| /* |
| * FreeSec: libcrypt for NetBSD |
| * |
| * Copyright (c) 1994 David Burren |
| * All rights reserved. |
| * |
| * Adapted for FreeBSD-2.0 by Geoffrey M. Rehmet |
| * this file should now *only* export crypt(), in order to make |
| * binaries of libcrypt exportable from the USA |
| * |
| * Adapted for FreeBSD-4.0 by Mark R V Murray |
| * this file should now *only* export crypt_des(), in order to make |
| * a module that can be optionally included in libcrypt. |
| * |
| * Adapted for pxelinux menu environment by Th.Gebhardt |
| * removed dependencies of standard C libs |
| * added LOWSPACE option (using common space for different arrays) |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * 3. Neither the name of the author nor the names of other contributors |
| * may be used to endorse or promote products derived from this software |
| * without specific prior written permission. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND |
| * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE |
| * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
| * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| * SUCH DAMAGE. |
| * |
| * This is an original implementation of the DES and the crypt(3) interfaces |
| * by David Burren <[email protected]>. |
| * |
| * An excellent reference on the underlying algorithm (and related |
| * algorithms) is: |
| * |
| * B. Schneier, Applied Cryptography: protocols, algorithms, |
| * and source code in C, John Wiley & Sons, 1994. |
| * |
| * Note that in that book's description of DES the lookups for the initial, |
| * pbox, and final permutations are inverted (this has been brought to the |
| * attention of the author). A list of errata for this book has been |
| * posted to the sci.crypt newsgroup by the author and is available for FTP. |
| * |
| * ARCHITECTURE ASSUMPTIONS: |
| * It is assumed that the 8-byte arrays passed by reference can be |
| * addressed as arrays of u_int32_t's (ie. the CPU is not picky about |
| * alignment). |
| */ |
| |
| #define LOWSPACE |
| |
| #ifndef NULL |
| #define NULL ((void *) 0) |
| #endif |
| |
| typedef unsigned long my_u_int32_t; |
| typedef unsigned char my_u_char_t; |
| |
| /* Re-entrantify me -- all this junk needs to be in |
| * struct crypt_data to make this really reentrant... */ |
| static my_u_char_t inv_key_perm[64]; |
| static my_u_char_t inv_comp_perm[56]; |
| static my_u_char_t u_sbox[8][64]; |
| static my_u_char_t un_pbox[32]; |
| static my_u_int32_t en_keysl[16], en_keysr[16]; |
| static my_u_int32_t de_keysl[16], de_keysr[16]; |
| |
| #ifndef LOWSPACE |
| static my_u_int32_t ip_maskl[8][256], ip_maskr[8][256]; |
| static my_u_int32_t fp_maskl[8][256], fp_maskr[8][256]; |
| static my_u_int32_t key_perm_maskl[8][128], key_perm_maskr[8][128]; |
| static my_u_int32_t comp_maskl[8][128], comp_maskr[8][128]; |
| #endif |
| |
| static my_u_int32_t saltbits; |
| static my_u_int32_t old_salt; |
| static my_u_int32_t old_rawkey0, old_rawkey1; |
| |
| #ifdef LOWSPACE |
| static my_u_int32_t common[8][256]; |
| #endif |
| |
| /* Static stuff that stays resident and doesn't change after |
| * being initialized, and therefore doesn't need to be made |
| * reentrant. */ |
| static my_u_char_t init_perm[64], final_perm[64]; |
| static my_u_char_t m_sbox[4][4096]; |
| |
| #ifndef LOWSPACE |
| static my_u_int32_t psbox[4][256]; |
| #endif |
| |
| /* A pile of data */ |
| static const my_u_char_t ascii64[] = |
| "./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz"; |
| |
| static const my_u_char_t IP[64] = { |
| 58, 50, 42, 34, 26, 18, 10, 2, 60, 52, 44, 36, 28, 20, 12, 4, |
| 62, 54, 46, 38, 30, 22, 14, 6, 64, 56, 48, 40, 32, 24, 16, 8, |
| 57, 49, 41, 33, 25, 17, 9, 1, 59, 51, 43, 35, 27, 19, 11, 3, |
| 61, 53, 45, 37, 29, 21, 13, 5, 63, 55, 47, 39, 31, 23, 15, 7 |
| }; |
| |
| static const my_u_char_t key_perm[56] = { |
| 57, 49, 41, 33, 25, 17, 9, 1, 58, 50, 42, 34, 26, 18, |
| 10, 2, 59, 51, 43, 35, 27, 19, 11, 3, 60, 52, 44, 36, |
| 63, 55, 47, 39, 31, 23, 15, 7, 62, 54, 46, 38, 30, 22, |
| 14, 6, 61, 53, 45, 37, 29, 21, 13, 5, 28, 20, 12, 4 |
| }; |
| |
| static const my_u_char_t key_shifts[16] = { |
| 1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1 |
| }; |
| |
| static const my_u_char_t comp_perm[48] = { |
| 14, 17, 11, 24, 1, 5, 3, 28, 15, 6, 21, 10, |
| 23, 19, 12, 4, 26, 8, 16, 7, 27, 20, 13, 2, |
| 41, 52, 31, 37, 47, 55, 30, 40, 51, 45, 33, 48, |
| 44, 49, 39, 56, 34, 53, 46, 42, 50, 36, 29, 32 |
| }; |
| |
| /* |
| * No E box is used, as it's replaced by some ANDs, shifts, and ORs. |
| */ |
| |
| static const my_u_char_t sbox[8][64] = { |
| { |
| 14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7, |
| 0, 15, 7, 4, 14, 2, 13, 1, 10, 6, 12, 11, 9, 5, 3, 8, |
| 4, 1, 14, 8, 13, 6, 2, 11, 15, 12, 9, 7, 3, 10, 5, 0, |
| 15, 12, 8, 2, 4, 9, 1, 7, 5, 11, 3, 14, 10, 0, 6, 13}, |
| { |
| 15, 1, 8, 14, 6, 11, 3, 4, 9, 7, 2, 13, 12, 0, 5, 10, |
| 3, 13, 4, 7, 15, 2, 8, 14, 12, 0, 1, 10, 6, 9, 11, 5, |
| 0, 14, 7, 11, 10, 4, 13, 1, 5, 8, 12, 6, 9, 3, 2, 15, |
| 13, 8, 10, 1, 3, 15, 4, 2, 11, 6, 7, 12, 0, 5, 14, 9}, |
| { |
| 10, 0, 9, 14, 6, 3, 15, 5, 1, 13, 12, 7, 11, 4, 2, 8, |
| 13, 7, 0, 9, 3, 4, 6, 10, 2, 8, 5, 14, 12, 11, 15, 1, |
| 13, 6, 4, 9, 8, 15, 3, 0, 11, 1, 2, 12, 5, 10, 14, 7, |
| 1, 10, 13, 0, 6, 9, 8, 7, 4, 15, 14, 3, 11, 5, 2, 12}, |
| { |
| 7, 13, 14, 3, 0, 6, 9, 10, 1, 2, 8, 5, 11, 12, 4, 15, |
| 13, 8, 11, 5, 6, 15, 0, 3, 4, 7, 2, 12, 1, 10, 14, 9, |
| 10, 6, 9, 0, 12, 11, 7, 13, 15, 1, 3, 14, 5, 2, 8, 4, |
| 3, 15, 0, 6, 10, 1, 13, 8, 9, 4, 5, 11, 12, 7, 2, 14}, |
| { |
| 2, 12, 4, 1, 7, 10, 11, 6, 8, 5, 3, 15, 13, 0, 14, 9, |
| 14, 11, 2, 12, 4, 7, 13, 1, 5, 0, 15, 10, 3, 9, 8, 6, |
| 4, 2, 1, 11, 10, 13, 7, 8, 15, 9, 12, 5, 6, 3, 0, 14, |
| 11, 8, 12, 7, 1, 14, 2, 13, 6, 15, 0, 9, 10, 4, 5, 3}, |
| { |
| 12, 1, 10, 15, 9, 2, 6, 8, 0, 13, 3, 4, 14, 7, 5, 11, |
| 10, 15, 4, 2, 7, 12, 9, 5, 6, 1, 13, 14, 0, 11, 3, 8, |
| 9, 14, 15, 5, 2, 8, 12, 3, 7, 0, 4, 10, 1, 13, 11, 6, |
| 4, 3, 2, 12, 9, 5, 15, 10, 11, 14, 1, 7, 6, 0, 8, 13}, |
| { |
| 4, 11, 2, 14, 15, 0, 8, 13, 3, 12, 9, 7, 5, 10, 6, 1, |
| 13, 0, 11, 7, 4, 9, 1, 10, 14, 3, 5, 12, 2, 15, 8, 6, |
| 1, 4, 11, 13, 12, 3, 7, 14, 10, 15, 6, 8, 0, 5, 9, 2, |
| 6, 11, 13, 8, 1, 4, 10, 7, 9, 5, 0, 15, 14, 2, 3, 12}, |
| { |
| 13, 2, 8, 4, 6, 15, 11, 1, 10, 9, 3, 14, 5, 0, 12, 7, |
| 1, 15, 13, 8, 10, 3, 7, 4, 12, 5, 6, 11, 0, 14, 9, 2, |
| 7, 11, 4, 1, 9, 12, 14, 2, 0, 6, 10, 13, 15, 3, 5, 8, |
| 2, 1, 14, 7, 4, 10, 8, 13, 15, 12, 9, 0, 3, 5, 6, 11} |
| }; |
| |
| static const my_u_char_t pbox[32] = { |
| 16, 7, 20, 21, 29, 12, 28, 17, 1, 15, 23, 26, 5, 18, 31, 10, |
| 2, 8, 24, 14, 32, 27, 3, 9, 19, 13, 30, 6, 22, 11, 4, 25 |
| }; |
| |
| static const my_u_int32_t bits32[32] = { |
| 0x80000000, 0x40000000, 0x20000000, 0x10000000, |
| 0x08000000, 0x04000000, 0x02000000, 0x01000000, |
| 0x00800000, 0x00400000, 0x00200000, 0x00100000, |
| 0x00080000, 0x00040000, 0x00020000, 0x00010000, |
| 0x00008000, 0x00004000, 0x00002000, 0x00001000, |
| 0x00000800, 0x00000400, 0x00000200, 0x00000100, |
| 0x00000080, 0x00000040, 0x00000020, 0x00000010, |
| 0x00000008, 0x00000004, 0x00000002, 0x00000001 |
| }; |
| |
| static const my_u_int32_t bits28[28] = { |
| 0x08000000, 0x04000000, 0x02000000, 0x01000000, |
| 0x00800000, 0x00400000, 0x00200000, 0x00100000, |
| 0x00080000, 0x00040000, 0x00020000, 0x00010000, |
| 0x00008000, 0x00004000, 0x00002000, 0x00001000, |
| 0x00000800, 0x00000400, 0x00000200, 0x00000100, |
| 0x00000080, 0x00000040, 0x00000020, 0x00000010, |
| 0x00000008, 0x00000004, 0x00000002, 0x00000001 |
| }; |
| |
| static const my_u_int32_t bits24[24] = { |
| 0x00800000, 0x00400000, 0x00200000, 0x00100000, |
| 0x00080000, 0x00040000, 0x00020000, 0x00010000, |
| 0x00008000, 0x00004000, 0x00002000, 0x00001000, |
| 0x00000800, 0x00000400, 0x00000200, 0x00000100, |
| 0x00000080, 0x00000040, 0x00000020, 0x00000010, |
| 0x00000008, 0x00000004, 0x00000002, 0x00000001 |
| }; |
| |
| static const my_u_char_t bits8[8] = |
| { 0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01 }; |
| // static const my_u_int32_t *bits28, *bits24; |
| |
| static int ascii_to_bin(char ch) |
| { |
| if (ch > 'z') |
| return (0); |
| if (ch >= 'a') |
| return (ch - 'a' + 38); |
| if (ch > 'Z') |
| return (0); |
| if (ch >= 'A') |
| return (ch - 'A' + 12); |
| if (ch > '9') |
| return (0); |
| if (ch >= '.') |
| return (ch - '.'); |
| return (0); |
| } |
| |
| static void des_init(void) |
| { |
| |
| #ifdef LOWSPACE |
| int i, j, b; |
| #else |
| int i, j, b, k, inbit, obit; |
| my_u_int32_t *p, *il, *ir, *fl, *fr; |
| #endif |
| static int des_initialised = 0; |
| |
| if (des_initialised == 1) |
| return; |
| |
| old_rawkey0 = old_rawkey1 = 0L; |
| saltbits = 0L; |
| old_salt = 0L; |
| // bits24 = (bits28 = bits32 + 4) + 4; |
| |
| /* |
| * Invert the S-boxes, reordering the input bits. |
| */ |
| for (i = 0; i < 8; i++) |
| for (j = 0; j < 64; j++) { |
| b = (j & 0x20) | ((j & 1) << 4) | ((j >> 1) & 0xf); |
| u_sbox[i][j] = sbox[i][b]; |
| } |
| |
| /* |
| * Convert the inverted S-boxes into 4 arrays of 8 bits. |
| * Each will handle 12 bits of the S-box input. |
| */ |
| for (b = 0; b < 4; b++) |
| for (i = 0; i < 64; i++) |
| for (j = 0; j < 64; j++) |
| m_sbox[b][(i << 6) | j] = |
| (my_u_char_t) ((u_sbox[(b << 1)][i] << 4) | |
| u_sbox[(b << 1) + 1][j]); |
| |
| /* |
| * Set up the initial & final permutations into a useful form, and |
| * initialise the inverted key permutation. |
| */ |
| for (i = 0; i < 64; i++) { |
| init_perm[final_perm[i] = IP[i] - 1] = (my_u_char_t) i; |
| inv_key_perm[i] = 255; |
| } |
| |
| /* |
| * Invert the key permutation and initialise the inverted key |
| * compression permutation. |
| */ |
| for (i = 0; i < 56; i++) { |
| inv_key_perm[key_perm[i] - 1] = (my_u_char_t) i; |
| inv_comp_perm[i] = 255; |
| } |
| |
| /* |
| * Invert the key compression permutation. |
| */ |
| for (i = 0; i < 48; i++) { |
| inv_comp_perm[comp_perm[i] - 1] = (my_u_char_t) i; |
| } |
| |
| /* |
| * Set up the OR-mask arrays for the initial and final permutations, |
| * and for the key initial and compression permutations. |
| */ |
| |
| #ifndef LOWSPACE |
| for (k = 0; k < 8; k++) { |
| for (i = 0; i < 256; i++) { |
| *(il = &ip_maskl[k][i]) = 0L; |
| *(ir = &ip_maskr[k][i]) = 0L; |
| *(fl = &fp_maskl[k][i]) = 0L; |
| *(fr = &fp_maskr[k][i]) = 0L; |
| for (j = 0; j < 8; j++) { |
| inbit = 8 * k + j; |
| if (i & bits8[j]) { |
| if ((obit = init_perm[inbit]) < 32) |
| *il |= bits32[obit]; |
| else |
| *ir |= bits32[obit - 32]; |
| if ((obit = final_perm[inbit]) < 32) |
| *fl |= bits32[obit]; |
| else |
| *fr |= bits32[obit - 32]; |
| } |
| } |
| } |
| for (i = 0; i < 128; i++) { |
| *(il = &key_perm_maskl[k][i]) = 0L; |
| *(ir = &key_perm_maskr[k][i]) = 0L; |
| for (j = 0; j < 7; j++) { |
| inbit = 8 * k + j; |
| if (i & bits8[j + 1]) { |
| if ((obit = inv_key_perm[inbit]) == 255) |
| continue; |
| if (obit < 28) |
| *il |= bits28[obit]; |
| else |
| *ir |= bits28[obit - 28]; |
| } |
| } |
| *(il = &comp_maskl[k][i]) = 0L; |
| *(ir = &comp_maskr[k][i]) = 0L; |
| for (j = 0; j < 7; j++) { |
| inbit = 7 * k + j; |
| if (i & bits8[j + 1]) { |
| if ((obit = inv_comp_perm[inbit]) == 255) |
| continue; |
| if (obit < 24) |
| *il |= bits24[obit]; |
| else |
| *ir |= bits24[obit - 24]; |
| } |
| } |
| } |
| } |
| #endif |
| |
| /* |
| * Invert the P-box permutation, and convert into OR-masks for |
| * handling the output of the S-box arrays setup above. |
| */ |
| for (i = 0; i < 32; i++) |
| un_pbox[pbox[i] - 1] = (my_u_char_t) i; |
| |
| #ifndef LOWSPACE |
| for (b = 0; b < 4; b++) |
| for (i = 0; i < 256; i++) { |
| *(p = &psbox[b][i]) = 0L; |
| for (j = 0; j < 8; j++) { |
| if (i & bits8[j]) |
| *p |= bits32[un_pbox[8 * b + j]]; |
| } |
| } |
| #endif |
| des_initialised = 1; |
| } |
| |
| #ifdef LOWSPACE |
| |
| static void setup_ip_maskl(void) |
| { |
| int i, j, k, inbit, obit; |
| my_u_int32_t *il; |
| |
| for (k = 0; k < 8; k++) { |
| for (i = 0; i < 256; i++) { |
| *(il = &common[k][i]) = 0L; |
| for (j = 0; j < 8; j++) { |
| inbit = 8 * k + j; |
| if (i & bits8[j]) { |
| if ((obit = init_perm[inbit]) < 32) |
| *il |= bits32[obit]; |
| } |
| } |
| } |
| } |
| } |
| |
| static void setup_ip_maskr(void) |
| { |
| int i, j, k, inbit, obit; |
| my_u_int32_t *ir; |
| |
| for (k = 0; k < 8; k++) { |
| for (i = 0; i < 256; i++) { |
| *(ir = &common[k][i]) = 0L; |
| for (j = 0; j < 8; j++) { |
| inbit = 8 * k + j; |
| if (i & bits8[j]) { |
| if ((obit = init_perm[inbit]) >= 32) |
| *ir |= bits32[obit - 32]; |
| } |
| } |
| } |
| } |
| } |
| |
| static void setup_fp_maskl(void) |
| { |
| int i, j, k, inbit, obit; |
| my_u_int32_t *fl; |
| |
| for (k = 0; k < 8; k++) { |
| for (i = 0; i < 256; i++) { |
| *(fl = &common[k][i]) = 0L; |
| for (j = 0; j < 8; j++) { |
| inbit = 8 * k + j; |
| if (i & bits8[j]) { |
| if ((obit = final_perm[inbit]) < 32) |
| *fl |= bits32[obit]; |
| } |
| } |
| } |
| } |
| } |
| |
| static void setup_fp_maskr(void) |
| { |
| int i, j, k, inbit, obit; |
| my_u_int32_t *fr; |
| |
| for (k = 0; k < 8; k++) { |
| for (i = 0; i < 256; i++) { |
| *(fr = &common[k][i]) = 0L; |
| for (j = 0; j < 8; j++) { |
| inbit = 8 * k + j; |
| if (i & bits8[j]) { |
| if ((obit = final_perm[inbit]) >= 32) |
| *fr |= bits32[obit - 32]; |
| } |
| } |
| } |
| } |
| } |
| |
| static void setup_key_perm_maskl(void) |
| { |
| int i, j, k, inbit, obit; |
| my_u_int32_t *il; |
| |
| for (k = 0; k < 8; k++) { |
| for (i = 0; i < 128; i++) { |
| *(il = &common[k][i]) = 0L; |
| for (j = 0; j < 7; j++) { |
| inbit = 8 * k + j; |
| if (i & bits8[j + 1]) { |
| if ((obit = inv_key_perm[inbit]) == 255) |
| continue; |
| if (obit < 28) |
| *il |= bits28[obit]; |
| } |
| } |
| } |
| } |
| } |
| |
| static void setup_key_perm_maskr(void) |
| { |
| int i, j, k, inbit, obit; |
| my_u_int32_t *ir; |
| |
| for (k = 0; k < 8; k++) { |
| for (i = 0; i < 128; i++) { |
| *(ir = &common[k][i]) = 0L; |
| for (j = 0; j < 7; j++) { |
| inbit = 8 * k + j; |
| if (i & bits8[j + 1]) { |
| if ((obit = inv_key_perm[inbit]) == 255) |
| continue; |
| if (obit >= 28) |
| *ir |= bits28[obit - 28]; |
| } |
| } |
| } |
| } |
| } |
| |
| static void setup_comp_maskl(void) |
| { |
| int i, j, k, inbit, obit; |
| my_u_int32_t *il; |
| |
| for (k = 0; k < 8; k++) { |
| for (i = 0; i < 128; i++) { |
| *(il = &common[k][i]) = 0L; |
| for (j = 0; j < 7; j++) { |
| inbit = 7 * k + j; |
| if (i & bits8[j + 1]) { |
| if ((obit = inv_comp_perm[inbit]) == 255) |
| continue; |
| if (obit < 24) |
| *il |= bits24[obit]; |
| } |
| } |
| } |
| } |
| } |
| |
| static void setup_comp_maskr(void) |
| { |
| int i, j, k, inbit, obit; |
| my_u_int32_t *ir; |
| |
| for (k = 0; k < 8; k++) { |
| for (i = 0; i < 128; i++) { |
| *(ir = &common[k][i]) = 0L; |
| for (j = 0; j < 7; j++) { |
| inbit = 7 * k + j; |
| if (i & bits8[j + 1]) { |
| if ((obit = inv_comp_perm[inbit]) == 255) |
| continue; |
| if (obit >= 24) |
| *ir |= bits24[obit - 24]; |
| } |
| } |
| } |
| } |
| } |
| |
| static void setup_psbox(void) |
| { |
| int i, j, b; |
| my_u_int32_t *p; |
| |
| for (b = 0; b < 4; b++) |
| for (i = 0; i < 256; i++) { |
| *(p = &common[b][i]) = 0L; |
| for (j = 0; j < 8; j++) { |
| if (i & bits8[j]) |
| *p |= bits32[un_pbox[8 * b + j]]; |
| } |
| } |
| } |
| |
| #endif |
| |
| static void setup_salt(my_u_int32_t salt) |
| { |
| my_u_int32_t obit, saltbit; |
| int i; |
| |
| if (salt == old_salt) |
| return; |
| old_salt = salt; |
| |
| saltbits = 0L; |
| saltbit = 1; |
| obit = 0x800000; |
| for (i = 0; i < 24; i++) { |
| if (salt & saltbit) |
| saltbits |= obit; |
| saltbit <<= 1; |
| obit >>= 1; |
| } |
| } |
| |
| static my_u_int32_t char_to_int(const char *key) |
| { |
| my_u_int32_t byte0, byte1, byte2, byte3; |
| byte0 = (my_u_int32_t) (my_u_char_t) key[0]; |
| byte1 = (my_u_int32_t) (my_u_char_t) key[1]; |
| byte2 = (my_u_int32_t) (my_u_char_t) key[2]; |
| byte3 = (my_u_int32_t) (my_u_char_t) key[3]; |
| |
| return byte0 << 24 | byte1 << 16 | byte2 << 8 | byte3; |
| } |
| |
| static int des_setkey(const char *key) |
| { |
| my_u_int32_t k0, k1, rawkey0, rawkey1; |
| int shifts, round; |
| |
| des_init(); |
| |
| /* rawkey0 = ntohl(*(const my_u_int32_t *) key); |
| * rawkey1 = ntohl(*(const my_u_int32_t *) (key + 4)); |
| */ |
| |
| rawkey0 = char_to_int(key); |
| rawkey1 = char_to_int(key + 4); |
| |
| if ((rawkey0 | rawkey1) |
| && rawkey0 == old_rawkey0 && rawkey1 == old_rawkey1) { |
| /* |
| * Already setup for this key. |
| * This optimisation fails on a zero key (which is weak and |
| * has bad parity anyway) in order to simplify the starting |
| * conditions. |
| */ |
| return (0); |
| } |
| old_rawkey0 = rawkey0; |
| old_rawkey1 = rawkey1; |
| |
| /* |
| * Do key permutation and split into two 28-bit subkeys. |
| */ |
| |
| #ifdef LOWSPACE |
| setup_key_perm_maskl(); |
| k0 = common[0][rawkey0 >> 25] |
| | common[1][(rawkey0 >> 17) & 0x7f] |
| | common[2][(rawkey0 >> 9) & 0x7f] |
| | common[3][(rawkey0 >> 1) & 0x7f] |
| | common[4][rawkey1 >> 25] |
| | common[5][(rawkey1 >> 17) & 0x7f] |
| | common[6][(rawkey1 >> 9) & 0x7f] |
| | common[7][(rawkey1 >> 1) & 0x7f]; |
| setup_key_perm_maskr(); |
| k1 = common[0][rawkey0 >> 25] |
| | common[1][(rawkey0 >> 17) & 0x7f] |
| | common[2][(rawkey0 >> 9) & 0x7f] |
| | common[3][(rawkey0 >> 1) & 0x7f] |
| | common[4][rawkey1 >> 25] |
| | common[5][(rawkey1 >> 17) & 0x7f] |
| | common[6][(rawkey1 >> 9) & 0x7f] |
| | common[7][(rawkey1 >> 1) & 0x7f]; |
| #else |
| k0 = key_perm_maskl[0][rawkey0 >> 25] |
| | key_perm_maskl[1][(rawkey0 >> 17) & 0x7f] |
| | key_perm_maskl[2][(rawkey0 >> 9) & 0x7f] |
| | key_perm_maskl[3][(rawkey0 >> 1) & 0x7f] |
| | key_perm_maskl[4][rawkey1 >> 25] |
| | key_perm_maskl[5][(rawkey1 >> 17) & 0x7f] |
| | key_perm_maskl[6][(rawkey1 >> 9) & 0x7f] |
| | key_perm_maskl[7][(rawkey1 >> 1) & 0x7f]; |
| k1 = key_perm_maskr[0][rawkey0 >> 25] |
| | key_perm_maskr[1][(rawkey0 >> 17) & 0x7f] |
| | key_perm_maskr[2][(rawkey0 >> 9) & 0x7f] |
| | key_perm_maskr[3][(rawkey0 >> 1) & 0x7f] |
| | key_perm_maskr[4][rawkey1 >> 25] |
| | key_perm_maskr[5][(rawkey1 >> 17) & 0x7f] |
| | key_perm_maskr[6][(rawkey1 >> 9) & 0x7f] |
| | key_perm_maskr[7][(rawkey1 >> 1) & 0x7f]; |
| #endif |
| |
| /* |
| * Rotate subkeys and do compression permutation. |
| */ |
| shifts = 0; |
| for (round = 0; round < 16; round++) { |
| my_u_int32_t t0, t1; |
| |
| shifts += key_shifts[round]; |
| |
| t0 = (k0 << shifts) | (k0 >> (28 - shifts)); |
| t1 = (k1 << shifts) | (k1 >> (28 - shifts)); |
| |
| #ifdef LOWSPACE |
| setup_comp_maskl(); |
| de_keysl[15 - round] = en_keysl[round] = common[0][(t0 >> 21) & 0x7f] |
| | common[1][(t0 >> 14) & 0x7f] |
| | common[2][(t0 >> 7) & 0x7f] |
| | common[3][t0 & 0x7f] |
| | common[4][(t1 >> 21) & 0x7f] |
| | common[5][(t1 >> 14) & 0x7f] |
| | common[6][(t1 >> 7) & 0x7f] |
| | common[7][t1 & 0x7f]; |
| |
| setup_comp_maskr(); |
| de_keysr[15 - round] = en_keysr[round] = common[0][(t0 >> 21) & 0x7f] |
| | common[1][(t0 >> 14) & 0x7f] |
| | common[2][(t0 >> 7) & 0x7f] |
| | common[3][t0 & 0x7f] |
| | common[4][(t1 >> 21) & 0x7f] |
| | common[5][(t1 >> 14) & 0x7f] |
| | common[6][(t1 >> 7) & 0x7f] |
| | common[7][t1 & 0x7f]; |
| #else |
| de_keysl[15 - round] = |
| en_keysl[round] = comp_maskl[0][(t0 >> 21) & 0x7f] |
| | comp_maskl[1][(t0 >> 14) & 0x7f] |
| | comp_maskl[2][(t0 >> 7) & 0x7f] |
| | comp_maskl[3][t0 & 0x7f] |
| | comp_maskl[4][(t1 >> 21) & 0x7f] |
| | comp_maskl[5][(t1 >> 14) & 0x7f] |
| | comp_maskl[6][(t1 >> 7) & 0x7f] |
| | comp_maskl[7][t1 & 0x7f]; |
| |
| de_keysr[15 - round] = |
| en_keysr[round] = comp_maskr[0][(t0 >> 21) & 0x7f] |
| | comp_maskr[1][(t0 >> 14) & 0x7f] |
| | comp_maskr[2][(t0 >> 7) & 0x7f] |
| | comp_maskr[3][t0 & 0x7f] |
| | comp_maskr[4][(t1 >> 21) & 0x7f] |
| | comp_maskr[5][(t1 >> 14) & 0x7f] |
| | comp_maskr[6][(t1 >> 7) & 0x7f] |
| | comp_maskr[7][t1 & 0x7f]; |
| #endif |
| } |
| return (0); |
| } |
| |
| static int |
| do_des(my_u_int32_t l_in, my_u_int32_t r_in, my_u_int32_t * l_out, |
| my_u_int32_t * r_out, int count) |
| { |
| /* |
| * l_in, r_in, l_out, and r_out are in pseudo-"big-endian" format. |
| */ |
| my_u_int32_t l, r, *kl, *kr, *kl1, *kr1; |
| my_u_int32_t f, r48l, r48r; |
| int round; |
| |
| if (count == 0) { |
| return (1); |
| } else if (count > 0) { |
| /* |
| * Encrypting |
| */ |
| kl1 = en_keysl; |
| kr1 = en_keysr; |
| } else { |
| /* |
| * Decrypting |
| */ |
| count = -count; |
| kl1 = de_keysl; |
| kr1 = de_keysr; |
| } |
| |
| /* |
| * Do initial permutation (IP). |
| */ |
| |
| #ifdef LOWSPACE |
| setup_ip_maskl(); |
| l = common[0][l_in >> 24] |
| | common[1][(l_in >> 16) & 0xff] |
| | common[2][(l_in >> 8) & 0xff] |
| | common[3][l_in & 0xff] |
| | common[4][r_in >> 24] |
| | common[5][(r_in >> 16) & 0xff] |
| | common[6][(r_in >> 8) & 0xff] |
| | common[7][r_in & 0xff]; |
| setup_ip_maskr(); |
| r = common[0][l_in >> 24] |
| | common[1][(l_in >> 16) & 0xff] |
| | common[2][(l_in >> 8) & 0xff] |
| | common[3][l_in & 0xff] |
| | common[4][r_in >> 24] |
| | common[5][(r_in >> 16) & 0xff] |
| | common[6][(r_in >> 8) & 0xff] |
| | common[7][r_in & 0xff]; |
| #else |
| l = ip_maskl[0][l_in >> 24] |
| | ip_maskl[1][(l_in >> 16) & 0xff] |
| | ip_maskl[2][(l_in >> 8) & 0xff] |
| | ip_maskl[3][l_in & 0xff] |
| | ip_maskl[4][r_in >> 24] |
| | ip_maskl[5][(r_in >> 16) & 0xff] |
| | ip_maskl[6][(r_in >> 8) & 0xff] |
| | ip_maskl[7][r_in & 0xff]; |
| r = ip_maskr[0][l_in >> 24] |
| | ip_maskr[1][(l_in >> 16) & 0xff] |
| | ip_maskr[2][(l_in >> 8) & 0xff] |
| | ip_maskr[3][l_in & 0xff] |
| | ip_maskr[4][r_in >> 24] |
| | ip_maskr[5][(r_in >> 16) & 0xff] |
| | ip_maskr[6][(r_in >> 8) & 0xff] |
| | ip_maskr[7][r_in & 0xff]; |
| #endif |
| |
| while (count--) { |
| /* |
| * Do each round. |
| */ |
| kl = kl1; |
| kr = kr1; |
| round = 16; |
| while (round--) { |
| /* |
| * Expand R to 48 bits (simulate the E-box). |
| */ |
| r48l = ((r & 0x00000001) << 23) |
| | ((r & 0xf8000000) >> 9) |
| | ((r & 0x1f800000) >> 11) |
| | ((r & 0x01f80000) >> 13) |
| | ((r & 0x001f8000) >> 15); |
| |
| r48r = ((r & 0x0001f800) << 7) |
| | ((r & 0x00001f80) << 5) |
| | ((r & 0x000001f8) << 3) |
| | ((r & 0x0000001f) << 1) |
| | ((r & 0x80000000) >> 31); |
| /* |
| * Do salting for crypt() and friends, and |
| * XOR with the permuted key. |
| */ |
| f = (r48l ^ r48r) & saltbits; |
| r48l ^= f ^ *kl++; |
| r48r ^= f ^ *kr++; |
| /* |
| * Do sbox lookups (which shrink it back to 32 bits) |
| * and do the pbox permutation at the same time. |
| */ |
| |
| #ifdef LOWSPACE |
| setup_psbox(); |
| f = common[0][m_sbox[0][r48l >> 12]] |
| | common[1][m_sbox[1][r48l & 0xfff]] |
| | common[2][m_sbox[2][r48r >> 12]] |
| | common[3][m_sbox[3][r48r & 0xfff]]; |
| #else |
| f = psbox[0][m_sbox[0][r48l >> 12]] |
| | psbox[1][m_sbox[1][r48l & 0xfff]] |
| | psbox[2][m_sbox[2][r48r >> 12]] |
| | psbox[3][m_sbox[3][r48r & 0xfff]]; |
| #endif |
| /* |
| * Now that we've permuted things, complete f(). |
| */ |
| f ^= l; |
| l = r; |
| r = f; |
| } |
| r = l; |
| l = f; |
| } |
| /* |
| * Do final permutation (inverse of IP). |
| */ |
| |
| #ifdef LOWSPACE |
| setup_fp_maskl(); |
| *l_out = common[0][l >> 24] |
| | common[1][(l >> 16) & 0xff] |
| | common[2][(l >> 8) & 0xff] |
| | common[3][l & 0xff] |
| | common[4][r >> 24] |
| | common[5][(r >> 16) & 0xff] |
| | common[6][(r >> 8) & 0xff] |
| | common[7][r & 0xff]; |
| setup_fp_maskr(); |
| *r_out = common[0][l >> 24] |
| | common[1][(l >> 16) & 0xff] |
| | common[2][(l >> 8) & 0xff] |
| | common[3][l & 0xff] |
| | common[4][r >> 24] |
| | common[5][(r >> 16) & 0xff] |
| | common[6][(r >> 8) & 0xff] |
| | common[7][r & 0xff]; |
| #else |
| *l_out = fp_maskl[0][l >> 24] |
| | fp_maskl[1][(l >> 16) & 0xff] |
| | fp_maskl[2][(l >> 8) & 0xff] |
| | fp_maskl[3][l & 0xff] |
| | fp_maskl[4][r >> 24] |
| | fp_maskl[5][(r >> 16) & 0xff] |
| | fp_maskl[6][(r >> 8) & 0xff] |
| | fp_maskl[7][r & 0xff]; |
| *r_out = fp_maskr[0][l >> 24] |
| | fp_maskr[1][(l >> 16) & 0xff] |
| | fp_maskr[2][(l >> 8) & 0xff] |
| | fp_maskr[3][l & 0xff] |
| | fp_maskr[4][r >> 24] |
| | fp_maskr[5][(r >> 16) & 0xff] |
| | fp_maskr[6][(r >> 8) & 0xff] |
| | fp_maskr[7][r & 0xff]; |
| #endif |
| return (0); |
| } |
| |
| #if 0 |
| static int des_cipher(const char *in, char *out, my_u_int32_t salt, int count) |
| { |
| my_u_int32_t l_out, r_out, rawl, rawr; |
| int retval; |
| union { |
| my_u_int32_t *ui32; |
| const char *c; |
| } trans; |
| |
| des_init(); |
| |
| setup_salt(salt); |
| |
| trans.c = in; |
| rawl = ntohl(*trans.ui32++); |
| rawr = ntohl(*trans.ui32); |
| |
| retval = do_des(rawl, rawr, &l_out, &r_out, count); |
| |
| trans.c = out; |
| *trans.ui32++ = htonl(l_out); |
| *trans.ui32 = htonl(r_out); |
| return (retval); |
| } |
| #endif |
| |
| void setkey(const char *key) |
| { |
| int i, j; |
| char *p, packed_keys[8]; |
| |
| p = packed_keys; |
| |
| for (i = 0; i < 8; i++) { |
| p[i] = 0; |
| for (j = 0; j < 8; j++) |
| if (*key++ & 1) |
| p[i] |= bits8[j]; |
| } |
| des_setkey(p); |
| } |
| |
| void encrypt(char *block, int flag) |
| { |
| my_u_int32_t io[2]; |
| my_u_char_t *p; |
| int i, j; |
| |
| des_init(); |
| |
| setup_salt(0L); |
| p = (my_u_char_t *)block; |
| for (i = 0; i < 2; i++) { |
| io[i] = 0L; |
| for (j = 0; j < 32; j++) |
| if (*p++ & 1) |
| io[i] |= bits32[j]; |
| } |
| do_des(io[0], io[1], io, io + 1, flag ? -1 : 1); |
| for (i = 0; i < 2; i++) |
| for (j = 0; j < 32; j++) |
| block[(i << 5) | j] = (io[i] & bits32[j]) ? 1 : 0; |
| } |
| |
| char *crypt(const char *key, const char *setting) |
| { |
| my_u_int32_t count, salt, l, r0, r1, keybuf[2]; |
| my_u_char_t *p, *q; |
| static char output[21]; |
| |
| des_init(); |
| |
| /* |
| * Copy the key, shifting each character up by one bit |
| * and padding with zeros. |
| */ |
| q = (my_u_char_t *) keybuf; |
| while (q - (my_u_char_t *) keybuf - 8) { |
| *q++ = *key << 1; |
| if (*(q - 1)) |
| key++; |
| } |
| if (des_setkey((char *)keybuf)) |
| return (NULL); |
| |
| #if 0 |
| if (*setting == _PASSWORD_EFMT1) { |
| int i; |
| /* |
| * "new"-style: |
| * setting - underscore, 4 bytes of count, 4 bytes of salt |
| * key - unlimited characters |
| */ |
| for (i = 1, count = 0L; i < 5; i++) |
| count |= ascii_to_bin(setting[i]) << ((i - 1) * 6); |
| |
| for (i = 5, salt = 0L; i < 9; i++) |
| salt |= ascii_to_bin(setting[i]) << ((i - 5) * 6); |
| |
| while (*key) { |
| /* |
| * Encrypt the key with itself. |
| */ |
| if (des_cipher((char *)keybuf, (char *)keybuf, 0L, 1)) |
| return (NULL); |
| /* |
| * And XOR with the next 8 characters of the key. |
| */ |
| q = (my_u_char_t *) keybuf; |
| while (q - (my_u_char_t *) keybuf - 8 && *key) |
| *q++ ^= *key++ << 1; |
| |
| if (des_setkey((char *)keybuf)) |
| return (NULL); |
| } |
| strncpy(output, setting, 9); |
| |
| /* |
| * Double check that we weren't given a short setting. |
| * If we were, the above code will probably have created |
| * wierd values for count and salt, but we don't really care. |
| * Just make sure the output string doesn't have an extra |
| * NUL in it. |
| */ |
| output[9] = '\0'; |
| p = (my_u_char_t *) output + strlen(output); |
| } else |
| #endif |
| { |
| /* |
| * "old"-style: |
| * setting - 2 bytes of salt |
| * key - up to 8 characters |
| */ |
| count = 25; |
| |
| salt = (ascii_to_bin(setting[1]) << 6) |
| | ascii_to_bin(setting[0]); |
| |
| output[0] = setting[0]; |
| /* |
| * If the encrypted password that the salt was extracted from |
| * is only 1 character long, the salt will be corrupted. We |
| * need to ensure that the output string doesn't have an extra |
| * NUL in it! |
| */ |
| output[1] = setting[1] ? setting[1] : output[0]; |
| |
| p = (my_u_char_t *) output + 2; |
| } |
| setup_salt(salt); |
| /* |
| * Do it. |
| */ |
| if (do_des(0L, 0L, &r0, &r1, (int)count)) |
| return (NULL); |
| /* |
| * Now encode the result... |
| */ |
| l = (r0 >> 8); |
| *p++ = ascii64[(l >> 18) & 0x3f]; |
| *p++ = ascii64[(l >> 12) & 0x3f]; |
| *p++ = ascii64[(l >> 6) & 0x3f]; |
| *p++ = ascii64[l & 0x3f]; |
| |
| l = (r0 << 16) | ((r1 >> 16) & 0xffff); |
| *p++ = ascii64[(l >> 18) & 0x3f]; |
| *p++ = ascii64[(l >> 12) & 0x3f]; |
| *p++ = ascii64[(l >> 6) & 0x3f]; |
| *p++ = ascii64[l & 0x3f]; |
| |
| l = r1 << 2; |
| *p++ = ascii64[(l >> 12) & 0x3f]; |
| *p++ = ascii64[(l >> 6) & 0x3f]; |
| *p++ = ascii64[l & 0x3f]; |
| *p = 0; |
| |
| return (output); |
| } |