blob: 2abd0bdaf7a6a73fa28c28590bb81deef0d2bba9 [file] [log] [blame] [edit]
/*
* Portions of this file taken from the Linux kernel,
* Copyright 1991-2009 Linus Torvalds and contributors
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include <stdio.h>
#include <string.h>
#include "cpuid.h"
const char *cpu_flags_names[] = {
CPU_FLAGS(STRUCT_MEMBER_NAMES)
};
size_t cpu_flags_offset[] = {
CPU_FLAGS(STRUCTURE_MEMBER_OFFSETS)
};
size_t cpu_flags_count = sizeof cpu_flags_names / sizeof *cpu_flags_names;
struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = { };
bool get_cpu_flag_value_from_name(s_cpu *cpu, const char * flag_name) {
size_t i;
bool cpu_flag_present=false, *flag_value = &cpu_flag_present;
for (i = 0; i < cpu_flags_count; i++) {
if (strcmp(cpu_flags_names[i],flag_name) == 0) {
flag_value = (bool *)((char *)&cpu->flags + cpu_flags_offset[i]);
}
}
return *flag_value;
}
/*
* CPUID functions returning a single datum
*/
/* Probe for the CPUID instruction */
static int have_cpuid_p(void)
{
return cpu_has_eflag(X86_EFLAGS_ID);
}
static struct cpu_dev amd_cpu_dev = {
.c_vendor = "AMD",
.c_ident = {"AuthenticAMD"}
};
static struct cpu_dev intel_cpu_dev = {
.c_vendor = "Intel",
.c_ident = {"GenuineIntel"}
};
static struct cpu_dev cyrix_cpu_dev = {
.c_vendor = "Cyrix",
.c_ident = {"CyrixInstead"}
};
static struct cpu_dev umc_cpu_dev = {
.c_vendor = "UMC",
.c_ident = {"UMC UMC UMC"}
};
static struct cpu_dev nexgen_cpu_dev = {
.c_vendor = "Nexgen",
.c_ident = {"NexGenDriven"}
};
static struct cpu_dev centaur_cpu_dev = {
.c_vendor = "Centaur",
.c_ident = {"CentaurHauls"}
};
static struct cpu_dev rise_cpu_dev = {
.c_vendor = "Rise",
.c_ident = {"RiseRiseRise"}
};
static struct cpu_dev transmeta_cpu_dev = {
.c_vendor = "Transmeta",
.c_ident = {"GenuineTMx86", "TransmetaCPU"}
};
static struct cpu_dev nsc_cpu_dev = {
.c_vendor = "National Semiconductor",
.c_ident = {"Geode by NSC"}
};
static struct cpu_dev unknown_cpu_dev = {
.c_vendor = "Unknown Vendor",
.c_ident = {"Unknown CPU"}
};
/*
* Read NSC/Cyrix DEVID registers (DIR) to get more detailed info. about the CPU
*/
void do_cyrix_devid(unsigned char *dir0, unsigned char *dir1)
{
unsigned char ccr2, ccr3;
/* we test for DEVID by checking whether CCR3 is writable */
ccr3 = getCx86(CX86_CCR3);
setCx86(CX86_CCR3, ccr3 ^ 0x80);
getCx86(0xc0); /* dummy to change bus */
if (getCx86(CX86_CCR3) == ccr3) { /* no DEVID regs. */
ccr2 = getCx86(CX86_CCR2);
setCx86(CX86_CCR2, ccr2 ^ 0x04);
getCx86(0xc0); /* dummy */
if (getCx86(CX86_CCR2) == ccr2) /* old Cx486SLC/DLC */
*dir0 = 0xfd;
else { /* Cx486S A step */
setCx86(CX86_CCR2, ccr2);
*dir0 = 0xfe;
}
} else {
setCx86(CX86_CCR3, ccr3); /* restore CCR3 */
/* read DIR0 and DIR1 CPU registers */
*dir0 = getCx86(CX86_DIR0);
*dir1 = getCx86(CX86_DIR1);
}
}
void init_cpu_devs(void)
{
cpu_devs[X86_VENDOR_INTEL] = &intel_cpu_dev;
cpu_devs[X86_VENDOR_CYRIX] = &cyrix_cpu_dev;
cpu_devs[X86_VENDOR_AMD] = &amd_cpu_dev;
cpu_devs[X86_VENDOR_UMC] = &umc_cpu_dev;
cpu_devs[X86_VENDOR_NEXGEN] = &nexgen_cpu_dev;
cpu_devs[X86_VENDOR_CENTAUR] = &centaur_cpu_dev;
cpu_devs[X86_VENDOR_RISE] = &rise_cpu_dev;
cpu_devs[X86_VENDOR_TRANSMETA] = &transmeta_cpu_dev;
cpu_devs[X86_VENDOR_NSC] = &nsc_cpu_dev;
cpu_devs[X86_VENDOR_UNKNOWN] = &unknown_cpu_dev;
}
void get_cpu_vendor(struct cpuinfo_x86 *c)
{
char *v = c->x86_vendor_id;
int i;
init_cpu_devs();
for (i = 0; i < X86_VENDOR_NUM-1; i++) {
if (cpu_devs[i]) {
if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
(cpu_devs[i]->c_ident[1] &&
!strcmp(v, cpu_devs[i]->c_ident[1]))) {
c->x86_vendor = i;
return;
}
}
}
c->x86_vendor = X86_VENDOR_UNKNOWN;
}
int get_model_name(struct cpuinfo_x86 *c)
{
unsigned int *v;
char *p, *q;
if (cpuid_eax(0x80000000) < 0x80000004)
return 0;
v = (unsigned int *)c->x86_model_id;
cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
c->x86_model_id[48] = 0;
/* Intel chips right-justify this string for some dumb reason;
undo that brain damage */
p = q = &c->x86_model_id[0];
while (*p == ' ')
p++;
if (p != q) {
while (*p)
*q++ = *p++;
while (q <= &c->x86_model_id[48])
*q++ = '\0'; /* Zero-pad the rest */
}
return 1;
}
void detect_cache(uint32_t xlvl, struct cpuinfo_x86 *c)
{
uint32_t eax, ebx, ecx, edx, l2size;
/* Detecting L1 cache */
if (xlvl >= 0x80000005) {
cpuid(0x80000005, &eax, &ebx, &ecx, &edx);
c->x86_l1_data_cache_size = ecx >> 24;
c->x86_l1_instruction_cache_size = edx >> 24;
}
/* Detecting L2 cache */
c->x86_l2_cache_size = 0;
if (xlvl < 0x80000006) /* Some chips just has a large L1. */
return;
cpuid(0x80000006, &eax, &ebx, &ecx, &edx);
l2size = ecx >> 16;
/* Vendor based fixes */
switch (c->x86_vendor) {
case X86_VENDOR_INTEL:
/*
* Intel PIII Tualatin. This comes in two flavours.
* One has 256kb of cache, the other 512. We have no way
* to determine which, so we use a boottime override
* for the 512kb model, and assume 256 otherwise.
*/
if ((c->x86 == 6) && (c->x86_model == 11) && (l2size == 0))
l2size = 256;
break;
case X86_VENDOR_AMD:
/* AMD errata T13 (order #21922) */
if ((c->x86 == 6)) {
if (c->x86_model == 3 && c->x86_mask == 0) /* Duron Rev A0 */
l2size = 64;
if (c->x86_model == 4 && (c->x86_mask == 0 || c->x86_mask == 1)) /* Tbird rev A1/A2 */
l2size = 256;
}
break;
}
c->x86_l2_cache_size = l2size;
}
void detect_cyrix(struct cpuinfo_x86 *c) {
unsigned char dir0, dir0_msn, dir0_lsn, dir1 = 0;
char *buf = c->x86_model_id;
char Cx86_cb[] = "?.5x Core/Bus Clock";
const char cyrix_model_mult1[] = "12??43";
const char cyrix_model_mult2[] = "12233445";
const char *p = NULL;
do_cyrix_devid(&dir0, &dir1);
dir0_msn = dir0 >> 4; /* identifies CPU "family" */
dir0_lsn = dir0 & 0xf; /* model or clock multiplier */
c->x86_model = (dir1 >> 4) + 1;
c->x86_mask = dir1 & 0xf;
switch (dir0_msn) {
unsigned char tmp;
case 0: /* Cx486SLC/DLC/SRx/DRx */
p = Cx486_name[dir0_lsn & 7];
break;
case 1: /* Cx486S/DX/DX2/DX4 */
p = (dir0_lsn & 8) ? Cx486D_name[dir0_lsn & 5] : Cx486S_name[dir0_lsn & 3];
break;
case 2: /* 5x86 */
Cx86_cb[2] = cyrix_model_mult1[dir0_lsn & 5];
p = Cx86_cb+2;
break;
case 3: /* 6x86/6x86L */
Cx86_cb[1] = ' ';
Cx86_cb[2] = cyrix_model_mult1[dir0_lsn & 5];
if (dir1 > 0x21) { /* 686L */
Cx86_cb[0] = 'L';
p = Cx86_cb;
(c->x86_model)++;
} else /* 686 */
p = Cx86_cb+1;
c->coma_bug = 1;
break;
case 4:
c->x86_l1_data_cache_size = 16; /* Yep 16K integrated cache thats it */
if (c->cpuid_level != 2) { /* Media GX */
Cx86_cb[2] = (dir0_lsn & 1) ? '3' : '4';
p = Cx86_cb+2;
}
break;
case 5: /* 6x86MX/M II */
if (dir1 > 7) {
dir0_msn++; /* M II */
} else {
c->coma_bug = 1; /* 6x86MX, it has the bug. */
}
tmp = (!(dir0_lsn & 7) || dir0_lsn & 1) ? 2 : 0;
Cx86_cb[tmp] = cyrix_model_mult2[dir0_lsn & 7];
p = Cx86_cb+tmp;
if (((dir1 & 0x0f) > 4) || ((dir1 & 0xf0) == 0x20))
(c->x86_model)++;
break;
case 0xf: /* Cyrix 486 without DEVID registers */
switch (dir0_lsn) {
case 0xd: /* either a 486SLC or DLC w/o DEVID */
dir0_msn = 0;
p = Cx486_name[(c->hard_math) ? 1 : 0];
break;
case 0xe: /* a 486S A step */
dir0_msn = 0;
p = Cx486S_name[0];
break;
}
break;
default:
dir0_msn = 7;
break;
}
/* If the processor is unknown, we keep the model name we got
* from the generic call */
if (dir0_msn < 7) {
strcpy(buf, Cx86_model[dir0_msn & 7]);
if (p) strcat(buf, p);
}
}
void generic_identify(struct cpuinfo_x86 *c)
{
uint32_t tfms, xlvl;
uint32_t eax, ebx, ecx, edx;
/* Get vendor name */
cpuid(0x00000000,
(uint32_t *) & c->cpuid_level,
(uint32_t *) & c->x86_vendor_id[0],
(uint32_t *) & c->x86_vendor_id[8],
(uint32_t *) & c->x86_vendor_id[4]);
get_cpu_vendor(c);
/* Intel-defined flags: level 0x00000001 */
if (c->cpuid_level >= 0x00000001) {
uint32_t capability, excap;
cpuid(0x00000001, &tfms, &ebx, &excap, &capability);
c->x86_capability[0] = capability;
c->x86_capability[4] = excap;
c->x86 = (tfms >> 8) & 15;
c->x86_model = (tfms >> 4) & 15;
if (c->x86 == 0xf)
c->x86 += (tfms >> 20) & 0xff;
if (c->x86 >= 0x6)
c->x86_model += ((tfms >> 16) & 0xF) << 4;
c->x86_mask = tfms & 15;
if (cpu_has(c, X86_FEATURE_CLFLSH))
c->x86_clflush_size = ((ebx >> 8) & 0xff) * 8;
} else {
/* Have CPUID level 0 only - unheard of */
c->x86 = 4;
}
/* AMD-defined flags: level 0x80000001 */
xlvl = cpuid_eax(0x80000000);
if ((xlvl & 0xffff0000) == 0x80000000) {
if (xlvl >= 0x80000001) {
c->x86_capability[1] = cpuid_edx(0x80000001);
c->x86_capability[6] = cpuid_ecx(0x80000001);
}
if (xlvl >= 0x80000004)
get_model_name(c); /* Default name */
}
/* Specific detection code */
switch (c->x86_vendor) {
case X86_VENDOR_CYRIX:
case X86_VENDOR_NSC: detect_cyrix(c); break;
default: break;
}
/* Detecting the number of cores */
switch (c->x86_vendor) {
case X86_VENDOR_AMD:
if (xlvl >= 0x80000008) {
c->x86_num_cores = (cpuid_ecx(0x80000008) & 0xff) + 1;
if (c->x86_num_cores & (c->x86_num_cores - 1))
c->x86_num_cores = 1;
}
break;
case X86_VENDOR_INTEL:
if (c->cpuid_level >= 0x00000004) {
cpuid(0x4, &eax, &ebx, &ecx, &edx);
c->x86_num_cores = ((eax & 0xfc000000) >> 26) + 1;
}
break;
default:
c->x86_num_cores = 1;
break;
}
detect_cache(xlvl, c);
}
/*
* Checksum an MP configuration block.
*/
static int mpf_checksum(unsigned char *mp, int len)
{
int sum = 0;
while (len--)
sum += *mp++;
return sum & 0xFF;
}
static int smp_scan_config(unsigned long base, unsigned long length)
{
unsigned long *bp = (unsigned long *)base;
struct intel_mp_floating *mpf;
// printf("Scan SMP from %p for %ld bytes.\n", bp,length);
if (sizeof(*mpf) != 16) {
printf("Error: MPF size\n");
return 0;
}
while (length > 0) {
mpf = (struct intel_mp_floating *)bp;
if ((*bp == SMP_MAGIC_IDENT) &&
(mpf->mpf_length == 1) &&
!mpf_checksum((unsigned char *)bp, 16) &&
((mpf->mpf_specification == 1)
|| (mpf->mpf_specification == 4))) {
return 1;
}
bp += 4;
length -= 16;
}
return 0;
}
int find_smp_config(void)
{
// unsigned int address;
/*
* FIXME: Linux assumes you have 640K of base ram..
* this continues the error...
*
* 1) Scan the bottom 1K for a signature
* 2) Scan the top 1K of base RAM
* 3) Scan the 64K of bios
*/
if (smp_scan_config(0x0, 0x400) ||
smp_scan_config(639 * 0x400, 0x400) ||
smp_scan_config(0xF0000, 0x10000))
return 1;
/*
* If it is an SMP machine we should know now, unless the
* configuration is in an EISA/MCA bus machine with an
* extended bios data area.
*
* there is a real-mode segmented pointer pointing to the
* 4K EBDA area at 0x40E, calculate and scan it here.
*
* NOTE! There are Linux loaders that will corrupt the EBDA
* area, and as such this kind of SMP config may be less
* trustworthy, simply because the SMP table may have been
* stomped on during early boot. These loaders are buggy and
* should be fixed.
*
* MP1.4 SPEC states to only scan first 1K of 4K EBDA.
*/
// address = get_bios_ebda();
// if (address)
// smp_scan_config(address, 0x400);
return 0;
}
void set_cpu_flags(struct cpuinfo_x86 *c, s_cpu * cpu)
{
cpu->flags.fpu = cpu_has(c, X86_FEATURE_FPU);
cpu->flags.vme = cpu_has(c, X86_FEATURE_VME);
cpu->flags.de = cpu_has(c, X86_FEATURE_DE);
cpu->flags.pse = cpu_has(c, X86_FEATURE_PSE);
cpu->flags.tsc = cpu_has(c, X86_FEATURE_TSC);
cpu->flags.msr = cpu_has(c, X86_FEATURE_MSR);
cpu->flags.pae = cpu_has(c, X86_FEATURE_PAE);
cpu->flags.mce = cpu_has(c, X86_FEATURE_MCE);
cpu->flags.cx8 = cpu_has(c, X86_FEATURE_CX8);
cpu->flags.apic = cpu_has(c, X86_FEATURE_APIC);
cpu->flags.sep = cpu_has(c, X86_FEATURE_SEP);
cpu->flags.mtrr = cpu_has(c, X86_FEATURE_MTRR);
cpu->flags.pge = cpu_has(c, X86_FEATURE_PGE);
cpu->flags.mca = cpu_has(c, X86_FEATURE_MCA);
cpu->flags.cmov = cpu_has(c, X86_FEATURE_CMOV);
cpu->flags.pat = cpu_has(c, X86_FEATURE_PAT);
cpu->flags.pse_36 = cpu_has(c, X86_FEATURE_PSE36);
cpu->flags.psn = cpu_has(c, X86_FEATURE_PN);
cpu->flags.clflsh = cpu_has(c, X86_FEATURE_CLFLSH);
cpu->flags.dts = cpu_has(c, X86_FEATURE_DTES);
cpu->flags.acpi = cpu_has(c, X86_FEATURE_ACPI);
cpu->flags.pbe = cpu_has(c, X86_FEATURE_PBE);
cpu->flags.mmx = cpu_has(c, X86_FEATURE_MMX);
cpu->flags.fxsr = cpu_has(c, X86_FEATURE_FXSR);
cpu->flags.sse = cpu_has(c, X86_FEATURE_XMM);
cpu->flags.sse2 = cpu_has(c, X86_FEATURE_XMM2);
cpu->flags.ss = cpu_has(c, X86_FEATURE_SELFSNOOP);
cpu->flags.htt = cpu_has(c, X86_FEATURE_HT);
cpu->flags.acc = cpu_has(c, X86_FEATURE_ACC);
cpu->flags.syscall = cpu_has(c, X86_FEATURE_SYSCALL);
cpu->flags.mp = cpu_has(c, X86_FEATURE_MP);
cpu->flags.nx = cpu_has(c, X86_FEATURE_NX);
cpu->flags.mmxext = cpu_has(c, X86_FEATURE_MMXEXT);
cpu->flags.fxsr_opt = cpu_has(c, X86_FEATURE_FXSR_OPT);
cpu->flags.gbpages = cpu_has(c, X86_FEATURE_GBPAGES);
cpu->flags.rdtscp = cpu_has(c, X86_FEATURE_RDTSCP);
cpu->flags.lm = cpu_has(c, X86_FEATURE_LM);
cpu->flags.nowext = cpu_has(c, X86_FEATURE_3DNOWEXT);
cpu->flags.now = cpu_has(c, X86_FEATURE_3DNOW);
cpu->flags.smp = find_smp_config();
cpu->flags.pni = cpu_has(c, X86_FEATURE_XMM3);
cpu->flags.pclmulqd = cpu_has(c, X86_FEATURE_PCLMULQDQ);
cpu->flags.dtes64 = cpu_has(c, X86_FEATURE_DTES64);
cpu->flags.vmx = cpu_has(c, X86_FEATURE_VMX);
cpu->flags.smx = cpu_has(c, X86_FEATURE_SMX);
cpu->flags.est = cpu_has(c, X86_FEATURE_EST);
cpu->flags.tm2 = cpu_has(c, X86_FEATURE_TM2);
cpu->flags.sse3 = cpu_has(c, X86_FEATURE_SSE3);
cpu->flags.cid = cpu_has(c, X86_FEATURE_CID);
cpu->flags.fma = cpu_has(c, X86_FEATURE_FMA);
cpu->flags.cx16 = cpu_has(c, X86_FEATURE_CX16);
cpu->flags.xtpr = cpu_has(c, X86_FEATURE_XTPR);
cpu->flags.pdcm = cpu_has(c, X86_FEATURE_PDCM);
cpu->flags.dca = cpu_has(c, X86_FEATURE_DCA);
cpu->flags.xmm4_1 = cpu_has(c, X86_FEATURE_XMM4_1);
cpu->flags.xmm4_2 = cpu_has(c, X86_FEATURE_XMM4_2);
cpu->flags.x2apic = cpu_has(c, X86_FEATURE_X2APIC);
cpu->flags.movbe = cpu_has(c, X86_FEATURE_MOVBE);
cpu->flags.popcnt = cpu_has(c, X86_FEATURE_POPCNT);
cpu->flags.aes = cpu_has(c, X86_FEATURE_AES);
cpu->flags.xsave = cpu_has(c, X86_FEATURE_XSAVE);
cpu->flags.osxsave = cpu_has(c, X86_FEATURE_OSXSAVE);
cpu->flags.avx = cpu_has(c, X86_FEATURE_AVX);
cpu->flags.hypervisor = cpu_has(c, X86_FEATURE_HYPERVISOR);
cpu->flags.ace2 = cpu_has(c, X86_FEATURE_ACE2);
cpu->flags.ace2_en = cpu_has(c, X86_FEATURE_ACE2_EN);
cpu->flags.phe = cpu_has(c, X86_FEATURE_PHE);
cpu->flags.phe_en = cpu_has(c, X86_FEATURE_PHE_EN);
cpu->flags.pmm = cpu_has(c, X86_FEATURE_PMM);
cpu->flags.pmm_en = cpu_has(c, X86_FEATURE_PMM_EN);
cpu->flags.extapic = cpu_has(c, X86_FEATURE_EXTAPIC);
cpu->flags.cr8_legacy = cpu_has(c, X86_FEATURE_CR8_LEGACY);
cpu->flags.abm = cpu_has(c, X86_FEATURE_ABM);
cpu->flags.sse4a = cpu_has(c, X86_FEATURE_SSE4A);
cpu->flags.misalignsse = cpu_has(c, X86_FEATURE_MISALIGNSSE);
cpu->flags.nowprefetch = cpu_has(c, X86_FEATURE_3DNOWPREFETCH);
cpu->flags.osvw = cpu_has(c, X86_FEATURE_OSVW);
cpu->flags.ibs = cpu_has(c, X86_FEATURE_IBS);
cpu->flags.sse5 = cpu_has(c, X86_FEATURE_SSE5);
cpu->flags.skinit = cpu_has(c, X86_FEATURE_SKINIT);
cpu->flags.wdt = cpu_has(c, X86_FEATURE_WDT);
cpu->flags.ida = cpu_has(c, X86_FEATURE_IDA);
cpu->flags.arat = cpu_has(c, X86_FEATURE_ARAT);
cpu->flags.tpr_shadow = cpu_has(c, X86_FEATURE_TPR_SHADOW);
cpu->flags.vnmi = cpu_has(c, X86_FEATURE_VNMI);
cpu->flags.flexpriority = cpu_has(c, X86_FEATURE_FLEXPRIORITY);
cpu->flags.ept = cpu_has(c, X86_FEATURE_EPT);
cpu->flags.vpid = cpu_has(c, X86_FEATURE_VPID);
cpu->flags.svm = cpu_has(c, X86_FEATURE_SVM);
}
void set_generic_info(struct cpuinfo_x86 *c, s_cpu * cpu)
{
cpu->family = c->x86;
cpu->vendor_id = c->x86_vendor;
cpu->model_id = c->x86_model;
cpu->stepping = c->x86_mask;
strlcpy(cpu->vendor, cpu_devs[c->x86_vendor]->c_vendor,
sizeof(cpu->vendor));
strlcpy(cpu->model, c->x86_model_id, sizeof(cpu->model));
cpu->num_cores = c->x86_num_cores;
cpu->l1_data_cache_size = c->x86_l1_data_cache_size;
cpu->l1_instruction_cache_size = c->x86_l1_instruction_cache_size;
cpu->l2_cache_size = c->x86_l2_cache_size;
}
void detect_cpu(s_cpu * cpu)
{
struct cpuinfo_x86 c;
memset(&c,0,sizeof(c));
c.x86_clflush_size = 32;
c.x86_vendor = X86_VENDOR_UNKNOWN;
c.cpuid_level = -1; /* CPUID not detected */
c.x86_num_cores = 1;
memset(&cpu->flags, 0, sizeof(s_cpu_flags));
if (!have_cpuid_p())
return;
generic_identify(&c);
set_generic_info(&c, cpu);
set_cpu_flags(&c, cpu);
}