| #ifndef SG_LIB_H |
| #define SG_LIB_H |
| |
| /* |
| * Copyright (c) 2004-2022 Douglas Gilbert. |
| * All rights reserved. |
| * Use of this source code is governed by a BSD-style |
| * license that can be found in the BSD_LICENSE file. |
| * |
| * SPDX-License-Identifier: BSD-2-Clause |
| */ |
| |
| /* |
| * |
| * On 5th October 2004 a FreeBSD license was added to this file. |
| * The intention is to keep this file and the related sg_lib.c file |
| * as open source and encourage their unencumbered use. |
| * |
| * Current version number of this library is in the sg_lib_data.c file and |
| * can be accessed with the sg_lib_version() function. |
| */ |
| |
| |
| /* |
| * This header file contains defines and function declarations that may |
| * be useful to applications that communicate with devices that use a |
| * SCSI command set. These command sets have names like SPC-4, SBC-3, |
| * SSC-3, SES-2 and draft standards defining them can be found at |
| * https://www.t10.org . Virtually all devices in the Linux SCSI subsystem |
| * utilize SCSI command sets. Many devices in other Linux device subsystems |
| * utilize SCSI command sets either natively or via emulation (e.g. a |
| * SATA disk in a USB enclosure). |
| */ |
| |
| #include <stdio.h> |
| #include <stdint.h> |
| #include <stdbool.h> |
| |
| #ifdef __cplusplus |
| extern "C" { |
| #endif |
| |
| /* SCSI Peripheral Device Types (PDT) [5 bit field] */ |
| #define PDT_DISK 0x0 /* direct access block device (disk) */ |
| #define PDT_TAPE 0x1 /* sequential access device (magnetic tape) */ |
| #define PDT_PRINTER 0x2 /* printer device (see SSC-1) */ |
| #define PDT_PROCESSOR 0x3 /* processor device (e.g. SAFTE device) */ |
| #define PDT_WO 0x4 /* write once device (some optical disks) */ |
| #define PDT_MMC 0x5 /* CD/DVD/BD (multi-media) */ |
| #define PDT_SCANNER 0x6 /* obsolete */ |
| #define PDT_OPTICAL 0x7 /* optical memory device (some optical disks) */ |
| #define PDT_MCHANGER 0x8 /* media changer device (e.g. tape robot) */ |
| #define PDT_COMMS 0x9 /* communications device (obsolete) */ |
| #define PDT_SAC 0xc /* storage array controller device */ |
| #define PDT_SES 0xd /* SCSI Enclosure Services (SES) device */ |
| #define PDT_RBC 0xe /* Reduced Block Commands (simplified PDT_DISK) */ |
| #define PDT_OCRW 0xf /* optical card read/write device */ |
| #define PDT_BCC 0x10 /* bridge controller commands */ |
| #define PDT_OSD 0x11 /* Object Storage Device (OSD) */ |
| #define PDT_ADC 0x12 /* Automation/drive commands (ADC) */ |
| #define PDT_SMD 0x13 /* Security Manager Device (SMD) */ |
| #define PDT_ZBC 0x14 /* Zoned Block Commands (ZBC) */ |
| #define PDT_WLUN 0x1e /* Well known logical unit (WLUN) */ |
| #define PDT_UNKNOWN 0x1f /* Unknown or no device type */ |
| #define PDT_MASK 0x1f /* For byte 0 of INQUIRY response */ |
| #define PDT_MAX 0x1f |
| |
| #define GRPNUM_MASK 0x3f |
| |
| /* ZBC disks use either PDT_ZBC (if 'host managed') or PDT_DISK . |
| * So squeeze two PDTs into one integer. Use sg_pdt_s_eq() to compare. |
| * N.B. Must not use PDT_DISK as upper */ |
| #define PDT_DISK_ZBC (PDT_DISK | (PDT_ZBC << 8)) |
| #define PDT_ALL (-1) /* for common to all PDTs */ |
| #define PDT_LOWER_MASK 0xff |
| #define PDT_UPPER_MASK (~PDT_LOWER_MASK) |
| |
| #ifndef SAM_STAT_GOOD |
| /* The SCSI status codes as found in SAM-4 at www.t10.org */ |
| #define SAM_STAT_GOOD 0x0 |
| #define SAM_STAT_CHECK_CONDITION 0x2 |
| #define SAM_STAT_CONDITION_MET 0x4 /* this is not an error */ |
| #define SAM_STAT_BUSY 0x8 |
| #define SAM_STAT_INTERMEDIATE 0x10 /* obsolete in SAM-4 */ |
| #define SAM_STAT_INTERMEDIATE_CONDITION_MET 0x14 /* obsolete in SAM-4 */ |
| #define SAM_STAT_RESERVATION_CONFLICT 0x18 |
| #define SAM_STAT_COMMAND_TERMINATED 0x22 /* obsolete in SAM-3 */ |
| #define SAM_STAT_TASK_SET_FULL 0x28 |
| #define SAM_STAT_ACA_ACTIVE 0x30 |
| #define SAM_STAT_TASK_ABORTED 0x40 |
| #endif |
| |
| /* The SCSI sense key codes as found in SPC-4 at www.t10.org */ |
| #define SPC_SK_NO_SENSE 0x0 |
| #define SPC_SK_RECOVERED_ERROR 0x1 |
| #define SPC_SK_NOT_READY 0x2 |
| #define SPC_SK_MEDIUM_ERROR 0x3 |
| #define SPC_SK_HARDWARE_ERROR 0x4 |
| #define SPC_SK_ILLEGAL_REQUEST 0x5 |
| #define SPC_SK_UNIT_ATTENTION 0x6 |
| #define SPC_SK_DATA_PROTECT 0x7 |
| #define SPC_SK_BLANK_CHECK 0x8 |
| #define SPC_SK_VENDOR_SPECIFIC 0x9 |
| #define SPC_SK_COPY_ABORTED 0xa |
| #define SPC_SK_ABORTED_COMMAND 0xb |
| #define SPC_SK_RESERVED 0xc |
| #define SPC_SK_VOLUME_OVERFLOW 0xd |
| #define SPC_SK_MISCOMPARE 0xe |
| #define SPC_SK_COMPLETED 0xf |
| |
| /* Transport protocol identifiers or just Protocol identifiers */ |
| #define TPROTO_FCP 0 |
| #define TPROTO_SPI 1 |
| #define TPROTO_SSA 2 |
| #define TPROTO_1394 3 |
| #define TPROTO_SRP 4 /* SCSI over RDMA */ |
| #define TPROTO_ISCSI 5 |
| #define TPROTO_SAS 6 |
| #define TPROTO_ADT 7 |
| #define TPROTO_ATA 8 |
| #define TPROTO_UAS 9 /* USB attached SCSI */ |
| #define TPROTO_SOP 0xa /* SCSI over PCIe */ |
| #define TPROTO_PCIE 0xb /* includes NVMe */ |
| #define TPROTO_NONE 0xf |
| |
| /* SCSI Feature Sets (sfs) */ |
| #define SCSI_FS_SPC_DISCOVERY_2016 0x1 |
| #define SCSI_FS_SBC_BASE_2010 0x102 |
| #define SCSI_FS_SBC_BASE_2016 0x101 |
| #define SCSI_FS_SBC_BASIC_PROV_2016 0x103 |
| #define SCSI_FS_SBC_DRIVE_MAINT_2016 0x104 |
| #define SCSI_FS_ZBC_HOST_AWARE_2020 0x300 |
| #define SCSI_FS_ZBC_HOST_MANAGED_2020 0x301 |
| #define SCSI_FS_ZBC_DOMAINS_REALMS_2020 0x302 |
| |
| /* Often SCSI responses use the highest integer that can fit in a field |
| * to indicate "unbounded" or limit does not apply. Sometimes represented |
| * in output as "-1" for brevity */ |
| #define SG_LIB_UNBOUNDED_16BIT 0xffff |
| #define SG_LIB_UNBOUNDED_32BIT 0xffffffffU |
| #define SG_LIB_UNBOUNDED_64BIT 0xffffffffffffffffULL |
| |
| #if (__STDC_VERSION__ >= 199901L) /* C99 or later */ |
| typedef uintptr_t sg_uintptr_t; |
| #else |
| typedef unsigned long sg_uintptr_t; |
| #endif |
| |
| /* Borrowed from Linux kernel; no check that 'arr' actually is one */ |
| #define SG_ARRAY_SIZE(arr) (sizeof(arr) / sizeof((arr)[0])) |
| |
| /* Doesn't seem to be a common C and C++ technique for clearing an |
| * aggregrate (e.g. a struct instance) on the stack. Hence this hack: */ |
| #ifdef __cplusplus |
| #define SG_C_CPP_ZERO_INIT {} |
| #else |
| #define SG_C_CPP_ZERO_INIT ={0} |
| #endif |
| |
| |
| /* The format of the version string is like this: "2.26 20170906" */ |
| const char * sg_lib_version(); |
| |
| /* Returns length of SCSI command given the opcode (first byte). |
| * Yields the wrong answer for variable length commands (opcode=0x7f) |
| * and potentially some vendor specific commands. */ |
| int sg_get_command_size(uint8_t cdb_byte0); |
| |
| /* Command name given pointer to the cdb. Certain command names |
| * depend on peripheral type (give 0 or -1 if unknown). Places command |
| * name into buff and will write no more than buff_len bytes. */ |
| void sg_get_command_name(const uint8_t * cdbp, int peri_type, int buff_len, |
| char * buff); |
| |
| /* Command name given only the first byte (byte 0) of a cdb and |
| * peripheral type (give 0 or -1 if unknown). */ |
| void sg_get_opcode_name(uint8_t cdb_byte0, int peri_type, int buff_len, |
| char * buff); |
| |
| /* Command name given opcode (byte 0), service action and peripheral type. |
| * If no service action give 0, if unknown peripheral type give 0 or -1 . */ |
| void sg_get_opcode_sa_name(uint8_t cdb_byte0, int service_action, |
| int peri_type, int buff_len, char * buff); |
| |
| /* Fetch NVMe command name given first byte (byte offset 0 in 64 byte |
| * command) of command. Gets Admin NVMe command name if 'admin' is true |
| * (e.g. opcode=0x6 -> Identify), otherwise gets NVM command set name |
| * (e.g. opcode=0 -> Flush). Returns 'buff'. */ |
| char * sg_get_nvme_opcode_name(uint8_t cmd_byte0, bool admin, int buff_len, |
| char * buff); |
| |
| /* Fetch scsi status string. */ |
| void sg_get_scsi_status_str(int scsi_status, int buff_len, char * buff); |
| |
| /* This is a slightly stretched SCSI sense "descriptor" format header. |
| * The addition is to allow the 0x70 and 0x71 response codes. The idea |
| * is to place the salient data of both "fixed" and "descriptor" sense |
| * format into one structure to ease application processing. |
| * The original sense buffer should be kept around for those cases |
| * in which more information is required (e.g. the LBA of a MEDIUM ERROR). */ |
| struct sg_scsi_sense_hdr { |
| uint8_t response_code; /* permit: 0x0, 0x70, 0x71, 0x72, 0x73 */ |
| uint8_t sense_key; |
| uint8_t asc; |
| uint8_t ascq; |
| uint8_t byte4; /* descriptor: SDAT_OVFL; fixed: lower three ... */ |
| uint8_t byte5; /* ... bytes of INFO field */ |
| uint8_t byte6; |
| uint8_t additional_length; /* zero for fixed format sense data */ |
| }; |
| |
| /* The '_is_good()' returns true when status is SAM_STAT_GOOD or |
| * SAM_STAT_CONDITION_MET, returns false otherwise. Ignores bit 0. The |
| * '_is_bad() variant is the logical inverse. */ |
| bool sg_scsi_status_is_good(int sstatus); |
| bool sg_scsi_status_is_bad(int sstatus); |
| |
| /* Maps the salient data from a sense buffer which is in either fixed or |
| * descriptor format into a structure mimicking a descriptor format |
| * header (i.e. the first 8 bytes of sense descriptor format). |
| * If zero response code returns false. Otherwise returns true and if 'sshp' |
| * is non-NULL then zero all fields and then set the appropriate fields in |
| * that structure. sshp::additional_length is always 0 for response |
| * codes 0x70 and 0x71 (fixed format). */ |
| bool sg_scsi_normalize_sense(const uint8_t * sensep, int sense_len, |
| struct sg_scsi_sense_hdr * sshp); |
| |
| /* Attempt to find the first SCSI sense data descriptor that matches the |
| * given 'desc_type'. If found return pointer to start of sense data |
| * descriptor; otherwise (including fixed format sense data) returns NULL. */ |
| const uint8_t * sg_scsi_sense_desc_find(const uint8_t * sensep, int sense_len, |
| int desc_type); |
| |
| /* Get sense key from sense buffer. If successful returns a sense key value |
| * between 0 and 15. If sense buffer cannot be decode, returns -1 . */ |
| int sg_get_sense_key(const uint8_t * sensep, int sense_len); |
| |
| /* Yield string associated with sense_key value. Returns 'buff'. */ |
| char * sg_get_sense_key_str(int sense_key, int buff_len, char * buff); |
| |
| /* Yield string associated with ASC/ASCQ values. Returns 'buff'. Prefixes |
| * any valid additional sense found with "Additional sense: ". */ |
| char * sg_get_asc_ascq_str(int asc, int ascq, int buff_len, char * buff); |
| |
| /* Same as sg_get_asc_ascq_str() when add_sense_leadin is true. When it is |
| * false this function does _not_ prefix any valid additional sense found |
| * with "Additional sense: ". */ |
| char * sg_get_additional_sense_str(int asc, int ascq, bool add_sense_leadin, |
| int buff_len, char * buff); |
| |
| /* Returns true if valid bit set, false if valid bit clear. Irrespective the |
| * information field is written out via 'info_outp' (except when it is |
| * NULL). Handles both fixed and descriptor sense formats. */ |
| bool sg_get_sense_info_fld(const uint8_t * sensep, int sb_len, |
| uint64_t * info_outp); |
| |
| /* Returns true if fixed format or command specific information descriptor |
| * is found in the descriptor sense; else false. If available the command |
| * specific information field (4 byte integer in fixed format, 8 byte |
| * integer in descriptor format) is written out via 'cmd_spec_outp'. |
| * Handles both fixed and descriptor sense formats. */ |
| bool sg_get_sense_cmd_spec_fld(const uint8_t * sensep, int sb_len, |
| uint64_t * cmd_spec_outp); |
| |
| /* Returns true if any of the 3 bits (i.e. FILEMARK, EOM or ILI) are set. |
| * In descriptor format if the stream commands descriptor not found |
| * then returns false. Writes true or false corresponding to these bits to |
| * the last three arguments if they are non-NULL. */ |
| bool sg_get_sense_filemark_eom_ili(const uint8_t * sensep, int sb_len, |
| bool * filemark_p, bool * eom_p, |
| bool * ili_p); |
| |
| /* Returns true if SKSV is set and sense key is NO_SENSE or NOT_READY. Also |
| * returns true if progress indication sense data descriptor found. Places |
| * progress field from sense data where progress_outp points. If progress |
| * field is not available returns false. Handles both fixed and descriptor |
| * sense formats. N.B. App should multiply by 100 and divide by 65536 |
| * to get percentage completion from given value. */ |
| bool sg_get_sense_progress_fld(const uint8_t * sensep, int sb_len, |
| int * progress_outp); |
| |
| /* Closely related to sg_print_sense(). Puts decoded sense data in 'buff'. |
| * Usually multiline with multiple '\n' including one trailing. If |
| * 'raw_sinfo' set appends sense buffer in hex. 'leadin' is string prepended |
| * to each line written to 'buff', NULL treated as "". Returns the number of |
| * bytes written to 'buff' excluding the trailing '\0'. |
| * N.B. prior to sg3_utils v 1.42 'leadin' was only prepended to the first |
| * line output. Also this function returned type void. */ |
| int sg_get_sense_str(const char * leadin, const uint8_t * sense_buffer, |
| int sb_len, bool raw_sinfo, int buff_len, char * buff); |
| |
| /* Decode descriptor format sense descriptors (assumes sense buffer is |
| * in descriptor format). 'leadin' is string prepended to each line written |
| * to 'b', NULL treated as "". Returns the number of bytes written to 'b' |
| * excluding the trailing '\0'. If problem, returns 0. */ |
| int sg_get_sense_descriptors_str(const char * leadin, |
| const uint8_t * sense_buffer, |
| int sb_len, int blen, char * b); |
| |
| /* Decodes a designation descriptor (e.g. as found in the Device |
| * Identification VPD page (0x83)) into string 'b' whose maximum length is |
| * blen. 'leadin' is string prepended to each line written to 'b', NULL |
| * treated as "". Returns the number of bytes written to 'b' excluding the |
| * trailing '\0'. */ |
| int sg_get_designation_descriptor_str(const char * leadin, |
| const uint8_t * ddp, int dd_len, |
| bool print_assoc, bool do_long, |
| int blen, char * b); |
| |
| /* Expects a T10 UUID designator (as found in the Device Identification VPD |
| * page) pointed to by 'dp'. To not produce an error string in 'b', c_set |
| * should be 1 (binary) and dlen should be 18. Currently T10 only supports |
| * locally assigned UUIDs. Writes output to string 'b' of no more than blen |
| * bytes and returns the number of bytes actually written to 'b' but doesn't |
| * count the trailing null character it always appends (if blen > 0). 'lip' |
| * is lead-in string (on each line) than may be NULL. skip_prefix avoids |
| * outputting: ' Locally assigned UUID: ' before the UUID. */ |
| int sg_t10_uuid_desig2str(const uint8_t * dp, int dlen, int c_set, |
| bool do_long, bool skip_prefix, |
| const char * lip, int blen, char * b); |
| |
| /* Yield string associated with peripheral device type (pdt). Returns |
| * 'buff'. If 'pdt' out of range yields "bad pdt" string. */ |
| char * sg_get_pdt_str(int pdt, int buff_len, char * buff); |
| |
| /* Some lesser used PDTs share a lot in common with a more used PDT. |
| * Examples are PDT_ADC decaying to PDT_TAPE and PDT_ZBC to PDT_DISK. |
| * If such a lesser used 'dev_pdt' is given to this function, then it will |
| * return the more used PDT (i.e. "decays to"); otherwise 'dev_pdt' is |
| * returned. Valid for 'pdt' 0 to 31, for other values returns 0. */ |
| int sg_lib_pdt_decay(int dev_pdt); |
| |
| /* Yield string associated with transport protocol identifier (tpi). Returns |
| * 'buff'. If 'tpi' out of range yields "bad tpi" string. */ |
| char * sg_get_trans_proto_str(int tpi, int buff_len, char * buff); |
| |
| /* Decode TransportID pointed to by 'bp' of length 'bplen'. Place decoded |
| * string output in 'buff' which is also the return value. Each new line |
| * is prefixed by 'leadin'. If leadin NULL treat as "". */ |
| char * sg_decode_transportid_str(const char * leadin, uint8_t * bp, int bplen, |
| bool only_one, int buff_len, char * buff); |
| |
| /* Returns a designator's type string given 'val' (0 to 15 inclusive), |
| * otherwise returns NULL. */ |
| const char * sg_get_desig_type_str(int val); |
| |
| /* Returns a designator's code_set string given 'val' (0 to 15 inclusive), |
| * otherwise returns NULL. */ |
| const char * sg_get_desig_code_set_str(int val); |
| |
| /* Returns a designator's association string given 'val' (0 to 3 inclusive), |
| * otherwise returns NULL. */ |
| const char * sg_get_desig_assoc_str(int val); |
| |
| /* Yield string associated with zone type (see ZBC and ZBC-2) [e.g. REPORT |
| * ZONES command response]. Returns 'buff' unless buff_len < 1 in which |
| * NULL is returned. */ |
| char * sg_get_zone_type_str(uint8_t zt, int buff_len, char * buff); |
| |
| /* Yield SCSI Feature Set (sfs) string. When 'peri_type' is < -1 (or > 31) |
| * returns pointer to string (same as 'buff') associated with 'sfs_code'. |
| * When 'peri_type' is between -1 (for SPC) and 31 (inclusive) then a match |
| * on both 'sfs_code' and 'peri_type' is required. If 'foundp' is not NULL |
| * then where it points is set to true if a match is found else it is set to |
| * false. If 'buff' is not NULL then in the case of a match a descriptive |
| * string is written to 'buff' while if there is not a not then a string |
| * ending in "Reserved" is written (and may be prefixed with SPC, SBC, SSC |
| * or ZBC). Returns 'buff' (i.e. a pointer value) even if it is NULL. |
| * Example: |
| * char b[64]; |
| * ... |
| * printf("%s\n", sg_get_sfs_str(sfs_code, -2, sizeof(b), b, NULL, 0)); |
| */ |
| const char * sg_get_sfs_str(uint16_t sfs_code, int peri_type, int buff_len, |
| char * buff, bool * foundp, int verbose); |
| |
| /* This is a heuristic that takes into account the command bytes and length |
| * to decide whether the presented unstructured sequence of bytes could be |
| * a SCSI command. If so it returns true otherwise false. Vendor specific |
| * SCSI commands (i.e. opcodes from 0xc0 to 0xff), if presented, are assumed |
| * to follow SCSI conventions (i.e. length of 6, 10, 12 or 16 bytes). The |
| * only SCSI commands considered above 16 bytes of length are the Variable |
| * Length Commands (opcode 0x7f) and the XCDB wrapped commands (opcode 0x7e). |
| * Both have an inbuilt length field which can be cross checked with clen. |
| * No NVMe commands (64 bytes long plus some extra added by some OSes) have |
| * opcodes 0x7e or 0x7f yet. ATA is register based but SATA has FIS |
| * structures that are sent across the wire. The 'FIS register' structure is |
| * used to move a command from a SATA host to device, but the ATA 'command' |
| * is not the first byte. So it is harder to say what will happen if a |
| * FIS structure is presented as a SCSI command, hopefully there is a low |
| * probability this function will yield true in that case. */ |
| bool sg_is_scsi_cdb(const uint8_t * cdbp, int clen); |
| |
| /* Yield string associated with NVMe command status value in sct_sc. It |
| * expects to decode DW3 bits 27:17 from the completion queue. Bits 27:25 |
| * are the Status Code Type (SCT) and bits 24:17 are the Status Code (SC). |
| * Bit 17 in DW3 should be bit 0 in sct_sc. If no status string is found |
| * a string of the form "Reserved [0x<sct_sc_in_hex>]" is generated. |
| * Returns 'buff'. Does nothing if buff_len<=0 or if buff is NULL.*/ |
| char * sg_get_nvme_cmd_status_str(uint16_t sct_sc, int buff_len, char * buff); |
| |
| /* Attempts to map NVMe status value ((SCT << 8) | SC) n sct_sc to a SCSI |
| * status, sense_key, asc and ascq tuple. If successful returns true and |
| * writes to non-NULL pointer arguments; otherwise returns false. */ |
| bool sg_nvme_status2scsi(uint16_t sct_sc, uint8_t * status_p, uint8_t * sk_p, |
| uint8_t * asc_p, uint8_t * ascq_p); |
| |
| /* Add vendor (sg3_utils) specific sense descriptor for the NVMe Status |
| * field. Assumes descriptor (i.e. not fixed) sense. Assume sbp has room. */ |
| void sg_nvme_desc2sense(uint8_t * sbp, bool dnr, bool more, uint16_t sct_sc); |
| |
| /* Build minimum sense buffer, either descriptor type (desc=true) or fixed |
| * type (desc=false). Assume sbp has enough room (8 or 14 bytes |
| * respectively). sbp should have room for 32 or 18 bytes respectively */ |
| void sg_build_sense_buffer(bool desc, uint8_t *sbp, uint8_t skey, |
| uint8_t asc, uint8_t ascq); |
| |
| /* Returns true if left argument is "equal" to the right argument. l_pdt_s |
| * is a compound PDT (SCSI Peripheral Device Type) or a negative number |
| * which represents a wildcard (i.e. match anything). r_pdt_s has a similar |
| * form. PDT values are 5 bits long (0 to 31) and a compound pdt_s is |
| * formed by shifting the second (upper) PDT by eight bits to the left and |
| * OR-ing it with the first PDT. The pdt_s values must be defined so |
| * PDT_DISK (0) is _not_ the upper value in a compound pdt_s. */ |
| bool sg_pdt_s_eq(int l_pdt_s, int r_pdt_s); |
| |
| extern FILE * sg_warnings_strm; |
| |
| void sg_set_warnings_strm(FILE * warnings_strm); |
| |
| /* Given a SCSI command pointed to by cdbp of sz bytes this function forms a |
| * SCSI command in ASCII hex surrounded by square brackets in 'b'. 'b' is at |
| * least blen bytes long. If cmd_name is true then the command is prefixed |
| * by its SCSI command name (e.g. "VERIFY(10) [2f ...]". The command is |
| * shown as spaced separated pairs of hexadecimal digits (i.e. 0-9, a-f). |
| * Each pair represents byte. The leftmost pair of digits is cdbp[0] . If |
| * sz <= 0 then this function tries to guess the length of the command. */ |
| char * |
| sg_get_command_str(const uint8_t * cdbp, int sz, bool cmd_name, int blen, |
| char * b); |
| |
| /* The following "print" functions send ASCII to 'sg_warnings_strm' file |
| * descriptor (default value is stderr). 'leadin' is string prepended to |
| * each line printed out, NULL treated as "". */ |
| void sg_print_command_len(const uint8_t * command, int len); |
| void sg_print_command(const uint8_t * command); |
| void sg_print_scsi_status(int scsi_status); |
| |
| /* DSENSE is 'descriptor sense' as opposed to the older 'fixed sense'. Reads |
| * environment variable SG3_UTILS_DSENSE. Only (currently) used in SNTL. */ |
| bool sg_get_initial_dsense(void); |
| |
| /* 'leadin' is string prepended to each line printed out, NULL treated as |
| * "". N.B. prior to sg3_utils v 1.42 'leadin' was only prepended to the |
| * first line printed. */ |
| void sg_print_sense(const char * leadin, const uint8_t * sense_buffer, |
| int sb_len, bool raw_info); |
| |
| /* This examines exit_status and if an error message is known it is output |
| * to stdout/stderr and true is returned. If no error message is |
| * available nothing is output and false is returned. If exit_status is |
| * zero (no error) nothing is output and true is returned. If exit_status |
| * is negative then nothing is output and false is returned. If leadin is |
| * non-NULL then it is printed before the error message. All messages are |
| * a single line with a trailing LF. */ |
| bool sg_if_can2stdout(const char * leadin, int exit_status); |
| bool sg_if_can2stderr(const char * leadin, int exit_status); |
| |
| /* This examines exit_status and if an error message is known it is output |
| * as a string to 'b' and true is returned. If 'longer' is true and extra |
| * information is available then it is added to the output. If no error |
| * message is available a null character is output and false is returned. |
| * If exit_status is zero (no error) and 'longer' is true then the string |
| * 'No errors' is output; if 'longer' is false then a null character is |
| * output; in both cases true is returned. If exit_status is negative then |
| * a null character is output and false is returned. All messages are a |
| * single line (less than 80 characters) with no trailing LF. The output |
| * string including the trailing null character is no longer than b_len. */ |
| bool sg_exit2str(int exit_status, bool longer, int b_len, char * b); |
| |
| /* Utilities can use these exit status values for syntax errors and |
| * file (device node) problems (e.g. not found or permissions). */ |
| #define SG_LIB_SYNTAX_ERROR 1 /* command line syntax problem */ |
| |
| /* The sg_err_category_sense() function returns one of the following. |
| * These may be used as exit status values (from a process). Notice that |
| * some of the lower values correspond to SCSI sense key values. */ |
| #define SG_LIB_CAT_CLEAN 0 /* No errors or other information */ |
| #define SG_LIB_OK_TRUE SG_LIB_CAT_CLEAN /* No error, reporting true */ |
| /* Value 1 left unused for utilities to use SG_LIB_SYNTAX_ERROR */ |
| #define SG_LIB_CAT_NOT_READY 2 /* sense key: not ready, see 12 and 13 |
| * [sk,asc,ascq: 0x2,<most>,<most>] */ |
| #define SG_LIB_CAT_MEDIUM_HARD 3 /* medium or hardware error, blank check |
| * [sk,asc,ascq: 0x3/0x4/0x8,*,*] */ |
| #define SG_LIB_CAT_ILLEGAL_REQ 5 /* Illegal request (other than invalid |
| * opcode): [sk,asc,ascq: 0x5,*,*] */ |
| #define SG_LIB_CAT_UNIT_ATTENTION 6 /* sense key, device state changed |
| * [sk,asc,ascq: 0x6,*,*] */ |
| /* was SG_LIB_CAT_MEDIA_CHANGED earlier [sk,asc,ascq: 0x6,0x28,*] */ |
| #define SG_LIB_CAT_DATA_PROTECT 7 /* sense key, media write protected? |
| * [sk,asc,ascq: 0x7,*,*] */ |
| #define SG_LIB_CAT_INVALID_OP 9 /* (Illegal request,) Invalid opcode: |
| * [sk,asc,ascq: 0x5,0x20,0x0] */ |
| #define SG_LIB_CAT_COPY_ABORTED 10 /* sense key, some data transferred |
| * [sk,asc,ascq: 0xa,*,*] */ |
| #define SG_LIB_CAT_ABORTED_COMMAND 11 /* interpreted from sense buffer |
| * [sk,asc,ascq: 0xb,! 0x10,*] */ |
| #define SG_LIB_CAT_STANDBY 12 /* sense key: not ready, special case |
| * [sk,asc, ascq: 0x2, 0x4, 0xb] */ |
| #define SG_LIB_CAT_UNAVAILABLE 13 /* sense key: not ready, special case |
| * [sk,asc, ascq: 0x2, 0x4, 0xc] */ |
| #define SG_LIB_CAT_MISCOMPARE 14 /* sense key, probably verify |
| * [sk,asc,ascq: 0xe,*,*] */ |
| #define SG_LIB_FILE_ERROR 15 /* device or other file problem */ |
| /* for 17 and 18, see below */ |
| #define SG_LIB_CAT_NO_SENSE 20 /* sense data with key of "no sense" |
| * [sk,asc,ascq: 0x0,*,*] */ |
| #define SG_LIB_CAT_RECOVERED 21 /* Successful command after recovered err |
| * [sk,asc,ascq: 0x1,*,*] */ |
| #define SG_LIB_LBA_OUT_OF_RANGE 22 /* Illegal request, LBA Out Of Range |
| * [sk,asc,ascq: 0x5,0x21,0x0] */ |
| #define SG_LIB_CAT_RES_CONFLICT SAM_STAT_RESERVATION_CONFLICT |
| /* 24: this is a SCSI status, not sense. |
| * It indicates reservation by another |
| * machine blocks this command */ |
| #define SG_LIB_CAT_CONDITION_MET 25 /* SCSI status, not sense key. |
| * Only from PRE-FETCH (SBC-4) */ |
| #define SG_LIB_CAT_BUSY 26 /* SCSI status, not sense. Invites retry */ |
| #define SG_LIB_CAT_TS_FULL 27 /* SCSI status, not sense. Wait then retry */ |
| #define SG_LIB_CAT_ACA_ACTIVE 28 /* SCSI status; ACA seldom used */ |
| #define SG_LIB_CAT_TASK_ABORTED 29 /* SCSI status, this command aborted by? */ |
| #define SG_LIB_CONTRADICT 31 /* error involving two or more cl options */ |
| #define SG_LIB_LOGIC_ERROR 32 /* unexpected situation in code */ |
| /* for 33 see SG_LIB_CAT_TIMEOUT below */ |
| #define SG_LIB_WINDOWS_ERR 34 /* Windows error number don't fit in 7 bits so |
| * map to a single value for exit statuses */ |
| #define SG_LIB_TRANSPORT_ERROR 35 /* driver or interconnect */ |
| #define SG_LIB_OK_FALSE 36 /* no error, reporting false (cf. no error, |
| * reporting true is SG_LIB_OK_TRUE(0) ) */ |
| #define SG_LIB_CAT_PROTECTION 40 /* subset of aborted command (for PI, DIF) |
| * [sk,asc,ascq: 0xb,0x10,*] */ |
| /* 47: flock error used in ddpt utility */ |
| #define SG_LIB_NVME_STATUS 48 /* NVMe Status Field (SF) other than 0 */ |
| #define SG_LIB_WILD_RESID 49 /* Residual value for data-in transfer of a |
| * SCSI command is nonsensical */ |
| #define SG_LIB_OS_BASE_ERR 50 /* in Linux: values found in: |
| * include/uapi/asm-generic/errno-base.h |
| * Example: ENOMEM reported as 62 (=50+12) |
| * if errno > 46 then use this value */ |
| /* 51-->96 set aside for Unix errno values shifted by SG_LIB_OS_BASE_ERR */ |
| #define SG_LIB_CAT_MALFORMED 97 /* Response to SCSI command malformed */ |
| #define SG_LIB_CAT_SENSE 98 /* Something else is in the sense buffer */ |
| #define SG_LIB_CAT_OTHER 99 /* Some other error/warning has occurred |
| * (e.g. a transport or driver error) */ |
| /* 100 to 120 (inclusive) used by ddpt utility */ |
| #define SG_LIB_UNUSED_ABOVE 120 /* Put extra errors in holes below this */ |
| |
| /* Returns a SG_LIB_CAT_* value. If cannot decode sense_buffer or a less |
| * common sense key then return SG_LIB_CAT_SENSE .*/ |
| int sg_err_category_sense(const uint8_t * sense_buffer, int sb_len); |
| |
| /* Here are some additional sense data categories that are not returned |
| * by sg_err_category_sense() but are returned by some related functions. */ |
| #define SG_LIB_CAT_ILLEGAL_REQ_WITH_INFO 17 /* Illegal request (other than */ |
| /* invalid opcode) plus 'info' field: */ |
| /* [sk,asc,ascq: 0x5,*,*] */ |
| #define SG_LIB_CAT_MEDIUM_HARD_WITH_INFO 18 /* medium or hardware error */ |
| /* sense key plus 'info' field: */ |
| /* [sk,asc,ascq: 0x3/0x4,*,*] */ |
| #define SG_LIB_CAT_TIMEOUT 33 /* SCSI command timeout */ |
| #define SG_LIB_CAT_PROTECTION_WITH_INFO 41 /* aborted command sense key, */ |
| /* protection plus 'info' field: */ |
| /* [sk,asc,ascq: 0xb,0x10,*] */ |
| |
| /* Yield string associated with sense category. Returns 'buff' (or pointer |
| * to "Bad sense category" if 'buff' is NULL). If sense_cat unknown then |
| * yield "Sense category: <sense_cat)val>" string. The original 'sense |
| * category' concept has been expanded to most detected errors and is |
| * returned by these utilities as their exit status value (an (unsigned) |
| * 8 bit value where 0 means good (i.e. no errors)). Uses the |
| * sg_exit2str() function. */ |
| const char * sg_get_category_sense_str(int sense_cat, int buff_len, |
| char * buff, int verbose); |
| |
| |
| /* Iterates to next designation descriptor in the device identification |
| * VPD page. The 'initial_desig_desc' should point to start of first |
| * descriptor with 'page_len' being the number of valid bytes in that |
| * and following descriptors. To start, 'off' should point to a negative |
| * value, thereafter it should point to the value yielded by the previous |
| * call. If 0 returned then 'initial_desig_desc + *off' should be a valid |
| * descriptor; returns -1 if normal end condition and -2 for an abnormal |
| * termination. Matches association, designator_type and/or code_set when |
| * any of those values are greater than or equal to zero. */ |
| int sg_vpd_dev_id_iter(const uint8_t * initial_desig_desc, int page_len, |
| int * off, int m_assoc, int m_desig_type, |
| int m_code_set); |
| |
| |
| /* <<< General purpose (i.e. not SCSI specific) utility functions >>> */ |
| |
| /* Always returns valid string even if errnum is wild (or library problem). |
| * If errnum is negative, flip its sign. */ |
| char * safe_strerror(int errnum); |
| |
| /* Not all platforms support the Unix sleep(seconds) function. */ |
| void sg_sleep_secs(int num_secs); |
| |
| /* There are several SCSI commands that are very destructive for the user |
| * data stored on a device. The FORMAT UNIT command is the prime example |
| * but there are an increasing number of newer SCSI commands that remove or |
| * destroy some or all of the user's data. This function takes 15 seconds, |
| * divided into three parts, saying that 'cmd_name' will be executed on |
| * 'dev_name' and then waits for 5 seconds inviting the user to press |
| * control-C to abort the operation. After three such prompts the function |
| * returns and the utility start to execute the "dangerous" SCSI command, |
| * Utilities that use this function usually have a --quick option to bypass |
| * this call. That may be appropriate if the utility in question is called |
| * from a script or in background processing. If 'stress_all' is true then |
| * state "ALL data" will be lost, if false drop the "ALL". */ |
| void |
| sg_warn_and_wait(const char * cmd_name, const char * dev_name, |
| bool stress_all); |
| |
| |
| /* Print (to stdout) 'str' of bytes in hex, 16 bytes per line optionally |
| * followed at the right hand side of the line with an ASCII interpretation. |
| * Each line is prefixed with an address, starting at 0 for str[0]..str[15]. |
| * All output numbers are in hex. |
| * 'no_ascii' selects on of 3 output format types: |
| * > 0 each line has address then up to 16 ASCII-hex bytes |
| * = 0 in addition, the bytes are listed in ASCII to the right |
| * < 0 only the ASCII-hex bytes are listed (i.e. without address) |
| */ |
| void dStrHex(const char * str, int len, int no_ascii); |
| |
| /* Print (to sg_warnings_strm (stderr)) 'str' of bytes in hex, 16 bytes per |
| * line optionally followed at right by its ASCII interpretation. Same |
| * logic as dStrHex() with different output stream (i.e. stderr). */ |
| void dStrHexErr(const char * str, int len, int no_ascii); |
| |
| /* Read binary starting at 'str' for 'len' bytes and output as ASCII |
| * hexadecimal into file pointer (fp). 16 bytes per line are output with an |
| * additional space between 8th and 9th byte on each line (for readability). |
| * 'no_ascii' selects one of 3 output format types as shown in dStrHex() . */ |
| void dStrHexFp(const char* str, int len, int no_ascii, FILE * fp); |
| |
| /* Read 'len' bytes from 'str' and output as ASCII-Hex bytes (space separated) |
| * to 'b' not to exceed 'b_len' characters. Each line starts with 'leadin' |
| * (NULL for no leadin) and there are 16 bytes per line with an extra space |
| * between the 8th and 9th bytes. 'oformat' is 0 for repeat in printable ASCII |
| * ('.' for non printable chars) to right of each line; 1 don't (so just |
| * output ASCII hex). If 'oformat' is 2 output same as 1 but any LFs are |
| * replaced by space (and trailing spaces are trimmed). Note that an address |
| * is _not_ printed on each line preceding the hex data. Returns number of |
| * bytes written to 'b' excluding the trailing '\0'. The only difference |
| * between dStrHexStr() and hex2str() is the type of the first argument. */ |
| int dStrHexStr(const char * str, int len, const char * leadin, int oformat, |
| int cb_len, char * cbp); |
| int hex2str(const uint8_t * b_str, int len, const char * leadin, int oformat, |
| int cb_len, char * cbp); |
| |
| /* Similar to hex2str() but outputs to file pointed to be fp */ |
| void hex2fp(const uint8_t * b_str, int len, const char * leadin, int oformat, |
| FILE * fp); |
| |
| /* The following 2 functions are equivalent to dStrHex() and dStrHexErr() |
| * respectively. The difference is only the type of the first of argument: |
| * uint8_t instead of char. The name of the argument is changed to b_str to |
| * stress it is a pointer to the start of a binary string. */ |
| void hex2stdout(const uint8_t * b_str, int len, int no_ascii); |
| void hex2stderr(const uint8_t * b_str, int len, int no_ascii); |
| |
| /* Read ASCII hex bytes or binary from fname (a file named '-' taken as |
| * stdin). If reading ASCII hex then there should be either one entry per |
| * line or a comma, space, hyphen or tab separated list of bytes. If no_space |
| * is set then a string of ACSII hex digits is expected, 2 per byte. |
| * Everything from and including a '#' on a line is ignored. Returns 0 if ok, |
| * or an error code. If the error code is SG_LIB_LBA_OUT_OF_RANGE then mp_arr |
| * would be exceeded and both mp_arr and mp_arr_len are written to. |
| * The max_arr_len_and argument may carry extra information: when it is |
| * negative its absolute value is used for the maximum number of bytes to |
| * write to mp_arr _and_ the first hexadecimal value on each line is skipped. |
| * Many hexadecimal output programs place a running address (index) as the |
| * first field on each line. When as_binary and/or no_space are true, the |
| * absolute value of max_arr_len_and is used. */ |
| int sg_f2hex_arr(const char * fname, bool as_binary, bool no_space, |
| uint8_t * mp_arr, int * mp_arr_len, int max_arr_len_and); |
| |
| /* Returns true when executed on big endian machine; else returns false. |
| * Useful for displaying ATA identify words (which need swapping on a |
| * big endian machine). */ |
| bool sg_is_big_endian(); |
| |
| /* Returns true if byte sequence starting at bp with a length of b_len is |
| * all zeros (for sg_all_zeros()) or all 0xff_s (for sg_all_ffs()); |
| * otherwise returns false. If bp is NULL or b_len <= 0 returns false. */ |
| bool sg_all_zeros(const uint8_t * bp, int b_len); |
| bool sg_all_ffs(const uint8_t * bp, int b_len); |
| |
| /* Extract character sequence from ATA words as in the model string |
| * in a IDENTIFY DEVICE response. Returns number of characters |
| * written to 'ochars' before 0 character is found or 'num' words |
| * are processed. */ |
| int sg_ata_get_chars(const uint16_t * word_arr, int start_word, |
| int num_words, bool is_big_endian, char * ochars); |
| |
| /* Print (to stdout) 16 bit 'words' in hex, 8 words per line optionally |
| * followed at the right hand side of the line with an ASCII interpretation |
| * (pairs of ASCII characters in big endian order (upper first)). |
| * Each line is prefixed with an address, starting at 0. |
| * All output numbers are in hex. 'no_ascii' allows for 3 output types: |
| * > 0 each line has address then up to 8 ASCII-hex words |
| * = 0 in addition, the words are listed in ASCII pairs to the right |
| * = -1 only the ASCII-hex words are listed (i.e. without address) |
| * = -2 only the ASCII-hex words, formatted for "hdparm --Istdin" |
| * < -2 same as -1 |
| * If 'swapb' is true then bytes in each word swapped. Needs to be set |
| * for ATA IDENTIFY DEVICE response on big-endian machines. |
| */ |
| void dWordHex(const uint16_t * words, int num, int no_ascii, bool swapb); |
| |
| /* If the number in 'buf' can not be decoded or the multiplier is unknown |
| * then -1 is returned. Accepts a hex prefix (0x or 0X) or a decimal |
| * multiplier suffix (as per GNU's dd (since 2002: SI and IEC 60027-2)). |
| * Main (SI) multipliers supported: K, M, G. Ignore leading spaces and |
| * tabs; accept comma, hyphen, space, tab and hash as terminator. |
| * Handles zero and positive values up to 2**31-1 . |
| * Experimental: left argument (must in with hexadecimal digit) added |
| * to, or multiplied, by right argument. No embedded spaces. |
| * Examples: '3+1k' (evaluates to 1027) and '0xf+0x3'. */ |
| int sg_get_num(const char * buf); |
| |
| /* If the number in 'buf' can not be decoded then -1 is returned. Accepts a |
| * hex prefix (0x or 0X) or a 'h' (or 'H') suffix; otherwise decimal is |
| * assumed. Does not accept multipliers. Accept a comma (","), hyphen ("-"), |
| * a whitespace or newline as terminator. Only decimal numbers can represent |
| * negative numbers and '-1' must be treated separately. */ |
| int sg_get_num_nomult(const char * buf); |
| |
| /* If the number in 'buf' can not be decoded or the multiplier is unknown |
| * then -1LL is returned. Accepts a hex prefix (0x or 0X), hex suffix |
| * (h or H), or a decimal multiplier suffix (as per GNU's dd (since 2002: |
| * SI and IEC 60027-2)). Main (SI) multipliers supported: K, M, G, T, P |
| * and E. Ignore leading spaces and tabs; accept comma, hyphen, space, tab |
| * and hash as terminator. Handles zero and positive values up to 2**63-1 . |
| * Experimental: the left argument (must end in with hexadecimal digit) |
| * added to, or multiplied by, the right argument. No embedded spaces. |
| * Examples: '3+1k' (evaluates to 1027) and '0xf+0x3'. */ |
| int64_t sg_get_llnum(const char * buf); |
| |
| /* If the number in 'buf' can not be decoded then -1 is returned. Accepts a |
| * hex prefix (0x or 0X) or a 'h' (or 'H') suffix; otherwise decimal is |
| * assumed. Does not accept multipliers. Accept a comma (","), hyphen ("-"), |
| * a whitespace or newline as terminator. Only decimal numbers can represent |
| * negative numbers and '-1' must be treated separately. */ |
| int64_t sg_get_llnum_nomult(const char * buf); |
| |
| /* Returns pointer to heap (or NULL) that is aligned to a align_to byte |
| * boundary. Sends back *buff_to_free pointer in third argument that may be |
| * different from the return value. If it is different then the *buff_to_free |
| * pointer should be freed (rather than the returned value) when the heap is |
| * no longer needed. If align_to is 0 then aligns to OS's page size. Sets all |
| * returned heap to zeros. If num_bytes is 0 then set to page size. */ |
| uint8_t * sg_memalign(uint32_t num_bytes, uint32_t align_to, |
| uint8_t ** buff_to_free, bool vb); |
| |
| /* Returns OS page size in bytes. If uncertain returns 4096. */ |
| uint32_t sg_get_page_size(void); |
| |
| /* If byte_count is 0 or less then the OS page size is used as denominator. |
| * Returns true if the remainder of ((unsigned)pointer % byte_count) is 0, |
| * else returns false. */ |
| bool sg_is_aligned(const void * pointer, int byte_count); |
| |
| /* Does similar job to sg_get_unaligned_be*() but this function starts at |
| * a given start_bit (i.e. within byte, so 7 is MSbit of byte and 0 is LSbit) |
| * offset. Maximum number of num_bits is 64. For example, these two |
| * invocations are equivalent (and should yield the same result); |
| * sg_get_big_endian(from_bp, 7, 16) |
| * sg_get_unaligned_be16(from_bp) */ |
| uint64_t sg_get_big_endian(const uint8_t * from_bp, |
| int start_bit /* 0 to 7 */, |
| int num_bits /* 1 to 64 */); |
| |
| /* Does similar job to sg_put_unaligned_be*() but this function starts at |
| * a given start_bit offset. Maximum number of num_bits is 64. Preserves |
| * residual bits in partially written bytes. start_bit 7 is MSb. */ |
| void sg_set_big_endian(uint64_t val, uint8_t * to, int start_bit /* 0 to 7 */, |
| int num_bits /* 1 to 64 */); |
| |
| /* If os_err_num is within bounds then the returned value is 'os_err_num + |
| * SG_LIB_OS_BASE_ERR' otherwise SG_LIB_OS_BASE_ERR is returned. If |
| * os_err_num is 0 then 0 is returned. */ |
| int sg_convert_errno(int os_err_num); |
| |
| |
| /* <<< Architectural support functions [is there a better place?] >>> */ |
| |
| /* Non Unix OSes distinguish between text and binary files. |
| * Set text mode on fd. Does nothing in Unix. Returns negative number on |
| * failure. */ |
| int sg_set_text_mode(int fd); |
| |
| /* Set binary mode on fd. Does nothing in Unix. Returns negative number on |
| * failure. */ |
| int sg_set_binary_mode(int fd); |
| |
| #ifdef __cplusplus |
| } |
| #endif |
| |
| #endif /* SG_LIB_H */ |