| /* SHA256-based Unix crypt implementation. |
| Released into the Public Domain by Ulrich Drepper <[email protected]>. */ |
| |
| #include <alloca.h> |
| #include <endian.h> |
| #include <errno.h> |
| #include <limits.h> |
| #include <stdint.h> |
| #include <stdbool.h> |
| #include <stdio.h> |
| #include <stdlib.h> |
| #include <string.h> |
| #include <minmax.h> |
| #include <sys/types.h> |
| |
| #include "xcrypt.h" |
| |
| #define MIN(x,y) min(x,y) |
| #define MAX(x,y) max(x,y) |
| |
| /* Structure to save state of computation between the single steps. */ |
| struct sha256_ctx { |
| uint32_t H[8]; |
| |
| uint32_t total[2]; |
| uint32_t buflen; |
| char buffer[128]; /* NB: always correctly aligned for uint32_t. */ |
| }; |
| |
| #if __BYTE_ORDER == __LITTLE_ENDIAN |
| # define SWAP(n) \ |
| (((n) << 24) | (((n) & 0xff00) << 8) | (((n) >> 8) & 0xff00) | ((n) >> 24)) |
| #else |
| # define SWAP(n) (n) |
| #endif |
| |
| /* This array contains the bytes used to pad the buffer to the next |
| 64-byte boundary. (FIPS 180-2:5.1.1) */ |
| static const unsigned char fillbuf[64] = { 0x80, 0 /* , 0, 0, ... */ }; |
| |
| /* Constants for SHA256 from FIPS 180-2:4.2.2. */ |
| static const uint32_t K[64] = { |
| 0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, |
| 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5, |
| 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, |
| 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174, |
| 0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, |
| 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da, |
| 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, |
| 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967, |
| 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, |
| 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85, |
| 0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, |
| 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070, |
| 0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, |
| 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3, |
| 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, |
| 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2 |
| }; |
| |
| /* Process LEN bytes of BUFFER, accumulating context into CTX. |
| It is assumed that LEN % 64 == 0. */ |
| static void |
| sha256_process_block(const void *buffer, size_t len, struct sha256_ctx *ctx) |
| { |
| unsigned int t; |
| const uint32_t *words = buffer; |
| size_t nwords = len / sizeof(uint32_t); |
| uint32_t a = ctx->H[0]; |
| uint32_t b = ctx->H[1]; |
| uint32_t c = ctx->H[2]; |
| uint32_t d = ctx->H[3]; |
| uint32_t e = ctx->H[4]; |
| uint32_t f = ctx->H[5]; |
| uint32_t g = ctx->H[6]; |
| uint32_t h = ctx->H[7]; |
| |
| /* First increment the byte count. FIPS 180-2 specifies the possible |
| length of the file up to 2^64 bits. Here we only compute the |
| number of bytes. Do a double word increment. */ |
| ctx->total[0] += len; |
| if (ctx->total[0] < len) |
| ++ctx->total[1]; |
| |
| /* Process all bytes in the buffer with 64 bytes in each round of |
| the loop. */ |
| while (nwords > 0) { |
| uint32_t W[64]; |
| uint32_t a_save = a; |
| uint32_t b_save = b; |
| uint32_t c_save = c; |
| uint32_t d_save = d; |
| uint32_t e_save = e; |
| uint32_t f_save = f; |
| uint32_t g_save = g; |
| uint32_t h_save = h; |
| |
| /* Operators defined in FIPS 180-2:4.1.2. */ |
| #define Ch(x, y, z) ((x & y) ^ (~x & z)) |
| #define Maj(x, y, z) ((x & y) ^ (x & z) ^ (y & z)) |
| #define S0(x) (CYCLIC (x, 2) ^ CYCLIC (x, 13) ^ CYCLIC (x, 22)) |
| #define S1(x) (CYCLIC (x, 6) ^ CYCLIC (x, 11) ^ CYCLIC (x, 25)) |
| #define R0(x) (CYCLIC (x, 7) ^ CYCLIC (x, 18) ^ (x >> 3)) |
| #define R1(x) (CYCLIC (x, 17) ^ CYCLIC (x, 19) ^ (x >> 10)) |
| |
| /* It is unfortunate that C does not provide an operator for |
| cyclic rotation. Hope the C compiler is smart enough. */ |
| #define CYCLIC(w, s) ((w >> s) | (w << (32 - s))) |
| |
| /* Compute the message schedule according to FIPS 180-2:6.2.2 step 2. */ |
| for (t = 0; t < 16; ++t) { |
| W[t] = SWAP(*words); |
| ++words; |
| } |
| for (t = 16; t < 64; ++t) |
| W[t] = R1(W[t - 2]) + W[t - 7] + R0(W[t - 15]) + W[t - 16]; |
| |
| /* The actual computation according to FIPS 180-2:6.2.2 step 3. */ |
| for (t = 0; t < 64; ++t) { |
| uint32_t T1 = h + S1(e) + Ch(e, f, g) + K[t] + W[t]; |
| uint32_t T2 = S0(a) + Maj(a, b, c); |
| h = g; |
| g = f; |
| f = e; |
| e = d + T1; |
| d = c; |
| c = b; |
| b = a; |
| a = T1 + T2; |
| } |
| |
| /* Add the starting values of the context according to FIPS 180-2:6.2.2 |
| step 4. */ |
| a += a_save; |
| b += b_save; |
| c += c_save; |
| d += d_save; |
| e += e_save; |
| f += f_save; |
| g += g_save; |
| h += h_save; |
| |
| /* Prepare for the next round. */ |
| nwords -= 16; |
| } |
| |
| /* Put checksum in context given as argument. */ |
| ctx->H[0] = a; |
| ctx->H[1] = b; |
| ctx->H[2] = c; |
| ctx->H[3] = d; |
| ctx->H[4] = e; |
| ctx->H[5] = f; |
| ctx->H[6] = g; |
| ctx->H[7] = h; |
| } |
| |
| /* Initialize structure containing state of computation. |
| (FIPS 180-2:5.3.2) */ |
| static void sha256_init_ctx(struct sha256_ctx *ctx) |
| { |
| ctx->H[0] = 0x6a09e667; |
| ctx->H[1] = 0xbb67ae85; |
| ctx->H[2] = 0x3c6ef372; |
| ctx->H[3] = 0xa54ff53a; |
| ctx->H[4] = 0x510e527f; |
| ctx->H[5] = 0x9b05688c; |
| ctx->H[6] = 0x1f83d9ab; |
| ctx->H[7] = 0x5be0cd19; |
| |
| ctx->total[0] = ctx->total[1] = 0; |
| ctx->buflen = 0; |
| } |
| |
| /* Process the remaining bytes in the internal buffer and the usual |
| prolog according to the standard and write the result to RESBUF. |
| |
| IMPORTANT: On some systems it is required that RESBUF is correctly |
| aligned for a 32 bits value. */ |
| static void *sha256_finish_ctx(struct sha256_ctx *ctx, void *resbuf) |
| { |
| unsigned int i; |
| /* Take yet unprocessed bytes into account. */ |
| uint32_t bytes = ctx->buflen; |
| size_t pad; |
| |
| /* Now count remaining bytes. */ |
| ctx->total[0] += bytes; |
| if (ctx->total[0] < bytes) |
| ++ctx->total[1]; |
| |
| pad = bytes >= 56 ? 64 + 56 - bytes : 56 - bytes; |
| memcpy(&ctx->buffer[bytes], fillbuf, pad); |
| |
| /* Put the 64-bit file length in *bits* at the end of the buffer. */ |
| *(uint32_t *) & ctx->buffer[bytes + pad + 4] = SWAP(ctx->total[0] << 3); |
| *(uint32_t *) & ctx->buffer[bytes + pad] = SWAP((ctx->total[1] << 3) | |
| (ctx->total[0] >> 29)); |
| |
| /* Process last bytes. */ |
| sha256_process_block(ctx->buffer, bytes + pad + 8, ctx); |
| |
| /* Put result from CTX in first 32 bytes following RESBUF. */ |
| for (i = 0; i < 8; ++i) |
| ((uint32_t *) resbuf)[i] = SWAP(ctx->H[i]); |
| |
| return resbuf; |
| } |
| |
| static void |
| sha256_process_bytes(const void *buffer, size_t len, struct sha256_ctx *ctx) |
| { |
| /* When we already have some bits in our internal buffer concatenate |
| both inputs first. */ |
| if (ctx->buflen != 0) { |
| size_t left_over = ctx->buflen; |
| size_t add = 128 - left_over > len ? len : 128 - left_over; |
| |
| memcpy(&ctx->buffer[left_over], buffer, add); |
| ctx->buflen += add; |
| |
| if (ctx->buflen > 64) { |
| sha256_process_block(ctx->buffer, ctx->buflen & ~63, ctx); |
| |
| ctx->buflen &= 63; |
| /* The regions in the following copy operation cannot overlap. */ |
| memcpy(ctx->buffer, &ctx->buffer[(left_over + add) & ~63], |
| ctx->buflen); |
| } |
| |
| buffer = (const char *)buffer + add; |
| len -= add; |
| } |
| |
| /* Process available complete blocks. */ |
| if (len >= 64) { |
| /* To check alignment gcc has an appropriate operator. Other |
| compilers don't. */ |
| #if __GNUC__ >= 2 |
| # define UNALIGNED_P(p) (((uintptr_t) p) % __alignof__ (uint32_t) != 0) |
| #else |
| # define UNALIGNED_P(p) (((uintptr_t) p) % sizeof (uint32_t) != 0) |
| #endif |
| if (UNALIGNED_P(buffer)) |
| while (len > 64) { |
| sha256_process_block(memcpy(ctx->buffer, buffer, 64), 64, ctx); |
| buffer = (const char *)buffer + 64; |
| len -= 64; |
| } else { |
| sha256_process_block(buffer, len & ~63, ctx); |
| buffer = (const char *)buffer + (len & ~63); |
| len &= 63; |
| } |
| } |
| |
| /* Move remaining bytes into internal buffer. */ |
| if (len > 0) { |
| size_t left_over = ctx->buflen; |
| |
| memcpy(&ctx->buffer[left_over], buffer, len); |
| left_over += len; |
| if (left_over >= 64) { |
| sha256_process_block(ctx->buffer, 64, ctx); |
| left_over -= 64; |
| memcpy(ctx->buffer, &ctx->buffer[64], left_over); |
| } |
| ctx->buflen = left_over; |
| } |
| } |
| |
| /* Define our magic string to mark salt for SHA256 "encryption" |
| replacement. */ |
| static const char sha256_salt_prefix[] = "$5$"; |
| |
| /* Prefix for optional rounds specification. */ |
| static const char sha256_rounds_prefix[] = "rounds="; |
| |
| /* Maximum salt string length. */ |
| #define SALT_LEN_MAX 16U |
| /* Default number of rounds if not explicitly specified. */ |
| #define ROUNDS_DEFAULT 5000UL |
| /* Minimum number of rounds. */ |
| #define ROUNDS_MIN 1000UL |
| /* Maximum number of rounds. */ |
| #define ROUNDS_MAX 999999999UL |
| |
| /* Table with characters for base64 transformation. */ |
| static const char b64t[64] = |
| "./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz"; |
| |
| static char *sha256_crypt_r(const char *key, const char *salt, char *buffer, |
| int buflen) |
| { |
| unsigned char alt_result[32] |
| __attribute__ ((__aligned__(__alignof__(uint32_t)))); |
| unsigned char temp_result[32] |
| __attribute__ ((__aligned__(__alignof__(uint32_t)))); |
| struct sha256_ctx ctx; |
| struct sha256_ctx alt_ctx; |
| size_t salt_len; |
| size_t key_len; |
| size_t cnt; |
| char *cp; |
| char *copied_key = NULL; |
| char *copied_salt = NULL; |
| char *p_bytes; |
| char *s_bytes; |
| /* Default number of rounds. */ |
| size_t rounds = ROUNDS_DEFAULT; |
| bool rounds_custom = false; |
| |
| /* Find beginning of salt string. The prefix should normally always |
| be present. Just in case it is not. */ |
| if (strncmp(sha256_salt_prefix, salt, sizeof(sha256_salt_prefix) - 1) == 0) |
| /* Skip salt prefix. */ |
| salt += sizeof(sha256_salt_prefix) - 1; |
| |
| if (strncmp(salt, sha256_rounds_prefix, sizeof(sha256_rounds_prefix) - 1) |
| == 0) { |
| const char *num = salt + sizeof(sha256_rounds_prefix) - 1; |
| char *endp; |
| unsigned long int srounds = strtoul(num, &endp, 10); |
| if (*endp == '$') { |
| salt = endp + 1; |
| rounds = MAX(ROUNDS_MIN, MIN(srounds, ROUNDS_MAX)); |
| rounds_custom = true; |
| } |
| } |
| |
| salt_len = MIN(strcspn(salt, "$"), SALT_LEN_MAX); |
| key_len = strlen(key); |
| |
| if ((key - (char *)0) % __alignof__(uint32_t) != 0) { |
| char *tmp = (char *)alloca(key_len + __alignof__(uint32_t)); |
| key = copied_key = memcpy(tmp + __alignof__(uint32_t) |
| - (tmp - (char *)0) % __alignof__(uint32_t), |
| key, key_len); |
| } |
| |
| if ((salt - (char *)0) % __alignof__(uint32_t) != 0) { |
| char *tmp = (char *)alloca(salt_len + __alignof__(uint32_t)); |
| salt = copied_salt = memcpy(tmp + __alignof__(uint32_t) |
| - (tmp - (char *)0) % __alignof__(uint32_t), |
| salt, salt_len); |
| } |
| |
| /* Prepare for the real work. */ |
| sha256_init_ctx(&ctx); |
| |
| /* Add the key string. */ |
| sha256_process_bytes(key, key_len, &ctx); |
| |
| /* The last part is the salt string. This must be at most 8 |
| characters and it ends at the first `$' character (for |
| compatibility with existing implementations). */ |
| sha256_process_bytes(salt, salt_len, &ctx); |
| |
| /* Compute alternate SHA256 sum with input KEY, SALT, and KEY. The |
| final result will be added to the first context. */ |
| sha256_init_ctx(&alt_ctx); |
| |
| /* Add key. */ |
| sha256_process_bytes(key, key_len, &alt_ctx); |
| |
| /* Add salt. */ |
| sha256_process_bytes(salt, salt_len, &alt_ctx); |
| |
| /* Add key again. */ |
| sha256_process_bytes(key, key_len, &alt_ctx); |
| |
| /* Now get result of this (32 bytes) and add it to the other |
| context. */ |
| sha256_finish_ctx(&alt_ctx, alt_result); |
| |
| /* Add for any character in the key one byte of the alternate sum. */ |
| for (cnt = key_len; cnt > 32; cnt -= 32) |
| sha256_process_bytes(alt_result, 32, &ctx); |
| sha256_process_bytes(alt_result, cnt, &ctx); |
| |
| /* Take the binary representation of the length of the key and for every |
| 1 add the alternate sum, for every 0 the key. */ |
| for (cnt = key_len; cnt; cnt >>= 1) |
| if ((cnt & 1) != 0) |
| sha256_process_bytes(alt_result, 32, &ctx); |
| else |
| sha256_process_bytes(key, key_len, &ctx); |
| |
| /* Create intermediate result. */ |
| sha256_finish_ctx(&ctx, alt_result); |
| |
| /* Start computation of P byte sequence. */ |
| sha256_init_ctx(&alt_ctx); |
| |
| /* For every character in the password add the entire password. */ |
| for (cnt = 0; cnt < key_len; ++cnt) |
| sha256_process_bytes(key, key_len, &alt_ctx); |
| |
| /* Finish the digest. */ |
| sha256_finish_ctx(&alt_ctx, temp_result); |
| |
| /* Create byte sequence P. */ |
| cp = p_bytes = alloca(key_len); |
| for (cnt = key_len; cnt >= 32; cnt -= 32) |
| cp = mempcpy(cp, temp_result, 32); |
| memcpy(cp, temp_result, cnt); |
| |
| /* Start computation of S byte sequence. */ |
| sha256_init_ctx(&alt_ctx); |
| |
| /* For every character in the password add the entire password. */ |
| for (cnt = 0; cnt < (size_t)16 + alt_result[0]; ++cnt) |
| sha256_process_bytes(salt, salt_len, &alt_ctx); |
| |
| /* Finish the digest. */ |
| sha256_finish_ctx(&alt_ctx, temp_result); |
| |
| /* Create byte sequence S. */ |
| cp = s_bytes = alloca(salt_len); |
| for (cnt = salt_len; cnt >= 32; cnt -= 32) |
| cp = mempcpy(cp, temp_result, 32); |
| memcpy(cp, temp_result, cnt); |
| |
| /* Repeatedly run the collected hash value through SHA256 to burn |
| CPU cycles. */ |
| for (cnt = 0; cnt < rounds; ++cnt) { |
| /* New context. */ |
| sha256_init_ctx(&ctx); |
| |
| /* Add key or last result. */ |
| if ((cnt & 1) != 0) |
| sha256_process_bytes(p_bytes, key_len, &ctx); |
| else |
| sha256_process_bytes(alt_result, 32, &ctx); |
| |
| /* Add salt for numbers not divisible by 3. */ |
| if (cnt % 3 != 0) |
| sha256_process_bytes(s_bytes, salt_len, &ctx); |
| |
| /* Add key for numbers not divisible by 7. */ |
| if (cnt % 7 != 0) |
| sha256_process_bytes(p_bytes, key_len, &ctx); |
| |
| /* Add key or last result. */ |
| if ((cnt & 1) != 0) |
| sha256_process_bytes(alt_result, 32, &ctx); |
| else |
| sha256_process_bytes(p_bytes, key_len, &ctx); |
| |
| /* Create intermediate result. */ |
| sha256_finish_ctx(&ctx, alt_result); |
| } |
| |
| /* Now we can construct the result string. It consists of three |
| parts. */ |
| cp = stpncpy(buffer, sha256_salt_prefix, MAX(0, buflen)); |
| buflen -= sizeof(sha256_salt_prefix) - 1; |
| |
| if (rounds_custom) { |
| int n = snprintf(cp, MAX(0, buflen), "%s%zu$", |
| sha256_rounds_prefix, rounds); |
| cp += n; |
| buflen -= n; |
| } |
| |
| cp = stpncpy(cp, salt, MIN((size_t) MAX(0, buflen), salt_len)); |
| buflen -= MIN((size_t) MAX(0, buflen), salt_len); |
| |
| if (buflen > 0) { |
| *cp++ = '$'; |
| --buflen; |
| } |
| #define b64_from_24bit(B2, B1, B0, N) \ |
| do { \ |
| unsigned int w = ((B2) << 16) | ((B1) << 8) | (B0); \ |
| int n = (N); \ |
| while (n-- > 0 && buflen > 0) \ |
| { \ |
| *cp++ = b64t[w & 0x3f]; \ |
| --buflen; \ |
| w >>= 6; \ |
| } \ |
| } while (0) |
| |
| b64_from_24bit(alt_result[0], alt_result[10], alt_result[20], 4); |
| b64_from_24bit(alt_result[21], alt_result[1], alt_result[11], 4); |
| b64_from_24bit(alt_result[12], alt_result[22], alt_result[2], 4); |
| b64_from_24bit(alt_result[3], alt_result[13], alt_result[23], 4); |
| b64_from_24bit(alt_result[24], alt_result[4], alt_result[14], 4); |
| b64_from_24bit(alt_result[15], alt_result[25], alt_result[5], 4); |
| b64_from_24bit(alt_result[6], alt_result[16], alt_result[26], 4); |
| b64_from_24bit(alt_result[27], alt_result[7], alt_result[17], 4); |
| b64_from_24bit(alt_result[18], alt_result[28], alt_result[8], 4); |
| b64_from_24bit(alt_result[9], alt_result[19], alt_result[29], 4); |
| b64_from_24bit(0, alt_result[31], alt_result[30], 3); |
| if (buflen <= 0) { |
| errno = ERANGE; |
| buffer = NULL; |
| } else |
| *cp = '\0'; /* Terminate the string. */ |
| |
| /* Clear the buffer for the intermediate result so that people |
| attaching to processes or reading core dumps cannot get any |
| information. We do it in this way to clear correct_words[] |
| inside the SHA256 implementation as well. */ |
| sha256_init_ctx(&ctx); |
| sha256_finish_ctx(&ctx, alt_result); |
| memset(temp_result, '\0', sizeof(temp_result)); |
| memset(p_bytes, '\0', key_len); |
| memset(s_bytes, '\0', salt_len); |
| memset(&ctx, '\0', sizeof(ctx)); |
| memset(&alt_ctx, '\0', sizeof(alt_ctx)); |
| if (copied_key != NULL) |
| memset(copied_key, '\0', key_len); |
| if (copied_salt != NULL) |
| memset(copied_salt, '\0', salt_len); |
| |
| return buffer; |
| } |
| |
| /* This entry point is equivalent to the `crypt' function in Unix |
| libcs. */ |
| char *sha256_crypt(const char *key, const char *salt) |
| { |
| /* We don't want to have an arbitrary limit in the size of the |
| password. We can compute an upper bound for the size of the |
| result in advance and so we can prepare the buffer we pass to |
| `sha256_crypt_r'. */ |
| static char *buffer; |
| static int buflen; |
| int needed = (sizeof(sha256_salt_prefix) - 1 |
| + sizeof(sha256_rounds_prefix) + 9 + 1 |
| + strlen(salt) + 1 + 43 + 1); |
| |
| if (buflen < needed) { |
| char *new_buffer = (char *)realloc(buffer, needed); |
| if (new_buffer == NULL) |
| return NULL; |
| |
| buffer = new_buffer; |
| buflen = needed; |
| } |
| |
| return sha256_crypt_r(key, salt, buffer, buflen); |
| } |
| |
| #ifdef TEST |
| static const struct { |
| const char *input; |
| const char result[32]; |
| } tests[] = { |
| /* Test vectors from FIPS 180-2: appendix B.1. */ |
| { |
| "abc", |
| "\xba\x78\x16\xbf\x8f\x01\xcf\xea\x41\x41\x40\xde\x5d\xae\x22\x23" |
| "\xb0\x03\x61\xa3\x96\x17\x7a\x9c\xb4\x10\xff\x61\xf2\x00\x15\xad"}, |
| /* Test vectors from FIPS 180-2: appendix B.2. */ |
| { |
| "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq", |
| "\x24\x8d\x6a\x61\xd2\x06\x38\xb8\xe5\xc0\x26\x93\x0c\x3e\x60\x39" |
| "\xa3\x3c\xe4\x59\x64\xff\x21\x67\xf6\xec\xed\xd4\x19\xdb\x06\xc1"}, |
| /* Test vectors from the NESSIE project. */ |
| { |
| "", "\xe3\xb0\xc4\x42\x98\xfc\x1c\x14\x9a\xfb\xf4\xc8\x99\x6f\xb9\x24" |
| "\x27\xae\x41\xe4\x64\x9b\x93\x4c\xa4\x95\x99\x1b\x78\x52\xb8\x55"}, |
| { |
| "a", "\xca\x97\x81\x12\xca\x1b\xbd\xca\xfa\xc2\x31\xb3\x9a\x23\xdc\x4d" |
| "\xa7\x86\xef\xf8\x14\x7c\x4e\x72\xb9\x80\x77\x85\xaf\xee\x48\xbb"}, |
| { |
| "message digest", |
| "\xf7\x84\x6f\x55\xcf\x23\xe1\x4e\xeb\xea\xb5\xb4\xe1\x55\x0c\xad" |
| "\x5b\x50\x9e\x33\x48\xfb\xc4\xef\xa3\xa1\x41\x3d\x39\x3c\xb6\x50"}, |
| { |
| "abcdefghijklmnopqrstuvwxyz", |
| "\x71\xc4\x80\xdf\x93\xd6\xae\x2f\x1e\xfa\xd1\x44\x7c\x66\xc9\x52" |
| "\x5e\x31\x62\x18\xcf\x51\xfc\x8d\x9e\xd8\x32\xf2\xda\xf1\x8b\x73"}, |
| { |
| "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq", |
| "\x24\x8d\x6a\x61\xd2\x06\x38\xb8\xe5\xc0\x26\x93\x0c\x3e\x60\x39" |
| "\xa3\x3c\xe4\x59\x64\xff\x21\x67\xf6\xec\xed\xd4\x19\xdb\x06\xc1"}, |
| { |
| "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789", |
| "\xdb\x4b\xfc\xbd\x4d\xa0\xcd\x85\xa6\x0c\x3c\x37\xd3\xfb\xd8\x80" |
| "\x5c\x77\xf1\x5f\xc6\xb1\xfd\xfe\x61\x4e\xe0\xa7\xc8\xfd\xb4\xc0"}, |
| { |
| "123456789012345678901234567890123456789012345678901234567890" |
| "12345678901234567890", |
| "\xf3\x71\xbc\x4a\x31\x1f\x2b\x00\x9e\xef\x95\x2d\xd8\x3c\xa8\x0e" |
| "\x2b\x60\x02\x6c\x8e\x93\x55\x92\xd0\xf9\xc3\x08\x45\x3c\x81\x3e"} |
| }; |
| |
| #define ntests (sizeof (tests) / sizeof (tests[0])) |
| |
| static const struct { |
| const char *salt; |
| const char *input; |
| const char *expected; |
| } tests2[] = { |
| { |
| "$5$saltstring", "Hello world!", |
| "$5$saltstring$5B8vYYiY.CVt1RlTTf8KbXBH3hsxY/GNooZaBBGWEc5"}, { |
| "$5$rounds=10000$saltstringsaltstring", "Hello world!", |
| "$5$rounds=10000$saltstringsaltst$3xv.VbSHBb41AL9AvLeujZkZRBAwqFMz2." |
| "opqey6IcA"}, { |
| "$5$rounds=5000$toolongsaltstring", "This is just a test", |
| "$5$rounds=5000$toolongsaltstrin$Un/5jzAHMgOGZ5.mWJpuVolil07guHPvOW8" |
| "mGRcvxa5"}, { |
| "$5$rounds=1400$anotherlongsaltstring", |
| "a very much longer text to encrypt. This one even stretches over more" |
| "than one line.", |
| "$5$rounds=1400$anotherlongsalts$Rx.j8H.h8HjEDGomFU8bDkXm3XIUnzyxf12" |
| "oP84Bnq1"}, { |
| "$5$rounds=77777$short", |
| "we have a short salt string but not a short password", |
| "$5$rounds=77777$short$JiO1O3ZpDAxGJeaDIuqCoEFysAe1mZNJRs3pw0KQRd/"}, |
| { |
| "$5$rounds=123456$asaltof16chars..", "a short string", |
| "$5$rounds=123456$asaltof16chars..$gP3VQ/6X7UUEW3HkBn2w1/Ptq2jxPyzV/" |
| "cZKmF/wJvD"}, { |
| "$5$rounds=10$roundstoolow", "the minimum number is still observed", |
| "$5$rounds=1000$roundstoolow$yfvwcWrQ8l/K0DAWyuPMDNHpIVlTQebY9l/gL97" |
| "2bIC"},}; |
| #define ntests2 (sizeof (tests2) / sizeof (tests2[0])) |
| |
| int main(void) |
| { |
| struct sha256_ctx ctx; |
| char sum[32]; |
| int result = 0; |
| int cnt; |
| |
| for (cnt = 0; cnt < (int)ntests; ++cnt) { |
| sha256_init_ctx(&ctx); |
| sha256_process_bytes(tests[cnt].input, strlen(tests[cnt].input), &ctx); |
| sha256_finish_ctx(&ctx, sum); |
| if (memcmp(tests[cnt].result, sum, 32) != 0) { |
| printf("test %d run %d failed\n", cnt, 1); |
| result = 1; |
| } |
| |
| sha256_init_ctx(&ctx); |
| for (int i = 0; tests[cnt].input[i] != '\0'; ++i) |
| sha256_process_bytes(&tests[cnt].input[i], 1, &ctx); |
| sha256_finish_ctx(&ctx, sum); |
| if (memcmp(tests[cnt].result, sum, 32) != 0) { |
| printf("test %d run %d failed\n", cnt, 2); |
| result = 1; |
| } |
| } |
| |
| /* Test vector from FIPS 180-2: appendix B.3. */ |
| char buf[1000]; |
| memset(buf, 'a', sizeof(buf)); |
| sha256_init_ctx(&ctx); |
| for (int i = 0; i < 1000; ++i) |
| sha256_process_bytes(buf, sizeof(buf), &ctx); |
| sha256_finish_ctx(&ctx, sum); |
| static const char expected[32] = |
| "\xcd\xc7\x6e\x5c\x99\x14\xfb\x92\x81\xa1\xc7\xe2\x84\xd7\x3e\x67" |
| "\xf1\x80\x9a\x48\xa4\x97\x20\x0e\x04\x6d\x39\xcc\xc7\x11\x2c\xd0"; |
| if (memcmp(expected, sum, 32) != 0) { |
| printf("test %d failed\n", cnt); |
| result = 1; |
| } |
| |
| for (cnt = 0; cnt < ntests2; ++cnt) { |
| char *cp = sha256_crypt(tests2[cnt].input, tests2[cnt].salt); |
| |
| if (strcmp(cp, tests2[cnt].expected) != 0) { |
| printf("test %d: expected \"%s\", got \"%s\"\n", |
| cnt, tests2[cnt].expected, cp); |
| result = 1; |
| } |
| } |
| |
| if (result == 0) |
| puts("all tests OK"); |
| |
| return result; |
| } |
| #endif |