blob: 54f240267dd6fd8ee53683f41e5d8961f105870f [file] [log] [blame]
#include <assert.h>
#include <pthread.h>
#include <stdint.h>
#include <stdio.h>
#include <string.h>
#include "regex.h"
#include "label_file.h"
#include "selinux_internal.h"
#ifdef USE_PCRE2
#define REGEX_ARCH_SIZE_T PCRE2_SIZE
#else
#define REGEX_ARCH_SIZE_T size_t
#endif
#ifndef __BYTE_ORDER__
/* If the compiler doesn't define __BYTE_ORDER__, try to use the C
* library <endian.h> header definitions. */
#include <endian.h>
#ifndef __BYTE_ORDER
#error Neither __BYTE_ORDER__ nor __BYTE_ORDER defined. Unable to determine endianness.
#endif
#define __ORDER_LITTLE_ENDIAN __LITTLE_ENDIAN
#define __ORDER_BIG_ENDIAN __BIG_ENDIAN
#define __BYTE_ORDER__ __BYTE_ORDER
#endif
#ifdef USE_PCRE2
static pthread_key_t match_data_key;
static int match_data_key_initialized = -1;
static pthread_mutex_t key_mutex = PTHREAD_MUTEX_INITIALIZER;
static __thread char match_data_initialized;
char const *regex_arch_string(void)
{
static char arch_string_buffer[32];
static char const *arch_string = "";
char const *endianness = NULL;
int rc;
if (arch_string[0] == '\0') {
if (__BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__)
endianness = "el";
else if (__BYTE_ORDER__ == __ORDER_BIG_ENDIAN__)
endianness = "eb";
if (!endianness)
return NULL;
rc = snprintf(arch_string_buffer, sizeof(arch_string_buffer),
"%zu-%zu-%s", sizeof(void *),
sizeof(REGEX_ARCH_SIZE_T),
endianness);
if (rc < 0)
abort();
arch_string = &arch_string_buffer[0];
}
return arch_string;
}
struct regex_data {
pcre2_code *regex; /* compiled regular expression */
};
int regex_prepare_data(struct regex_data **regex, char const *pattern_string,
struct regex_error_data *errordata)
{
memset(errordata, 0, sizeof(struct regex_error_data));
*regex = regex_data_create();
if (!(*regex))
return -1;
(*regex)->regex = pcre2_compile(
(PCRE2_SPTR)pattern_string, PCRE2_ZERO_TERMINATED, PCRE2_DOTALL,
&errordata->error_code, &errordata->error_offset, NULL);
if (!(*regex)->regex) {
goto err;
}
return 0;
err:
regex_data_free(*regex);
*regex = NULL;
return -1;
}
char const *regex_version(void)
{
static char version_buf[256];
size_t len = pcre2_config(PCRE2_CONFIG_VERSION, NULL);
if (len <= 0 || len > sizeof(version_buf))
return NULL;
pcre2_config(PCRE2_CONFIG_VERSION, version_buf);
return version_buf;
}
int regex_load_mmap(struct mmap_area *mmap_area, struct regex_data **regex,
int do_load_precompregex, bool *regex_compiled)
{
int rc;
uint32_t entry_len;
*regex_compiled = false;
rc = next_entry(&entry_len, mmap_area, sizeof(uint32_t));
if (rc < 0)
return -1;
if (entry_len && do_load_precompregex) {
/*
* this should yield exactly one because we store one pattern at
* a time
*/
rc = pcre2_serialize_get_number_of_codes(mmap_area->next_addr);
if (rc != 1)
return -1;
*regex = regex_data_create();
if (!*regex)
return -1;
rc = pcre2_serialize_decode(&(*regex)->regex, 1,
(PCRE2_SPTR)mmap_area->next_addr,
NULL);
if (rc != 1)
goto err;
*regex_compiled = true;
}
/* and skip the decoded bit */
rc = next_entry(NULL, mmap_area, entry_len);
if (rc < 0)
goto err;
return 0;
err:
regex_data_free(*regex);
*regex = NULL;
return -1;
}
int regex_writef(struct regex_data *regex, FILE *fp, int do_write_precompregex)
{
int rc = 0;
size_t len;
PCRE2_SIZE serialized_size;
uint32_t to_write = 0;
PCRE2_UCHAR *bytes = NULL;
if (do_write_precompregex) {
/* encode the pattern for serialization */
rc = pcre2_serialize_encode((const pcre2_code **)&regex->regex,
1, &bytes, &serialized_size, NULL);
if (rc != 1) {
rc = -1;
goto out;
}
to_write = serialized_size;
}
/* write serialized pattern's size */
len = fwrite(&to_write, sizeof(uint32_t), 1, fp);
if (len != 1) {
rc = -1;
goto out;
}
if (do_write_precompregex) {
/* write serialized pattern */
len = fwrite(bytes, 1, to_write, fp);
if (len != to_write)
rc = -1;
}
out:
if (bytes)
pcre2_serialize_free(bytes);
return rc;
}
static void __attribute__((destructor)) match_data_thread_free(void *key)
{
void *value;
pcre2_match_data *match_data;
if (match_data_key_initialized <= 0 || !match_data_initialized)
return;
value = __selinux_getspecific(match_data_key);
match_data = value ? value : key;
pcre2_match_data_free(match_data);
__pthread_mutex_lock(&key_mutex);
if (--match_data_key_initialized == 1) {
__selinux_key_delete(match_data_key);
match_data_key_initialized = -1;
}
__pthread_mutex_unlock(&key_mutex);
}
void regex_data_free(struct regex_data *regex)
{
if (regex) {
if (regex->regex)
pcre2_code_free(regex->regex);
free(regex);
}
}
int regex_match(struct regex_data *regex, char const *subject, int partial)
{
int rc;
bool slow;
pcre2_match_data *match_data = NULL;
if (match_data_key_initialized > 0) {
if (match_data_initialized == 0) {
match_data = pcre2_match_data_create(1, NULL);
if (match_data) {
match_data_initialized = 1;
__selinux_setspecific(match_data_key,
match_data);
__pthread_mutex_lock(&key_mutex);
match_data_key_initialized++;
__pthread_mutex_unlock(&key_mutex);
}
} else
match_data = __selinux_getspecific(match_data_key);
}
slow = (match_data_key_initialized <= 0 || match_data == NULL);
if (slow) {
match_data = pcre2_match_data_create_from_pattern(regex->regex,
NULL);
if (!match_data)
return REGEX_ERROR;
}
rc = pcre2_match(
regex->regex, (PCRE2_SPTR)subject, PCRE2_ZERO_TERMINATED, 0,
partial ? PCRE2_PARTIAL_SOFT : 0, match_data, NULL);
if (slow)
pcre2_match_data_free(match_data);
if (rc >= 0)
return REGEX_MATCH;
switch (rc) {
case PCRE2_ERROR_PARTIAL:
return REGEX_MATCH_PARTIAL;
case PCRE2_ERROR_NOMATCH:
return REGEX_NO_MATCH;
default:
return REGEX_ERROR;
}
}
/*
* TODO Replace this compare function with something that actually compares the
* regular expressions.
* This compare function basically just compares the binary representations of
* the automatons, and because this representation contains pointers and
* metadata, it can only return a match if regex1 == regex2.
* Preferably, this function would be replaced with an algorithm that computes
* the equivalence of the automatons systematically.
*/
int regex_cmp(struct regex_data *regex1, struct regex_data *regex2)
{
int rc;
size_t len1, len2;
rc = pcre2_pattern_info(regex1->regex, PCRE2_INFO_SIZE, &len1);
assert(rc == 0);
rc = pcre2_pattern_info(regex2->regex, PCRE2_INFO_SIZE, &len2);
assert(rc == 0);
if (len1 != len2 || memcmp(regex1->regex, regex2->regex, len1))
return SELABEL_INCOMPARABLE;
return SELABEL_EQUAL;
}
struct regex_data *regex_data_create(void)
{
struct regex_data *regex_data =
(struct regex_data *)calloc(1, sizeof(struct regex_data));
if (!regex_data)
return NULL;
__pthread_mutex_lock(&key_mutex);
if (match_data_key_initialized < 0) {
match_data_key_initialized = !__selinux_key_create(
&match_data_key,
match_data_thread_free);
}
__pthread_mutex_unlock(&key_mutex);
return regex_data;
}
#else // !USE_PCRE2
char const *regex_arch_string(void)
{
return "N/A";
}
/* Prior to version 8.20, libpcre did not have pcre_free_study() */
#if (PCRE_MAJOR < 8 || (PCRE_MAJOR == 8 && PCRE_MINOR < 20))
#define pcre_free_study pcre_free
#endif
struct regex_data {
int owned; /*
* non zero if regex and pcre_extra is owned by this
* structure and thus must be freed on destruction.
*/
pcre *regex; /* compiled regular expression */
union {
pcre_extra *sd; /* pointer to extra compiled stuff */
pcre_extra lsd; /* used to hold the mmap'd version */
};
};
int regex_prepare_data(struct regex_data **regex, char const *pattern_string,
struct regex_error_data *errordata)
{
memset(errordata, 0, sizeof(struct regex_error_data));
*regex = regex_data_create();
if (!(*regex))
return -1;
(*regex)->regex =
pcre_compile(pattern_string, PCRE_DOTALL, &errordata->error_buffer,
&errordata->error_offset, NULL);
if (!(*regex)->regex)
goto err;
(*regex)->owned = 1;
(*regex)->sd = pcre_study((*regex)->regex, 0, &errordata->error_buffer);
if (!(*regex)->sd && errordata->error_buffer)
goto err;
return 0;
err:
regex_data_free(*regex);
*regex = NULL;
return -1;
}
char const *regex_version(void)
{
return pcre_version();
}
int regex_load_mmap(struct mmap_area *mmap_area, struct regex_data **regex,
int do_load_precompregex __attribute__((unused)), bool *regex_compiled)
{
int rc;
uint32_t entry_len;
size_t info_len;
rc = next_entry(&entry_len, mmap_area, sizeof(uint32_t));
if (rc < 0 || !entry_len)
return -1;
*regex = regex_data_create();
if (!(*regex))
return -1;
(*regex)->owned = 0;
(*regex)->regex = (pcre *)mmap_area->next_addr;
rc = next_entry(NULL, mmap_area, entry_len);
if (rc < 0)
goto err;
/*
* Check that regex lengths match. pcre_fullinfo()
* also validates its magic number.
*/
rc = pcre_fullinfo((*regex)->regex, NULL, PCRE_INFO_SIZE, &info_len);
if (rc < 0 || info_len != entry_len)
goto err;
rc = next_entry(&entry_len, mmap_area, sizeof(uint32_t));
if (rc < 0)
goto err;
if (entry_len) {
(*regex)->lsd.study_data = (void *)mmap_area->next_addr;
(*regex)->lsd.flags |= PCRE_EXTRA_STUDY_DATA;
rc = next_entry(NULL, mmap_area, entry_len);
if (rc < 0)
goto err;
/* Check that study data lengths match. */
rc = pcre_fullinfo((*regex)->regex, &(*regex)->lsd,
PCRE_INFO_STUDYSIZE, &info_len);
if (rc < 0 || info_len != entry_len)
goto err;
}
*regex_compiled = true;
return 0;
err:
regex_data_free(*regex);
*regex = NULL;
return -1;
}
static inline pcre_extra *get_pcre_extra(struct regex_data *regex)
{
if (!regex) return NULL;
if (regex->owned) {
return regex->sd;
} else if (regex->lsd.study_data) {
return &regex->lsd;
} else {
return NULL;
}
}
int regex_writef(struct regex_data *regex, FILE *fp,
int do_write_precompregex __attribute__((unused)))
{
int rc;
size_t len;
uint32_t to_write;
size_t size;
pcre_extra *sd = get_pcre_extra(regex);
/* determine the size of the pcre data in bytes */
rc = pcre_fullinfo(regex->regex, NULL, PCRE_INFO_SIZE, &size);
if (rc < 0)
return -1;
/* write the number of bytes in the pcre data */
to_write = size;
len = fwrite(&to_write, sizeof(uint32_t), 1, fp);
if (len != 1)
return -1;
/* write the actual pcre data as a char array */
len = fwrite(regex->regex, 1, to_write, fp);
if (len != to_write)
return -1;
if (sd) {
/* determine the size of the pcre study info */
rc =
pcre_fullinfo(regex->regex, sd, PCRE_INFO_STUDYSIZE, &size);
if (rc < 0)
return -1;
} else
size = 0;
/* write the number of bytes in the pcre study data */
to_write = size;
len = fwrite(&to_write, sizeof(uint32_t), 1, fp);
if (len != 1)
return -1;
if (sd) {
/* write the actual pcre study data as a char array */
len = fwrite(sd->study_data, 1, to_write, fp);
if (len != to_write)
return -1;
}
return 0;
}
void regex_data_free(struct regex_data *regex)
{
if (regex) {
if (regex->owned) {
if (regex->regex)
pcre_free(regex->regex);
if (regex->sd)
pcre_free_study(regex->sd);
}
free(regex);
}
}
int regex_match(struct regex_data *regex, char const *subject, int partial)
{
int rc;
rc = pcre_exec(regex->regex, get_pcre_extra(regex),
subject, strlen(subject), 0,
partial ? PCRE_PARTIAL_SOFT : 0, NULL, 0);
switch (rc) {
case 0:
return REGEX_MATCH;
case PCRE_ERROR_PARTIAL:
return REGEX_MATCH_PARTIAL;
case PCRE_ERROR_NOMATCH:
return REGEX_NO_MATCH;
default:
return REGEX_ERROR;
}
}
/*
* TODO Replace this compare function with something that actually compares the
* regular expressions.
* This compare function basically just compares the binary representations of
* the automatons, and because this representation contains pointers and
* metadata, it can only return a match if regex1 == regex2.
* Preferably, this function would be replaced with an algorithm that computes
* the equivalence of the automatons systematically.
*/
int regex_cmp(struct regex_data *regex1, struct regex_data *regex2)
{
int rc;
size_t len1, len2;
rc = pcre_fullinfo(regex1->regex, NULL, PCRE_INFO_SIZE, &len1);
assert(rc == 0);
rc = pcre_fullinfo(regex2->regex, NULL, PCRE_INFO_SIZE, &len2);
assert(rc == 0);
if (len1 != len2 || memcmp(regex1->regex, regex2->regex, len1))
return SELABEL_INCOMPARABLE;
return SELABEL_EQUAL;
}
struct regex_data *regex_data_create(void)
{
return (struct regex_data *)calloc(1, sizeof(struct regex_data));
}
#endif
void regex_format_error(struct regex_error_data const *error_data, char *buffer,
size_t buf_size)
{
unsigned the_end_length = buf_size > 4 ? 4 : buf_size;
char *ptr = &buffer[buf_size - the_end_length];
int rc = 0;
size_t pos = 0;
if (!buffer || !buf_size)
return;
rc = snprintf(buffer, buf_size, "REGEX back-end error: ");
if (rc < 0)
/*
* If snprintf fails it constitutes a logical error that needs
* fixing.
*/
abort();
pos += rc;
if (pos >= buf_size)
goto truncated;
/* Return early if there is no error to format */
#ifdef USE_PCRE2
if (!error_data->error_code) {
rc = snprintf(buffer + pos, buf_size - pos, "no error code");
if (rc < 0)
abort();
pos += rc;
if (pos >= buf_size)
goto truncated;
return;
}
#else
if (!error_data->error_buffer) {
rc = snprintf(buffer + pos, buf_size - pos, "empty error");
if (rc < 0)
abort();
pos += rc;
if (pos >= buf_size)
goto truncated;
return;
}
#endif
if (error_data->error_offset > 0) {
#ifdef USE_PCRE2
rc = snprintf(buffer + pos, buf_size - pos, "At offset %zu: ",
error_data->error_offset);
#else
rc = snprintf(buffer + pos, buf_size - pos, "At offset %d: ",
error_data->error_offset);
#endif
if (rc < 0)
abort();
pos += rc;
if (pos >= buf_size)
goto truncated;
}
#ifdef USE_PCRE2
rc = pcre2_get_error_message(error_data->error_code,
(PCRE2_UCHAR *)(buffer + pos),
buf_size - pos);
if (rc == PCRE2_ERROR_NOMEMORY)
goto truncated;
#else
rc = snprintf(buffer + pos, buf_size - pos, "%s",
error_data->error_buffer);
if (rc < 0)
abort();
if ((size_t)rc < strlen(error_data->error_buffer))
goto truncated;
#endif
return;
truncated:
/* replace end of string with "..." to indicate that it was truncated */
switch (the_end_length) {
/* no break statements, fall-through is intended */
case 4:
*ptr++ = '.';
/* FALLTHRU */
case 3:
*ptr++ = '.';
/* FALLTHRU */
case 2:
*ptr++ = '.';
/* FALLTHRU */
case 1:
*ptr++ = '\0';
/* FALLTHRU */
default:
break;
}
return;
}