| /* |
| * Copyright(C) 2006 Cameron Rich |
| * |
| * This library is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU Lesser General Public License as published by |
| * the Free Software Foundation; either version 2.1 of the License, or |
| * (at your option) any later version. |
| * |
| * This library is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public License |
| * along with this library; if not, write to the Free Software |
| * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
| */ |
| |
| /** |
| * @defgroup bigint_api Big Integer API |
| * @brief The bigint implementation as used by the axTLS project. |
| * |
| * The bigint library is for RSA encryption/decryption as well as signing. |
| * This code tries to minimise use of malloc/free by maintaining a small |
| * cache. A bigint context may maintain state by being made "permanent". |
| * It be be later released with a bi_depermanent() and bi_free() call. |
| * |
| * It supports the following reduction techniques: |
| * - Classical |
| * - Barrett |
| * - Montgomery |
| * |
| * It also implements the following: |
| * - Karatsuba multiplication |
| * - Squaring |
| * - Sliding window exponentiation |
| * - Chinese Remainder Theorem (implemented in rsa.c). |
| * |
| * All the algorithms used are pretty standard, and designed for different |
| * data bus sizes. Negative numbers are not dealt with at all, so a subtraction |
| * may need to be tested for negativity. |
| * |
| * This library steals some ideas from Jef Poskanzer |
| * <http://cs.marlboro.edu/term/cs-fall02/algorithms/crypto/RSA/bigint> |
| * and GMP <http://www.swox.com/gmp>. It gets most of its implementation |
| * detail from "The Handbook of Applied Cryptography" |
| * <http://www.cacr.math.uwaterloo.ca/hac/about/chap14.pdf> |
| * @{ |
| */ |
| |
| #include <stdlib.h> |
| #include <limits.h> |
| #include <string.h> |
| #include <stdio.h> |
| #include <time.h> |
| #include "bigint.h" |
| #include "crypto.h" |
| |
| static bigint *bi_int_multiply(BI_CTX *ctx, bigint *bi, comp i); |
| static bigint *bi_int_divide(BI_CTX *ctx, bigint *biR, comp denom); |
| static bigint __malloc *alloc(BI_CTX *ctx, int size); |
| static bigint *trim(bigint *bi); |
| static void more_comps(bigint *bi, int n); |
| #if defined(CONFIG_BIGINT_KARATSUBA) || defined(CONFIG_BIGINT_BARRETT) || \ |
| defined(CONFIG_BIGINT_MONTGOMERY) |
| static bigint *comp_right_shift(bigint *biR, int num_shifts); |
| static bigint *comp_left_shift(bigint *biR, int num_shifts); |
| #endif |
| |
| #ifdef CONFIG_BIGINT_CHECK_ON |
| static void check(const bigint *bi); |
| #endif |
| |
| /** |
| * @brief Start a new bigint context. |
| * @return A bigint context. |
| */ |
| BI_CTX *bi_initialize(void) |
| { |
| /* calloc() sets everything to zero */ |
| BI_CTX *ctx = (BI_CTX *)calloc(1, sizeof(BI_CTX)); |
| |
| /* the radix */ |
| ctx->bi_radix = alloc(ctx, 2); |
| ctx->bi_radix->comps[0] = 0; |
| ctx->bi_radix->comps[1] = 1; |
| bi_permanent(ctx->bi_radix); |
| return ctx; |
| } |
| |
| /** |
| * @brief Close the bigint context and free any resources. |
| * |
| * Free up any used memory - a check is done if all objects were not |
| * properly freed. |
| * @param ctx [in] The bigint session context. |
| */ |
| void bi_terminate(BI_CTX *ctx) |
| { |
| bigint *p, *pn; |
| |
| bi_depermanent(ctx->bi_radix); |
| bi_free(ctx, ctx->bi_radix); |
| |
| if (ctx->active_count != 0) |
| { |
| #ifdef CONFIG_SSL_FULL_MODE |
| printf("bi_terminate: there were %d un-freed bigints\n", |
| ctx->active_count); |
| #endif |
| abort(); |
| } |
| |
| for (p = ctx->free_list; p != NULL; p = pn) |
| { |
| pn = p->next; |
| free(p->comps); |
| free(p); |
| } |
| |
| free(ctx); |
| } |
| |
| /** |
| * @brief Increment the number of references to this object. |
| * It does not do a full copy. |
| * @param bi [in] The bigint to copy. |
| * @return A reference to the same bigint. |
| */ |
| bigint *bi_copy(bigint *bi) |
| { |
| check(bi); |
| if (bi->refs != PERMANENT) |
| bi->refs++; |
| return bi; |
| } |
| |
| /** |
| * @brief Simply make a bigint object "unfreeable" if bi_free() is called on it. |
| * |
| * For this object to be freed, bi_depermanent() must be called. |
| * @param bi [in] The bigint to be made permanent. |
| */ |
| void bi_permanent(bigint *bi) |
| { |
| check(bi); |
| if (bi->refs != 1) |
| { |
| #ifdef CONFIG_SSL_FULL_MODE |
| printf("bi_permanent: refs was not 1\n"); |
| #endif |
| abort(); |
| } |
| |
| bi->refs = PERMANENT; |
| } |
| |
| /** |
| * @brief Take a permanent object and make it eligible for freedom. |
| * @param bi [in] The bigint to be made back to temporary. |
| */ |
| void bi_depermanent(bigint *bi) |
| { |
| check(bi); |
| if (bi->refs != PERMANENT) |
| { |
| #ifdef CONFIG_SSL_FULL_MODE |
| printf("bi_depermanent: bigint was not permanent\n"); |
| #endif |
| abort(); |
| } |
| |
| bi->refs = 1; |
| } |
| |
| /** |
| * @brief Free a bigint object so it can be used again. |
| * |
| * The memory itself it not actually freed, just tagged as being available |
| * @param ctx [in] The bigint session context. |
| * @param bi [in] The bigint to be freed. |
| */ |
| void bi_free(BI_CTX *ctx, bigint *bi) |
| { |
| check(bi); |
| if (bi->refs == PERMANENT) |
| { |
| return; |
| } |
| |
| if (--bi->refs > 0) |
| { |
| return; |
| } |
| |
| bi->next = ctx->free_list; |
| ctx->free_list = bi; |
| ctx->free_count++; |
| |
| if (--ctx->active_count < 0) |
| { |
| #ifdef CONFIG_SSL_FULL_MODE |
| printf("bi_free: active_count went negative " |
| "- double-freed bigint?\n"); |
| #endif |
| abort(); |
| } |
| } |
| |
| /** |
| * @brief Convert an (unsigned) integer into a bigint. |
| * @param ctx [in] The bigint session context. |
| * @param i [in] The (unsigned) integer to be converted. |
| * |
| */ |
| bigint *int_to_bi(BI_CTX *ctx, comp i) |
| { |
| bigint *biR = alloc(ctx, 1); |
| biR->comps[0] = i; |
| return biR; |
| } |
| |
| /** |
| * @brief Do a full copy of the bigint object. |
| * @param ctx [in] The bigint session context. |
| * @param bi [in] The bigint object to be copied. |
| */ |
| bigint *bi_clone(BI_CTX *ctx, const bigint *bi) |
| { |
| bigint *biR = alloc(ctx, bi->size); |
| check(bi); |
| memcpy(biR->comps, bi->comps, bi->size*COMP_BYTE_SIZE); |
| return biR; |
| } |
| |
| /** |
| * @brief Perform an addition operation between two bigints. |
| * @param ctx [in] The bigint session context. |
| * @param bia [in] A bigint. |
| * @param bib [in] Another bigint. |
| * @return The result of the addition. |
| */ |
| bigint *bi_add(BI_CTX *ctx, bigint *bia, bigint *bib) |
| { |
| int n; |
| comp carry = 0; |
| comp *pa, *pb; |
| |
| check(bia); |
| check(bib); |
| |
| n = max(bia->size, bib->size); |
| more_comps(bia, n+1); |
| more_comps(bib, n); |
| pa = bia->comps; |
| pb = bib->comps; |
| |
| do |
| { |
| comp sl, rl, cy1; |
| sl = *pa + *pb++; |
| rl = sl + carry; |
| cy1 = sl < *pa; |
| carry = cy1 | (rl < sl); |
| *pa++ = rl; |
| } while (--n != 0); |
| |
| *pa = carry; /* do overflow */ |
| bi_free(ctx, bib); |
| return trim(bia); |
| } |
| |
| /** |
| * @brief Perform a subtraction operation between two bigints. |
| * @param ctx [in] The bigint session context. |
| * @param bia [in] A bigint. |
| * @param bib [in] Another bigint. |
| * @param is_negative [out] If defined, indicates that the result was negative. |
| * is_negative may be null. |
| * @return The result of the subtraction. The result is always positive. |
| */ |
| bigint *bi_subtract(BI_CTX *ctx, |
| bigint *bia, bigint *bib, int *is_negative) |
| { |
| int n = bia->size; |
| comp *pa, *pb, carry = 0; |
| |
| check(bia); |
| check(bib); |
| |
| more_comps(bib, n); |
| pa = bia->comps; |
| pb = bib->comps; |
| |
| do |
| { |
| comp sl, rl, cy1; |
| sl = *pa - *pb++; |
| rl = sl - carry; |
| cy1 = sl > *pa; |
| carry = cy1 | (rl > sl); |
| *pa++ = rl; |
| } while (--n != 0); |
| |
| if (is_negative) /* indicate a negative result */ |
| { |
| *is_negative = carry; |
| } |
| |
| bi_free(ctx, trim(bib)); /* put bib back to the way it was */ |
| return trim(bia); |
| } |
| |
| /** |
| * Perform a multiply between a bigint an an (unsigned) integer |
| */ |
| static bigint *bi_int_multiply(BI_CTX *ctx, bigint *bia, comp b) |
| { |
| int j = 0, n = bia->size; |
| bigint *biR = alloc(ctx, n + 1); |
| comp carry = 0; |
| comp *r = biR->comps; |
| comp *a = bia->comps; |
| |
| check(bia); |
| |
| /* clear things to start with */ |
| memset(r, 0, ((n+1)*COMP_BYTE_SIZE)); |
| |
| do |
| { |
| long_comp tmp = *r + (long_comp)a[j]*b + carry; |
| *r++ = (comp)tmp; /* downsize */ |
| carry = (comp)(tmp >> COMP_BIT_SIZE); |
| } while (++j < n); |
| |
| *r = carry; |
| bi_free(ctx, bia); |
| return trim(biR); |
| } |
| |
| /** |
| * @brief Does both division and modulo calculations. |
| * |
| * Used extensively when doing classical reduction. |
| * @param ctx [in] The bigint session context. |
| * @param u [in] A bigint which is the numerator. |
| * @param v [in] Either the denominator or the modulus depending on the mode. |
| * @param is_mod [n] Determines if this is a normal division (0) or a reduction |
| * (1). |
| * @return The result of the division/reduction. |
| */ |
| bigint *bi_divide(BI_CTX *ctx, bigint *u, bigint *v, int is_mod) |
| { |
| int n = v->size, m = u->size-n; |
| int j = 0, orig_u_size = u->size; |
| uint8_t mod_offset = ctx->mod_offset; |
| comp d; |
| bigint *quotient, *tmp_u; |
| comp q_dash; |
| |
| check(u); |
| check(v); |
| |
| /* if doing reduction and we are < mod, then return mod */ |
| if (is_mod && bi_compare(v, u) > 0) |
| { |
| bi_free(ctx, v); |
| return u; |
| } |
| |
| quotient = alloc(ctx, m+1); |
| tmp_u = alloc(ctx, n+1); |
| v = trim(v); /* make sure we have no leading 0's */ |
| d = (comp)((long_comp)COMP_RADIX/(V1+1)); |
| |
| /* clear things to start with */ |
| memset(quotient->comps, 0, ((quotient->size)*COMP_BYTE_SIZE)); |
| |
| /* normalise */ |
| if (d > 1) |
| { |
| u = bi_int_multiply(ctx, u, d); |
| |
| if (is_mod) |
| { |
| v = ctx->bi_normalised_mod[mod_offset]; |
| } |
| else |
| { |
| v = bi_int_multiply(ctx, v, d); |
| } |
| } |
| |
| if (orig_u_size == u->size) /* new digit position u0 */ |
| { |
| more_comps(u, orig_u_size + 1); |
| } |
| |
| do |
| { |
| /* get a temporary short version of u */ |
| memcpy(tmp_u->comps, &u->comps[u->size-n-1-j], (n+1)*COMP_BYTE_SIZE); |
| |
| /* calculate q' */ |
| if (U(0) == V1) |
| { |
| q_dash = COMP_RADIX-1; |
| } |
| else |
| { |
| q_dash = (comp)(((long_comp)U(0)*COMP_RADIX + U(1))/V1); |
| } |
| |
| if (v->size > 1 && V2) |
| { |
| /* we are implementing the following: |
| if (V2*q_dash > (((U(0)*COMP_RADIX + U(1) - |
| q_dash*V1)*COMP_RADIX) + U(2))) ... */ |
| comp inner = (comp)((long_comp)COMP_RADIX*U(0) + U(1) - |
| (long_comp)q_dash*V1); |
| if ((long_comp)V2*q_dash > (long_comp)inner*COMP_RADIX + U(2)) |
| { |
| q_dash--; |
| } |
| } |
| |
| /* multiply and subtract */ |
| if (q_dash) |
| { |
| int is_negative; |
| tmp_u = bi_subtract(ctx, tmp_u, |
| bi_int_multiply(ctx, bi_copy(v), q_dash), &is_negative); |
| more_comps(tmp_u, n+1); |
| |
| Q(j) = q_dash; |
| |
| /* add back */ |
| if (is_negative) |
| { |
| Q(j)--; |
| tmp_u = bi_add(ctx, tmp_u, bi_copy(v)); |
| |
| /* lop off the carry */ |
| tmp_u->size--; |
| v->size--; |
| } |
| } |
| else |
| { |
| Q(j) = 0; |
| } |
| |
| /* copy back to u */ |
| memcpy(&u->comps[u->size-n-1-j], tmp_u->comps, (n+1)*COMP_BYTE_SIZE); |
| } while (++j <= m); |
| |
| bi_free(ctx, tmp_u); |
| bi_free(ctx, v); |
| |
| if (is_mod) /* get the remainder */ |
| { |
| bi_free(ctx, quotient); |
| return bi_int_divide(ctx, trim(u), d); |
| } |
| else /* get the quotient */ |
| { |
| bi_free(ctx, u); |
| return trim(quotient); |
| } |
| } |
| |
| /* |
| * Perform an integer divide on a bigint. |
| */ |
| static bigint *bi_int_divide(BI_CTX *ctx __unused, bigint *biR, comp denom) |
| { |
| int i = biR->size - 1; |
| long_comp r = 0; |
| |
| check(biR); |
| |
| do |
| { |
| r = (r<<COMP_BIT_SIZE) + biR->comps[i]; |
| biR->comps[i] = (comp)(r / denom); |
| r %= denom; |
| } while (--i != 0); |
| |
| return trim(biR); |
| } |
| |
| #ifdef CONFIG_BIGINT_MONTGOMERY |
| /** |
| * There is a need for the value of integer N' such that B^-1(B-1)-N^-1N'=1, |
| * where B^-1(B-1) mod N=1. Actually, only the least significant part of |
| * N' is needed, hence the definition N0'=N' mod b. We reproduce below the |
| * simple algorithm from an article by Dusse and Kaliski to efficiently |
| * find N0' from N0 and b */ |
| static comp modular_inverse(bigint *bim) |
| { |
| int i; |
| comp t = 1; |
| comp two_2_i_minus_1 = 2; /* 2^(i-1) */ |
| long_comp two_2_i = 4; /* 2^i */ |
| comp N = bim->comps[0]; |
| |
| for (i = 2; i <= COMP_BIT_SIZE; i++) |
| { |
| if ((long_comp)N*t%two_2_i >= two_2_i_minus_1) |
| { |
| t += two_2_i_minus_1; |
| } |
| |
| two_2_i_minus_1 <<= 1; |
| two_2_i <<= 1; |
| } |
| |
| return (comp)(COMP_RADIX-t); |
| } |
| #endif |
| |
| #if defined(CONFIG_BIGINT_KARATSUBA) || defined(CONFIG_BIGINT_BARRETT) || \ |
| defined(CONFIG_BIGINT_MONTGOMERY) |
| /** |
| * Take each component and shift down (in terms of components) |
| */ |
| static bigint *comp_right_shift(bigint *biR, int num_shifts) |
| { |
| int i = biR->size-num_shifts; |
| comp *x = biR->comps; |
| comp *y = &biR->comps[num_shifts]; |
| |
| check(biR); |
| |
| if (i <= 0) /* have we completely right shifted? */ |
| { |
| biR->comps[0] = 0; /* return 0 */ |
| biR->size = 1; |
| return biR; |
| } |
| |
| do |
| { |
| *x++ = *y++; |
| } while (--i > 0); |
| |
| biR->size -= num_shifts; |
| return biR; |
| } |
| |
| /** |
| * Take each component and shift it up (in terms of components) |
| */ |
| static bigint *comp_left_shift(bigint *biR, int num_shifts) |
| { |
| int i = biR->size-1; |
| comp *x, *y; |
| |
| check(biR); |
| |
| if (num_shifts <= 0) |
| { |
| return biR; |
| } |
| |
| more_comps(biR, biR->size + num_shifts); |
| |
| x = &biR->comps[i+num_shifts]; |
| y = &biR->comps[i]; |
| |
| do |
| { |
| *x-- = *y--; |
| } while (i--); |
| |
| memset(biR->comps, 0, num_shifts*COMP_BYTE_SIZE); /* zero LS comps */ |
| return biR; |
| } |
| #endif |
| |
| /** |
| * @brief Allow a binary sequence to be imported as a bigint. |
| * @param ctx [in] The bigint session context. |
| * @param data [in] The data to be converted. |
| * @param size [in] The number of bytes of data. |
| * @return A bigint representing this data. |
| */ |
| bigint *bi_import(BI_CTX *ctx, const uint8_t *data, int size) |
| { |
| bigint *biR = alloc(ctx, (size+COMP_BYTE_SIZE-1)/COMP_BYTE_SIZE); |
| int i, j = 0, offset = 0; |
| |
| memset(biR->comps, 0, biR->size*COMP_BYTE_SIZE); |
| |
| for (i = size-1; i >= 0; i--) |
| { |
| biR->comps[offset] += data[i] << (j*8); |
| |
| if (++j == COMP_BYTE_SIZE) |
| { |
| j = 0; |
| offset ++; |
| } |
| } |
| |
| return trim(biR); |
| } |
| |
| #ifdef CONFIG_SSL_FULL_MODE |
| /** |
| * @brief The testharness uses this code to import text hex-streams and |
| * convert them into bigints. |
| * @param ctx [in] The bigint session context. |
| * @param data [in] A string consisting of hex characters. The characters must |
| * be in upper case. |
| * @return A bigint representing this data. |
| */ |
| bigint *bi_str_import(BI_CTX *ctx, const char *data) |
| { |
| int size = strlen(data); |
| bigint *biR = alloc(ctx, (size+COMP_NUM_NIBBLES-1)/COMP_NUM_NIBBLES); |
| int i, j = 0, offset = 0; |
| memset(biR->comps, 0, biR->size*COMP_BYTE_SIZE); |
| |
| for (i = size-1; i >= 0; i--) |
| { |
| int num = (data[i] <= '9') ? (data[i] - '0') : (data[i] - 'A' + 10); |
| biR->comps[offset] += num << (j*4); |
| |
| if (++j == COMP_NUM_NIBBLES) |
| { |
| j = 0; |
| offset ++; |
| } |
| } |
| |
| return biR; |
| } |
| |
| void bi_print(const char *label, bigint *x) |
| { |
| int i, j; |
| |
| if (x == NULL) |
| { |
| printf("%s: (null)\n", label); |
| return; |
| } |
| |
| printf("%s: (size %d)\n", label, x->size); |
| for (i = x->size-1; i >= 0; i--) |
| { |
| for (j = COMP_NUM_NIBBLES-1; j >= 0; j--) |
| { |
| comp mask = 0x0f << (j*4); |
| comp num = (x->comps[i] & mask) >> (j*4); |
| putc((num <= 9) ? (num + '0') : (num + 'A' - 10), stdout); |
| } |
| } |
| |
| printf("\n"); |
| } |
| #endif |
| |
| /** |
| * @brief Take a bigint and convert it into a byte sequence. |
| * |
| * This is useful after a decrypt operation. |
| * @param ctx [in] The bigint session context. |
| * @param x [in] The bigint to be converted. |
| * @param data [out] The converted data as a byte stream. |
| * @param size [in] The maximum size of the byte stream. Unused bytes will be |
| * zeroed. |
| */ |
| void bi_export(BI_CTX *ctx, bigint *x, uint8_t *data, int size) |
| { |
| int i, j, k = size-1; |
| |
| check(x); |
| memset(data, 0, size); /* ensure all leading 0's are cleared */ |
| |
| for (i = 0; i < x->size; i++) |
| { |
| for (j = 0; j < COMP_BYTE_SIZE; j++) |
| { |
| comp mask = 0xff << (j*8); |
| int num = (x->comps[i] & mask) >> (j*8); |
| data[k--] = num; |
| |
| if (k < 0) |
| { |
| break; |
| } |
| } |
| } |
| |
| bi_free(ctx, x); |
| } |
| |
| /** |
| * @brief Pre-calculate some of the expensive steps in reduction. |
| * |
| * This function should only be called once (normally when a session starts). |
| * When the session is over, bi_free_mod() should be called. bi_mod_power() |
| * relies on this function being called. |
| * @param ctx [in] The bigint session context. |
| * @param bim [in] The bigint modulus that will be used. |
| * @param mod_offset [in] There are three moduluii that can be stored - the |
| * standard modulus, and its two primes p and q. This offset refers to which |
| * modulus we are referring to. |
| * @see bi_free_mod(), bi_mod_power(). |
| */ |
| void bi_set_mod(BI_CTX *ctx, bigint *bim, int mod_offset) |
| { |
| int k = bim->size; |
| comp d = (comp)((long_comp)COMP_RADIX/(bim->comps[k-1]+1)); |
| #ifdef CONFIG_BIGINT_MONTGOMERY |
| bigint *R, *R2; |
| #endif |
| |
| ctx->bi_mod[mod_offset] = bim; |
| bi_permanent(ctx->bi_mod[mod_offset]); |
| ctx->bi_normalised_mod[mod_offset] = bi_int_multiply(ctx, bim, d); |
| bi_permanent(ctx->bi_normalised_mod[mod_offset]); |
| |
| #if defined(CONFIG_BIGINT_MONTGOMERY) |
| /* set montgomery variables */ |
| R = comp_left_shift(bi_clone(ctx, ctx->bi_radix), k-1); /* R */ |
| R2 = comp_left_shift(bi_clone(ctx, ctx->bi_radix), k*2-1); /* R^2 */ |
| ctx->bi_RR_mod_m[mod_offset] = bi_mod(ctx, R2); /* R^2 mod m */ |
| ctx->bi_R_mod_m[mod_offset] = bi_mod(ctx, R); /* R mod m */ |
| |
| bi_permanent(ctx->bi_RR_mod_m[mod_offset]); |
| bi_permanent(ctx->bi_R_mod_m[mod_offset]); |
| |
| ctx->N0_dash[mod_offset] = modular_inverse(ctx->bi_mod[mod_offset]); |
| |
| #elif defined (CONFIG_BIGINT_BARRETT) |
| ctx->bi_mu[mod_offset] = |
| bi_divide(ctx, comp_left_shift( |
| bi_clone(ctx, ctx->bi_radix), k*2-1), ctx->bi_mod[mod_offset], 0); |
| bi_permanent(ctx->bi_mu[mod_offset]); |
| #endif |
| } |
| |
| /** |
| * @brief Used when cleaning various bigints at the end of a session. |
| * @param ctx [in] The bigint session context. |
| * @param mod_offset [in] The offset to use. |
| * @see bi_set_mod(). |
| */ |
| void bi_free_mod(BI_CTX *ctx, int mod_offset) |
| { |
| bi_depermanent(ctx->bi_mod[mod_offset]); |
| bi_free(ctx, ctx->bi_mod[mod_offset]); |
| #if defined (CONFIG_BIGINT_MONTGOMERY) |
| bi_depermanent(ctx->bi_RR_mod_m[mod_offset]); |
| bi_depermanent(ctx->bi_R_mod_m[mod_offset]); |
| bi_free(ctx, ctx->bi_RR_mod_m[mod_offset]); |
| bi_free(ctx, ctx->bi_R_mod_m[mod_offset]); |
| #elif defined(CONFIG_BIGINT_BARRETT) |
| bi_depermanent(ctx->bi_mu[mod_offset]); |
| bi_free(ctx, ctx->bi_mu[mod_offset]); |
| #endif |
| bi_depermanent(ctx->bi_normalised_mod[mod_offset]); |
| bi_free(ctx, ctx->bi_normalised_mod[mod_offset]); |
| } |
| |
| /** |
| * Perform a standard multiplication between two bigints. |
| */ |
| static bigint *regular_multiply(BI_CTX *ctx, bigint *bia, bigint *bib) |
| { |
| int i, j, i_plus_j; |
| int n = bia->size; |
| int t = bib->size; |
| bigint *biR = alloc(ctx, n + t); |
| comp *sr = biR->comps; |
| comp *sa = bia->comps; |
| comp *sb = bib->comps; |
| |
| check(bia); |
| check(bib); |
| |
| /* clear things to start with */ |
| memset(biR->comps, 0, ((n+t)*COMP_BYTE_SIZE)); |
| i = 0; |
| |
| do |
| { |
| comp carry = 0; |
| comp b = *sb++; |
| i_plus_j = i; |
| j = 0; |
| |
| do |
| { |
| long_comp tmp = sr[i_plus_j] + (long_comp)sa[j]*b + carry; |
| sr[i_plus_j++] = (comp)tmp; /* downsize */ |
| carry = (comp)(tmp >> COMP_BIT_SIZE); |
| } while (++j < n); |
| |
| sr[i_plus_j] = carry; |
| } while (++i < t); |
| |
| bi_free(ctx, bia); |
| bi_free(ctx, bib); |
| return trim(biR); |
| } |
| |
| #ifdef CONFIG_BIGINT_KARATSUBA |
| /* |
| * Karatsuba improves on regular multiplication due to only 3 multiplications |
| * being done instead of 4. The additional additions/subtractions are O(N) |
| * rather than O(N^2) and so for big numbers it saves on a few operations |
| */ |
| static bigint *karatsuba(BI_CTX *ctx, bigint *bia, bigint *bib, int is_square) |
| { |
| bigint *x0, *x1; |
| bigint *p0, *p1, *p2; |
| int m; |
| |
| if (is_square) |
| { |
| m = (bia->size + 1)/2; |
| } |
| else |
| { |
| m = (max(bia->size, bib->size) + 1)/2; |
| } |
| |
| x0 = bi_clone(ctx, bia); |
| x0->size = m; |
| x1 = bi_clone(ctx, bia); |
| comp_right_shift(x1, m); |
| bi_free(ctx, bia); |
| |
| /* work out the 3 partial products */ |
| if (is_square) |
| { |
| p0 = bi_square(ctx, bi_copy(x0)); |
| p2 = bi_square(ctx, bi_copy(x1)); |
| p1 = bi_square(ctx, bi_add(ctx, x0, x1)); |
| } |
| else /* normal multiply */ |
| { |
| bigint *y0, *y1; |
| y0 = bi_clone(ctx, bib); |
| y0->size = m; |
| y1 = bi_clone(ctx, bib); |
| comp_right_shift(y1, m); |
| bi_free(ctx, bib); |
| |
| p0 = bi_multiply(ctx, bi_copy(x0), bi_copy(y0)); |
| p2 = bi_multiply(ctx, bi_copy(x1), bi_copy(y1)); |
| p1 = bi_multiply(ctx, bi_add(ctx, x0, x1), bi_add(ctx, y0, y1)); |
| } |
| |
| p1 = bi_subtract(ctx, |
| bi_subtract(ctx, p1, bi_copy(p2), NULL), bi_copy(p0), NULL); |
| |
| comp_left_shift(p1, m); |
| comp_left_shift(p2, 2*m); |
| return bi_add(ctx, p1, bi_add(ctx, p0, p2)); |
| } |
| #endif |
| |
| /** |
| * @brief Perform a multiplication operation between two bigints. |
| * @param ctx [in] The bigint session context. |
| * @param bia [in] A bigint. |
| * @param bib [in] Another bigint. |
| * @return The result of the multiplication. |
| */ |
| bigint *bi_multiply(BI_CTX *ctx, bigint *bia, bigint *bib) |
| { |
| check(bia); |
| check(bib); |
| |
| #ifdef CONFIG_BIGINT_KARATSUBA |
| if (min(bia->size, bib->size) < MUL_KARATSUBA_THRESH) |
| { |
| return regular_multiply(ctx, bia, bib); |
| } |
| |
| return karatsuba(ctx, bia, bib, 0); |
| #else |
| return regular_multiply(ctx, bia, bib); |
| #endif |
| } |
| |
| #ifdef CONFIG_BIGINT_SQUARE |
| /* |
| * Perform the actual square operion. It takes into account overflow. |
| */ |
| static bigint *regular_square(BI_CTX *ctx, bigint *bi) |
| { |
| int t = bi->size; |
| int i = 0, j; |
| bigint *biR = alloc(ctx, t*2); |
| comp *w = biR->comps; |
| comp *x = bi->comps; |
| comp carry; |
| |
| memset(w, 0, biR->size*COMP_BYTE_SIZE); |
| |
| do |
| { |
| long_comp tmp = w[2*i] + (long_comp)x[i]*x[i]; |
| comp u = 0; |
| w[2*i] = (comp)tmp; |
| carry = (comp)(tmp >> COMP_BIT_SIZE); |
| |
| for (j = i+1; j < t; j++) |
| { |
| long_comp xx = (long_comp)x[i]*x[j]; |
| long_comp blob = (long_comp)w[i+j]+carry; |
| |
| if (u) /* previous overflow */ |
| { |
| blob += COMP_RADIX; |
| } |
| |
| u = 0; |
| if (xx & COMP_BIG_MSB) /* check for overflow */ |
| { |
| u = 1; |
| } |
| |
| tmp = 2*xx + blob; |
| w[i+j] = (comp)tmp; |
| carry = (comp)(tmp >> COMP_BIT_SIZE); |
| } |
| |
| w[i+t] += carry; |
| |
| if (u) |
| { |
| w[i+t+1] = 1; /* add carry */ |
| } |
| } while (++i < t); |
| |
| bi_free(ctx, bi); |
| return trim(biR); |
| } |
| |
| /** |
| * @brief Perform a square operation on a bigint. |
| * @param ctx [in] The bigint session context. |
| * @param bia [in] A bigint. |
| * @return The result of the multiplication. |
| */ |
| bigint *bi_square(BI_CTX *ctx, bigint *bia) |
| { |
| check(bia); |
| |
| #ifdef CONFIG_BIGINT_KARATSUBA |
| if (bia->size < SQU_KARATSUBA_THRESH) |
| { |
| return regular_square(ctx, bia); |
| } |
| |
| return karatsuba(ctx, bia, NULL, 1); |
| #else |
| return regular_square(ctx, bia); |
| #endif |
| } |
| #endif |
| |
| /** |
| * @brief Compare two bigints. |
| * @param bia [in] A bigint. |
| * @param bib [in] Another bigint. |
| * @return -1 if smaller, 1 if larger and 0 if equal. |
| */ |
| int bi_compare(bigint *bia, bigint *bib) |
| { |
| int r, i; |
| |
| check(bia); |
| check(bib); |
| |
| if (bia->size > bib->size) |
| r = 1; |
| else if (bia->size < bib->size) |
| r = -1; |
| else |
| { |
| comp *a = bia->comps; |
| comp *b = bib->comps; |
| |
| /* Same number of components. Compare starting from the high end |
| * and working down. */ |
| r = 0; |
| i = bia->size - 1; |
| |
| do |
| { |
| if (a[i] > b[i]) |
| { |
| r = 1; |
| break; |
| } |
| else if (a[i] < b[i]) |
| { |
| r = -1; |
| break; |
| } |
| } while (--i >= 0); |
| } |
| |
| return r; |
| } |
| |
| /* |
| * Allocate and zero more components. Does not consume bi. |
| */ |
| static void more_comps(bigint *bi, int n) |
| { |
| if (n > bi->max_comps) |
| { |
| bi->max_comps = max(bi->max_comps * 2, n); |
| bi->comps = (comp*)realloc(bi->comps, bi->max_comps * COMP_BYTE_SIZE); |
| } |
| |
| if (n > bi->size) |
| { |
| memset(&bi->comps[bi->size], 0, (n-bi->size)*COMP_BYTE_SIZE); |
| } |
| |
| bi->size = n; |
| } |
| |
| /* |
| * Make a new empty bigint. It may just use an old one if one is available. |
| * Otherwise get one off the heap. |
| */ |
| static bigint *alloc(BI_CTX *ctx, int size) |
| { |
| bigint *biR; |
| |
| /* Can we recycle an old bigint? */ |
| if (ctx->free_list != NULL) |
| { |
| biR = ctx->free_list; |
| ctx->free_list = biR->next; |
| ctx->free_count--; |
| |
| if (biR->refs != 0) |
| { |
| #ifdef CONFIG_SSL_FULL_MODE |
| printf("alloc: refs was not 0\n"); |
| #endif |
| abort(); /* create a stack trace from a core dump */ |
| } |
| |
| more_comps(biR, size); |
| } |
| else |
| { |
| /* No free bigints available - create a new one. */ |
| biR = (bigint *)malloc(sizeof(bigint)); |
| biR->comps = (comp*)malloc(size * COMP_BYTE_SIZE); |
| biR->max_comps = size; /* give some space to spare */ |
| } |
| |
| biR->size = size; |
| biR->refs = 1; |
| biR->next = NULL; |
| ctx->active_count++; |
| return biR; |
| } |
| |
| /* |
| * Work out the highest '1' bit in an exponent. Used when doing sliding-window |
| * exponentiation. |
| */ |
| static int find_max_exp_index(bigint *biexp) |
| { |
| int i = COMP_BIT_SIZE-1; |
| comp shift = COMP_RADIX/2; |
| comp test = biexp->comps[biexp->size-1]; /* assume no leading zeroes */ |
| |
| check(biexp); |
| |
| do |
| { |
| if (test & shift) |
| { |
| return i+(biexp->size-1)*COMP_BIT_SIZE; |
| } |
| |
| shift >>= 1; |
| } while (--i != 0); |
| |
| return -1; /* error - must have been a leading 0 */ |
| } |
| |
| /* |
| * Is a particular bit is an exponent 1 or 0? Used when doing sliding-window |
| * exponentiation. |
| */ |
| static int exp_bit_is_one(bigint *biexp, int offset) |
| { |
| comp test = biexp->comps[offset / COMP_BIT_SIZE]; |
| int num_shifts = offset % COMP_BIT_SIZE; |
| comp shift = 1; |
| int i; |
| |
| check(biexp); |
| |
| for (i = 0; i < num_shifts; i++) |
| { |
| shift <<= 1; |
| } |
| |
| return test & shift; |
| } |
| |
| #ifdef CONFIG_BIGINT_CHECK_ON |
| /* |
| * Perform a sanity check on bi. |
| */ |
| static void check(const bigint *bi) |
| { |
| if (bi->refs <= 0) |
| { |
| printf("check: zero or negative refs in bigint\n"); |
| abort(); |
| } |
| |
| if (bi->next != NULL) |
| { |
| printf("check: attempt to use a bigint from " |
| "the free list\n"); |
| abort(); |
| } |
| } |
| #endif |
| |
| /* |
| * Delete any leading 0's (and allow for 0). |
| */ |
| static bigint *trim(bigint *bi) |
| { |
| check(bi); |
| |
| while (bi->comps[bi->size-1] == 0 && bi->size > 1) |
| { |
| bi->size--; |
| } |
| |
| return bi; |
| } |
| |
| #if defined(CONFIG_BIGINT_MONTGOMERY) |
| /** |
| * @brief Perform a single montgomery reduction. |
| * @param ctx [in] The bigint session context. |
| * @param bixy [in] A bigint. |
| * @return The result of the montgomery reduction. |
| */ |
| bigint *bi_mont(BI_CTX *ctx, bigint *bixy) |
| { |
| int i = 0, n; |
| uint8_t mod_offset = ctx->mod_offset; |
| bigint *bim = ctx->bi_mod[mod_offset]; |
| comp mod_inv = ctx->N0_dash[mod_offset]; |
| |
| check(bixy); |
| |
| if (ctx->use_classical) /* just use classical instead */ |
| { |
| return bi_mod(ctx, bixy); |
| } |
| |
| n = bim->size; |
| |
| do |
| { |
| bixy = bi_add(ctx, bixy, comp_left_shift( |
| bi_int_multiply(ctx, bim, bixy->comps[i]*mod_inv), i)); |
| } while (++i < n); |
| |
| comp_right_shift(bixy, n); |
| |
| if (bi_compare(bixy, bim) >= 0) |
| { |
| bixy = bi_subtract(ctx, bixy, bim, NULL); |
| } |
| |
| return bixy; |
| } |
| |
| #elif defined(CONFIG_BIGINT_BARRETT) |
| /* |
| * Stomp on the most significant components to give the illusion of a "mod base |
| * radix" operation |
| */ |
| static bigint *comp_mod(bigint *bi, int mod) |
| { |
| check(bi); |
| |
| if (bi->size > mod) |
| { |
| bi->size = mod; |
| } |
| |
| return bi; |
| } |
| |
| /* |
| * Barrett reduction has no need for some parts of the product, so ignore bits |
| * of the multiply. This routine gives Barrett its big performance |
| * improvements over Classical/Montgomery reduction methods. |
| */ |
| static bigint *partial_multiply(BI_CTX *ctx, bigint *bia, bigint *bib, |
| int inner_partial, int outer_partial) |
| { |
| int i = 0, j, n = bia->size, t = bib->size; |
| bigint *biR; |
| comp carry; |
| comp *sr, *sa, *sb; |
| |
| check(bia); |
| check(bib); |
| |
| biR = alloc(ctx, n + t); |
| sa = bia->comps; |
| sb = bib->comps; |
| sr = biR->comps; |
| |
| if (inner_partial) |
| { |
| memset(sr, 0, inner_partial*COMP_BYTE_SIZE); |
| } |
| else /* outer partial */ |
| { |
| if (n < outer_partial || t < outer_partial) /* should we bother? */ |
| { |
| bi_free(ctx, bia); |
| bi_free(ctx, bib); |
| biR->comps[0] = 0; /* return 0 */ |
| biR->size = 1; |
| return biR; |
| } |
| |
| memset(&sr[outer_partial], 0, (n+t-outer_partial)*COMP_BYTE_SIZE); |
| } |
| |
| do |
| { |
| comp *a = sa; |
| comp b = *sb++; |
| long_comp tmp; |
| int i_plus_j = i; |
| carry = 0; |
| j = n; |
| |
| if (outer_partial && i_plus_j < outer_partial) |
| { |
| i_plus_j = outer_partial; |
| a = &sa[outer_partial-i]; |
| j = n-(outer_partial-i); |
| } |
| |
| do |
| { |
| if (inner_partial && i_plus_j >= inner_partial) |
| { |
| break; |
| } |
| |
| tmp = sr[i_plus_j] + ((long_comp)*a++)*b + carry; |
| sr[i_plus_j++] = (comp)tmp; /* downsize */ |
| carry = (comp)(tmp >> COMP_BIT_SIZE); |
| } while (--j != 0); |
| |
| sr[i_plus_j] = carry; |
| } while (++i < t); |
| |
| bi_free(ctx, bia); |
| bi_free(ctx, bib); |
| return trim(biR); |
| } |
| |
| /** |
| * @brief Perform a single Barrett reduction. |
| * @param ctx [in] The bigint session context. |
| * @param bi [in] A bigint. |
| * @return The result of the Barrett reduction. |
| */ |
| bigint *bi_barrett(BI_CTX *ctx, bigint *bi) |
| { |
| bigint *q1, *q2, *q3, *r1, *r2, *r; |
| uint8_t mod_offset = ctx->mod_offset; |
| bigint *bim = ctx->bi_mod[mod_offset]; |
| int k = bim->size; |
| |
| check(bi); |
| check(bim); |
| |
| /* use Classical method instead - Barrett cannot help here */ |
| if (bi->size > k*2) |
| { |
| return bi_mod(ctx, bi); |
| } |
| |
| q1 = comp_right_shift(bi_clone(ctx, bi), k-1); |
| |
| /* do outer partial multiply */ |
| q2 = partial_multiply(ctx, q1, ctx->bi_mu[mod_offset], 0, k-1); |
| q3 = comp_right_shift(q2, k+1); |
| r1 = comp_mod(bi, k+1); |
| |
| /* do inner partial multiply */ |
| r2 = comp_mod(partial_multiply(ctx, q3, bim, k+1, 0), k+1); |
| r = bi_subtract(ctx, r1, r2, NULL); |
| |
| /* if (r >= m) r = r - m; */ |
| if (bi_compare(r, bim) >= 0) |
| { |
| r = bi_subtract(ctx, r, bim, NULL); |
| } |
| |
| return r; |
| } |
| #endif /* CONFIG_BIGINT_BARRETT */ |
| |
| #ifdef CONFIG_BIGINT_SLIDING_WINDOW |
| /* |
| * Work out g1, g3, g5, g7... etc for the sliding-window algorithm |
| */ |
| static void precompute_slide_window(BI_CTX *ctx, int window, bigint *g1) |
| { |
| int k = 1, i; |
| bigint *g2; |
| |
| for (i = 0; i < window-1; i++) /* compute 2^(window-1) */ |
| { |
| k <<= 1; |
| } |
| |
| ctx->g = (bigint **)malloc(k*sizeof(bigint *)); |
| ctx->g[0] = bi_clone(ctx, g1); |
| bi_permanent(ctx->g[0]); |
| g2 = bi_residue(ctx, bi_square(ctx, ctx->g[0])); /* g^2 */ |
| |
| for (i = 1; i < k; i++) |
| { |
| ctx->g[i] = bi_residue(ctx, bi_multiply(ctx, ctx->g[i-1], bi_copy(g2))); |
| bi_permanent(ctx->g[i]); |
| } |
| |
| bi_free(ctx, g2); |
| ctx->window = k; |
| } |
| #endif |
| |
| /** |
| * @brief Perform a modular exponentiation. |
| * |
| * This function requires bi_set_mod() to have been called previously. This is |
| * one of the optimisations used for performance. |
| * @param ctx [in] The bigint session context. |
| * @param bi [in] The bigint on which to perform the mod power operation. |
| * @param biexp [in] The bigint exponent. |
| * @see bi_set_mod(). |
| */ |
| bigint *bi_mod_power(BI_CTX *ctx, bigint *bi, bigint *biexp) |
| { |
| int i = find_max_exp_index(biexp), j, window_size = 1; |
| bigint *biR = int_to_bi(ctx, 1); |
| |
| #if defined(CONFIG_BIGINT_MONTGOMERY) |
| uint8_t mod_offset = ctx->mod_offset; |
| if (!ctx->use_classical) |
| { |
| /* preconvert */ |
| bi = bi_mont(ctx, |
| bi_multiply(ctx, bi, ctx->bi_RR_mod_m[mod_offset])); /* x' */ |
| bi_free(ctx, biR); |
| biR = ctx->bi_R_mod_m[mod_offset]; /* A */ |
| } |
| #endif |
| |
| check(bi); |
| check(biexp); |
| |
| #ifdef CONFIG_BIGINT_SLIDING_WINDOW |
| for (j = i; j > 32; j /= 5) /* work out an optimum size */ |
| window_size++; |
| |
| /* work out the slide constants */ |
| precompute_slide_window(ctx, window_size, bi); |
| #else /* just one constant */ |
| ctx->g = (bigint **)malloc(sizeof(bigint *)); |
| ctx->g[0] = bi_clone(ctx, bi); |
| ctx->window = 1; |
| bi_permanent(ctx->g[0]); |
| #endif |
| |
| /* if sliding-window is off, then only one bit will be done at a time and |
| * will reduce to standard left-to-right exponentiation */ |
| do |
| { |
| if (exp_bit_is_one(biexp, i)) |
| { |
| int l = i-window_size+1; |
| int part_exp = 0; |
| |
| if (l < 0) /* LSB of exponent will always be 1 */ |
| l = 0; |
| else |
| { |
| while (exp_bit_is_one(biexp, l) == 0) |
| l++; /* go back up */ |
| } |
| |
| /* build up the section of the exponent */ |
| for (j = i; j >= l; j--) |
| { |
| biR = bi_residue(ctx, bi_square(ctx, biR)); |
| if (exp_bit_is_one(biexp, j)) |
| part_exp++; |
| |
| if (j != l) |
| part_exp <<= 1; |
| } |
| |
| part_exp = (part_exp-1)/2; /* adjust for array */ |
| biR = bi_residue(ctx, bi_multiply(ctx, biR, ctx->g[part_exp])); |
| i = l-1; |
| } |
| else /* square it */ |
| { |
| biR = bi_residue(ctx, bi_square(ctx, biR)); |
| i--; |
| } |
| } while (i >= 0); |
| |
| /* cleanup */ |
| for (i = 0; i < ctx->window; i++) |
| { |
| bi_depermanent(ctx->g[i]); |
| bi_free(ctx, ctx->g[i]); |
| } |
| |
| free(ctx->g); |
| bi_free(ctx, bi); |
| bi_free(ctx, biexp); |
| #if defined CONFIG_BIGINT_MONTGOMERY |
| return ctx->use_classical ? biR : bi_mont(ctx, biR); /* convert back */ |
| #else /* CONFIG_BIGINT_CLASSICAL or CONFIG_BIGINT_BARRETT */ |
| return biR; |
| #endif |
| } |
| |
| #ifdef CONFIG_SSL_CERT_VERIFICATION |
| /** |
| * @brief Perform a modular exponentiation using a temporary modulus. |
| * |
| * We need this function to check the signatures of certificates. The modulus |
| * of this function is temporary as it's just used for authentication. |
| * @param ctx [in] The bigint session context. |
| * @param bi [in] The bigint to perform the exp/mod. |
| * @param bim [in] The temporary modulus. |
| * @param biexp [in] The bigint exponent. |
| * @see bi_set_mod(). |
| */ |
| bigint *bi_mod_power2(BI_CTX *ctx, bigint *bi, bigint *bim, bigint *biexp) |
| { |
| bigint *biR, *tmp_biR; |
| |
| /* Set up a temporary bigint context and transfer what we need between |
| * them. We need to do this since we want to keep the original modulus |
| * which is already in this context. This operation is only called when |
| * doing peer verification, and so is not expensive :-) */ |
| BI_CTX *tmp_ctx = bi_initialize(); |
| bi_set_mod(tmp_ctx, bi_clone(tmp_ctx, bim), BIGINT_M_OFFSET); |
| tmp_biR = bi_mod_power(tmp_ctx, |
| bi_clone(tmp_ctx, bi), |
| bi_clone(tmp_ctx, biexp)); |
| biR = bi_clone(ctx, tmp_biR); |
| bi_free(tmp_ctx, tmp_biR); |
| bi_free_mod(tmp_ctx, BIGINT_M_OFFSET); |
| bi_terminate(tmp_ctx); |
| |
| bi_free(ctx, bi); |
| bi_free(ctx, bim); |
| bi_free(ctx, biexp); |
| return biR; |
| } |
| #endif |
| /** @} */ |