
| assertRelation(candyCane, antarctic80, 0, false, true); |
| assertRelation(candyCane, candyCane, 1, true, false); |
| |
| assertRelation(nearHemi, westHemi, -1, true, false); |
| |
| assertRelation(smallNeCw, southHemi, 1, true, false); |
| assertRelation(smallNeCw, westHemi, 1, true, false); |
| assertRelation(smallNeCw, northHemi, -2, true, false); |
| assertRelation(smallNeCw, eastHemi, -2, true, false); |
| |
| assertRelation(loopA, loopA, 1, true, false); |
| assertRelation(loopA, loopB, -1, true, false); |
| assertRelation(loopA, aIntersectB, 1, true, false); |
| assertRelation(loopA, aUnionB, 0, true, false); |
| assertRelation(loopA, aMinusB, 1, true, false); |
| assertRelation(loopA, bMinusA, 0, false, false); |
| |
| assertRelation(loopB, loopA, -1, true, false); |
| assertRelation(loopB, loopB, 1, true, false); |
| assertRelation(loopB, aIntersectB, 1, true, false); |
| assertRelation(loopB, aUnionB, 0, true, false); |
| assertRelation(loopB, aMinusB, 0, false, false); |
| assertRelation(loopB, bMinusA, 1, true, false); |
| |
| assertRelation(aIntersectB, loopA, 0, true, false); |
| assertRelation(aIntersectB, loopB, 0, true, false); |
| assertRelation(aIntersectB, aIntersectB, 1, true, false); |
| assertRelation(aIntersectB, aUnionB, 0, true, true); |
| assertRelation(aIntersectB, aMinusB, 0, false, false); |
| assertRelation(aIntersectB, bMinusA, 0, false, false); |
| |
| assertRelation(aUnionB, loopA, 1, true, false); |
| assertRelation(aUnionB, loopB, 1, true, false); |
| assertRelation(aUnionB, aIntersectB, 1, true, true); |
| assertRelation(aUnionB, aUnionB, 1, true, false); |
| assertRelation(aUnionB, aMinusB, 1, true, false); |
| assertRelation(aUnionB, bMinusA, 1, true, false); |
| |
| assertRelation(aMinusB, loopA, 0, true, false); |
| assertRelation(aMinusB, loopB, 0, false, false); |
| assertRelation(aMinusB, aIntersectB, 0, false, false); |
| assertRelation(aMinusB, aUnionB, 0, true, false); |
| assertRelation(aMinusB, aMinusB, 1, true, false); |
| assertRelation(aMinusB, bMinusA, 0, false, true); |
| |
| assertRelation(bMinusA, loopA, 0, false, false); |
| assertRelation(bMinusA, loopB, 0, true, false); |
| assertRelation(bMinusA, aIntersectB, 0, false, false); |
| assertRelation(bMinusA, aUnionB, 0, true, false); |
| assertRelation(bMinusA, aMinusB, 0, false, true); |
| assertRelation(bMinusA, bMinusA, 1, true, false); |
| } |
| |
| /** |
| * TODO(user, ericv) Fix this test. It fails sporadically. |
| * <p> |
| * The problem is not in this test, it is that |
| * {@link S2#robustCCW(S2Point, S2Point, S2Point)} currently requires |
| * arbitrary-precision arithmetic to be truly robust. That means it can give |
| * the wrong answers in cases where we are trying to determine edge |
| * intersections. |
| * <p> |
| * It seems the strictfp modifier here in java (required for correctness in |
| * other areas of the library) restricts the size of temporary registers, |
| * causing us to lose some of the precision that the C++ version gets. |
| * <p> |
| * This test fails when it randomly chooses a cell loop with nearly colinear |
| * edges. That's where S2.robustCCW provides the wrong answer. Note that there |
| * is an attempted workaround in {@link S2Loop#isValid()}, but it |
| * does not cover all cases. |
| */ |
| public void suppressedTestLoopRelations2() { |
| // Construct polygons consisting of a sequence of adjacent cell ids |
| // at some fixed level. Comparing two polygons at the same level |
| // ensures that there are no T-vertices. |
| for (int iter = 0; iter < 1000; ++iter) { |
| long num = rand.nextLong(); |
| S2CellId begin = new S2CellId(num | 1); |
| if (!begin.isValid()) { |
| continue; |
| } |
| begin = begin.parent((int) Math.round(rand.nextDouble() * S2CellId.MAX_LEVEL)); |
| S2CellId aBegin = advance(begin, skewed(6)); |
| S2CellId aEnd = advance(aBegin, skewed(6) + 1); |
| S2CellId bBegin = advance(begin, skewed(6)); |
| S2CellId bEnd = advance(bBegin, skewed(6) + 1); |
| if (!aEnd.isValid() || !bEnd.isValid()) { |
| continue; |
| } |
| |
| S2Loop a = makeCellLoop(aBegin, aEnd); |
| S2Loop b = makeCellLoop(bBegin, bEnd); |
| boolean contained = (aBegin.lessOrEquals(bBegin) && bEnd.lessOrEquals(aEnd)); |
| boolean intersects = (aBegin.lessThan(bEnd) && bBegin.lessThan(aEnd)); |
| log.info( |
| "Checking " + a.numVertices() + " vs. " + b.numVertices() + ", contained = " + contained |
| + ", intersects = " + intersects); |
| |
| assertEquals(contained, a.contains(b)); |
| assertEquals(intersects, a.intersects(b)); |
| } |
| } |
| |
| /** |
| * Tests that nearly colinear points pass S2Loop.isValid() |
| */ |
| public void testRoundingError() { |
| S2Point a = new S2Point(-0.9190364081111774, 0.17231932652084575, 0.35451111445694833); |
| S2Point b = new S2Point(-0.92130667053206, 0.17274500072476123, 0.3483578383756171); |
| S2Point c = new S2Point(-0.9257244057938284, 0.17357332608634282, 0.3360158106235289); |
| S2Point d = new S2Point(-0.9278712595449962, 0.17397586116468677, 0.32982923679138537); |
| |
| assertTrue(S2Loop.isValid(Lists.newArrayList(a, b, c, d))); |
| } |
| |
| /** |
| * Tests {@link S2Loop#isValid()}. |
| */ |
| public void testIsValid() { |
| assertTrue(loopA.isValid()); |
| assertTrue(loopB.isValid()); |
| assertFalse(bowtie.isValid()); |
| } |
| |
| /** |
| * Tests {@link S2Loop#compareTo(S2Loop)}. |
| */ |
| public void testComparisons() { |
| S2Loop abc = makeLoop("0:1, 0:2, 1:2"); |
| S2Loop abcd = makeLoop("0:1, 0:2, 1:2, 1:1"); |
| S2Loop abcde = makeLoop("0:1, 0:2, 1:2, 1:1, 1:0"); |
| assertTrue(abc.compareTo(abcd) < 0); |
| assertTrue(abc.compareTo(abcde) < 0); |
| assertTrue(abcd.compareTo(abcde) < 0); |
| assertTrue(abcd.compareTo(abc) > 0); |
| assertTrue(abcde.compareTo(abc) > 0); |
| assertTrue(abcde.compareTo(abcd) > 0); |
| |
| S2Loop bcda = makeLoop("0:2, 1:2, 1:1, 0:1"); |
| assertEquals(0, abcd.compareTo(bcda)); |
| assertEquals(0, bcda.compareTo(abcd)); |
| |
| S2Loop wxyz = makeLoop("10:11, 10:12, 11:12, 11:11"); |
| assertTrue(abcd.compareTo(wxyz) > 0); |
| assertTrue(wxyz.compareTo(abcd) < 0); |
| } |
| |
| public void testGetDistance() { |
| // Error margin since we're doing numerical computations |
| double epsilon = 1e-15; |
| |
| // A square with (lat,lng) vertices (0,1), (1,1), (1,2) and (0,2) |
| // Tests the case where the shortest distance is along a normal to an edge, |
| // onto a vertex |
| S2Loop s1 = makeLoop("0:1, 1:1, 1:2, 0:2"); |
| |
| // A square with (lat,lng) vertices (-1,1), (1,1), (1,2) and (-1,2) |
| // Tests the case where the shortest distance is along a normal to an edge, |
| // not onto a vertex |
| S2Loop s2 = makeLoop("-1:1, 1:1, 1:2, -1:2"); |
| |
| // A diamond with (lat,lng) vertices (1,0), (2,1), (3,0) and (2,-1) |
| // Test the case where the shortest distance is NOT along a normal to an |
| // edge |
| S2Loop s3 = makeLoop("1:0, 2:1, 3:0, 2:-1"); |
| |
| // All the vertices should be distance 0 |
| for (int i = 0; i < s1.numVertices(); i++) { |
| assertEquals(0d, s1.getDistance(s1.vertex(i)).radians(), epsilon); |
| } |
| |
| // A point on one of the edges should be distance 0 |
| assertEquals(0d, s1.getDistance(S2LatLng.fromDegrees(0.5, 1).toPoint()).radians(), epsilon); |
| |
| // In all three cases, the closest point to the origin is (0,1), which is at |
| // a distance of 1 degree. |
| // Note: all of these are intentionally distances measured along the |
| // equator, since that makes the math significantly simpler. Otherwise, the |
| // distance wouldn't actually be 1 degree. |
| S2Point origin = S2LatLng.fromDegrees(0, 0).toPoint(); |
| assertEquals(1d, s1.getDistance(origin).degrees(), epsilon); |
| assertEquals(1d, s2.getDistance(origin).degrees(), epsilon); |
| assertEquals(1d, s3.getDistance(origin).degrees(), epsilon); |
| } |
| |
| /** |
| * This function is useful for debugging. |
| */ |
| @SuppressWarnings("unused") |
| private void dumpCrossings(S2Loop loop) { |
| |
| System.out.println("Ortho(v1): " + S2.ortho(loop.vertex(1))); |
| System.out.printf("Contains(kOrigin): %b\n", loop.contains(S2.origin())); |
| for (int i = 1; i <= loop.numVertices(); ++i) { |
| S2Point a = S2.ortho(loop.vertex(i)); |
| S2Point b = loop.vertex(i - 1); |
| S2Point c = loop.vertex(i + 1); |
| S2Point o = loop.vertex(i); |
| System.out.printf("Vertex %d: [%.17g, %.17g, %.17g], " |
| + "%d%dR=%d, %d%d%d=%d, R%d%d=%d, inside: %b\n", |
| i, |
| loop.vertex(i).x, |
| loop.vertex(i).y, |
| loop.vertex(i).z, |
| i - 1, |
| i, |
| S2.robustCCW(b, o, a), |
| i + 1, |
| i, |
| i - 1, |
| S2.robustCCW(c, o, b), |
| i, |
| i + 1, |
| S2.robustCCW(a, o, c), |
| S2.orderedCCW(a, b, c, o)); |
| } |
| for (int i = 0; i < loop.numVertices() + 2; ++i) { |
| S2Point orig = S2.origin(); |
| S2Point dest; |
| if (i < loop.numVertices()) { |
| dest = loop.vertex(i); |
| System.out.printf("Origin->%d crosses:", i); |
| } else { |
| dest = new S2Point(0, 0, 1); |
| if (i == loop.numVertices() + 1) { |
| orig = loop.vertex(1); |
| } |
| System.out.printf("Case %d:", i); |
| } |
| for (int j = 0; j < loop.numVertices(); ++j) { |
| System.out.println( |
| " " + S2EdgeUtil.edgeOrVertexCrossing(orig, dest, loop.vertex(j), loop.vertex(j + 1))); |
| } |
| System.out.println(); |
| } |
| for (int i = 0; i <= 2; i += 2) { |
| System.out.printf("Origin->v1 crossing v%d->v1: ", i); |
| S2Point a = S2.ortho(loop.vertex(1)); |
| S2Point b = loop.vertex(i); |
| S2Point c = S2.origin(); |
| S2Point o = loop.vertex(1); |
| System.out.printf("%d1R=%d, M1%d=%d, R1M=%d, crosses: %b\n", |
| i, |
| S2.robustCCW(b, o, a), |
| i, |
| S2.robustCCW(c, o, b), |
| S2.robustCCW(a, o, c), |
| S2EdgeUtil.edgeOrVertexCrossing(c, o, b, a)); |
| } |
| } |
| } |