| /* SHA512-based Unix crypt implementation. |
| Released into the Public Domain by Ulrich Drepper <[email protected]>. */ |
| |
| #include <alloca.h> |
| #include <endian.h> |
| #include <errno.h> |
| #include <limits.h> |
| #include <stdbool.h> |
| #include <stdint.h> |
| #include <stdio.h> |
| #include <stdlib.h> |
| #include <string.h> |
| #include <minmax.h> |
| #include <sys/types.h> |
| |
| #include "xcrypt.h" |
| |
| #define MIN(x,y) min(x,y) |
| #define MAX(x,y) max(x,y) |
| |
| /* Structure to save state of computation between the single steps. */ |
| struct sha512_ctx { |
| uint64_t H[8]; |
| |
| uint64_t total[2]; |
| uint64_t buflen; |
| char buffer[256]; /* NB: always correctly aligned for uint64_t. */ |
| }; |
| |
| #if __BYTE_ORDER == __LITTLE_ENDIAN |
| # define SWAP(n) \ |
| (((n) << 56) \ |
| | (((n) & 0xff00) << 40) \ |
| | (((n) & 0xff0000) << 24) \ |
| | (((n) & 0xff000000) << 8) \ |
| | (((n) >> 8) & 0xff000000) \ |
| | (((n) >> 24) & 0xff0000) \ |
| | (((n) >> 40) & 0xff00) \ |
| | ((n) >> 56)) |
| #else |
| # define SWAP(n) (n) |
| #endif |
| |
| /* This array contains the bytes used to pad the buffer to the next |
| 64-byte boundary. (FIPS 180-2:5.1.2) */ |
| static const unsigned char fillbuf[128] = { 0x80, 0 /* , 0, 0, ... */ }; |
| |
| /* Constants for SHA512 from FIPS 180-2:4.2.3. */ |
| static const uint64_t K[80] = { |
| UINT64_C(0x428a2f98d728ae22), UINT64_C(0x7137449123ef65cd), |
| UINT64_C(0xb5c0fbcfec4d3b2f), UINT64_C(0xe9b5dba58189dbbc), |
| UINT64_C(0x3956c25bf348b538), UINT64_C(0x59f111f1b605d019), |
| UINT64_C(0x923f82a4af194f9b), UINT64_C(0xab1c5ed5da6d8118), |
| UINT64_C(0xd807aa98a3030242), UINT64_C(0x12835b0145706fbe), |
| UINT64_C(0x243185be4ee4b28c), UINT64_C(0x550c7dc3d5ffb4e2), |
| UINT64_C(0x72be5d74f27b896f), UINT64_C(0x80deb1fe3b1696b1), |
| UINT64_C(0x9bdc06a725c71235), UINT64_C(0xc19bf174cf692694), |
| UINT64_C(0xe49b69c19ef14ad2), UINT64_C(0xefbe4786384f25e3), |
| UINT64_C(0x0fc19dc68b8cd5b5), UINT64_C(0x240ca1cc77ac9c65), |
| UINT64_C(0x2de92c6f592b0275), UINT64_C(0x4a7484aa6ea6e483), |
| UINT64_C(0x5cb0a9dcbd41fbd4), UINT64_C(0x76f988da831153b5), |
| UINT64_C(0x983e5152ee66dfab), UINT64_C(0xa831c66d2db43210), |
| UINT64_C(0xb00327c898fb213f), UINT64_C(0xbf597fc7beef0ee4), |
| UINT64_C(0xc6e00bf33da88fc2), UINT64_C(0xd5a79147930aa725), |
| UINT64_C(0x06ca6351e003826f), UINT64_C(0x142929670a0e6e70), |
| UINT64_C(0x27b70a8546d22ffc), UINT64_C(0x2e1b21385c26c926), |
| UINT64_C(0x4d2c6dfc5ac42aed), UINT64_C(0x53380d139d95b3df), |
| UINT64_C(0x650a73548baf63de), UINT64_C(0x766a0abb3c77b2a8), |
| UINT64_C(0x81c2c92e47edaee6), UINT64_C(0x92722c851482353b), |
| UINT64_C(0xa2bfe8a14cf10364), UINT64_C(0xa81a664bbc423001), |
| UINT64_C(0xc24b8b70d0f89791), UINT64_C(0xc76c51a30654be30), |
| UINT64_C(0xd192e819d6ef5218), UINT64_C(0xd69906245565a910), |
| UINT64_C(0xf40e35855771202a), UINT64_C(0x106aa07032bbd1b8), |
| UINT64_C(0x19a4c116b8d2d0c8), UINT64_C(0x1e376c085141ab53), |
| UINT64_C(0x2748774cdf8eeb99), UINT64_C(0x34b0bcb5e19b48a8), |
| UINT64_C(0x391c0cb3c5c95a63), UINT64_C(0x4ed8aa4ae3418acb), |
| UINT64_C(0x5b9cca4f7763e373), UINT64_C(0x682e6ff3d6b2b8a3), |
| UINT64_C(0x748f82ee5defb2fc), UINT64_C(0x78a5636f43172f60), |
| UINT64_C(0x84c87814a1f0ab72), UINT64_C(0x8cc702081a6439ec), |
| UINT64_C(0x90befffa23631e28), UINT64_C(0xa4506cebde82bde9), |
| UINT64_C(0xbef9a3f7b2c67915), UINT64_C(0xc67178f2e372532b), |
| UINT64_C(0xca273eceea26619c), UINT64_C(0xd186b8c721c0c207), |
| UINT64_C(0xeada7dd6cde0eb1e), UINT64_C(0xf57d4f7fee6ed178), |
| UINT64_C(0x06f067aa72176fba), UINT64_C(0x0a637dc5a2c898a6), |
| UINT64_C(0x113f9804bef90dae), UINT64_C(0x1b710b35131c471b), |
| UINT64_C(0x28db77f523047d84), UINT64_C(0x32caab7b40c72493), |
| UINT64_C(0x3c9ebe0a15c9bebc), UINT64_C(0x431d67c49c100d4c), |
| UINT64_C(0x4cc5d4becb3e42b6), UINT64_C(0x597f299cfc657e2a), |
| UINT64_C(0x5fcb6fab3ad6faec), UINT64_C(0x6c44198c4a475817) |
| }; |
| |
| /* Process LEN bytes of BUFFER, accumulating context into CTX. |
| It is assumed that LEN % 128 == 0. */ |
| static void |
| sha512_process_block(const void *buffer, size_t len, struct sha512_ctx *ctx) |
| { |
| unsigned int t; |
| const uint64_t *words = buffer; |
| size_t nwords = len / sizeof(uint64_t); |
| uint64_t a = ctx->H[0]; |
| uint64_t b = ctx->H[1]; |
| uint64_t c = ctx->H[2]; |
| uint64_t d = ctx->H[3]; |
| uint64_t e = ctx->H[4]; |
| uint64_t f = ctx->H[5]; |
| uint64_t g = ctx->H[6]; |
| uint64_t h = ctx->H[7]; |
| |
| /* First increment the byte count. FIPS 180-2 specifies the possible |
| length of the file up to 2^128 bits. Here we only compute the |
| number of bytes. Do a double word increment. */ |
| ctx->total[0] += len; |
| if (ctx->total[0] < len) |
| ++ctx->total[1]; |
| |
| /* Process all bytes in the buffer with 128 bytes in each round of |
| the loop. */ |
| while (nwords > 0) { |
| uint64_t W[80]; |
| uint64_t a_save = a; |
| uint64_t b_save = b; |
| uint64_t c_save = c; |
| uint64_t d_save = d; |
| uint64_t e_save = e; |
| uint64_t f_save = f; |
| uint64_t g_save = g; |
| uint64_t h_save = h; |
| |
| /* Operators defined in FIPS 180-2:4.1.2. */ |
| #define Ch(x, y, z) ((x & y) ^ (~x & z)) |
| #define Maj(x, y, z) ((x & y) ^ (x & z) ^ (y & z)) |
| #define S0(x) (CYCLIC (x, 28) ^ CYCLIC (x, 34) ^ CYCLIC (x, 39)) |
| #define S1(x) (CYCLIC (x, 14) ^ CYCLIC (x, 18) ^ CYCLIC (x, 41)) |
| #define R0(x) (CYCLIC (x, 1) ^ CYCLIC (x, 8) ^ (x >> 7)) |
| #define R1(x) (CYCLIC (x, 19) ^ CYCLIC (x, 61) ^ (x >> 6)) |
| |
| /* It is unfortunate that C does not provide an operator for |
| cyclic rotation. Hope the C compiler is smart enough. */ |
| #define CYCLIC(w, s) ((w >> s) | (w << (64 - s))) |
| |
| /* Compute the message schedule according to FIPS 180-2:6.3.2 step 2. */ |
| for (t = 0; t < 16; ++t) { |
| W[t] = SWAP(*words); |
| ++words; |
| } |
| for (t = 16; t < 80; ++t) |
| W[t] = R1(W[t - 2]) + W[t - 7] + R0(W[t - 15]) + W[t - 16]; |
| |
| /* The actual computation according to FIPS 180-2:6.3.2 step 3. */ |
| for (t = 0; t < 80; ++t) { |
| uint64_t T1 = h + S1(e) + Ch(e, f, g) + K[t] + W[t]; |
| uint64_t T2 = S0(a) + Maj(a, b, c); |
| h = g; |
| g = f; |
| f = e; |
| e = d + T1; |
| d = c; |
| c = b; |
| b = a; |
| a = T1 + T2; |
| } |
| |
| /* Add the starting values of the context according to FIPS 180-2:6.3.2 |
| step 4. */ |
| a += a_save; |
| b += b_save; |
| c += c_save; |
| d += d_save; |
| e += e_save; |
| f += f_save; |
| g += g_save; |
| h += h_save; |
| |
| /* Prepare for the next round. */ |
| nwords -= 16; |
| } |
| |
| /* Put checksum in context given as argument. */ |
| ctx->H[0] = a; |
| ctx->H[1] = b; |
| ctx->H[2] = c; |
| ctx->H[3] = d; |
| ctx->H[4] = e; |
| ctx->H[5] = f; |
| ctx->H[6] = g; |
| ctx->H[7] = h; |
| } |
| |
| /* Initialize structure containing state of computation. |
| (FIPS 180-2:5.3.3) */ |
| static void sha512_init_ctx(struct sha512_ctx *ctx) |
| { |
| ctx->H[0] = UINT64_C(0x6a09e667f3bcc908); |
| ctx->H[1] = UINT64_C(0xbb67ae8584caa73b); |
| ctx->H[2] = UINT64_C(0x3c6ef372fe94f82b); |
| ctx->H[3] = UINT64_C(0xa54ff53a5f1d36f1); |
| ctx->H[4] = UINT64_C(0x510e527fade682d1); |
| ctx->H[5] = UINT64_C(0x9b05688c2b3e6c1f); |
| ctx->H[6] = UINT64_C(0x1f83d9abfb41bd6b); |
| ctx->H[7] = UINT64_C(0x5be0cd19137e2179); |
| |
| ctx->total[0] = ctx->total[1] = 0; |
| ctx->buflen = 0; |
| } |
| |
| /* Process the remaining bytes in the internal buffer and the usual |
| prolog according to the standard and write the result to RESBUF. |
| |
| IMPORTANT: On some systems it is required that RESBUF is correctly |
| aligned for a 32 bits value. */ |
| static void *sha512_finish_ctx(struct sha512_ctx *ctx, void *resbuf) |
| { |
| unsigned int i; |
| /* Take yet unprocessed bytes into account. */ |
| uint64_t bytes = ctx->buflen; |
| size_t pad; |
| |
| /* Now count remaining bytes. */ |
| ctx->total[0] += bytes; |
| if (ctx->total[0] < bytes) |
| ++ctx->total[1]; |
| |
| pad = bytes >= 112 ? 128 + 112 - bytes : 112 - bytes; |
| memcpy(&ctx->buffer[bytes], fillbuf, pad); |
| |
| /* Put the 128-bit file length in *bits* at the end of the buffer. */ |
| *(uint64_t *) & ctx->buffer[bytes + pad + 8] = SWAP(ctx->total[0] << 3); |
| *(uint64_t *) & ctx->buffer[bytes + pad] = SWAP((ctx->total[1] << 3) | |
| (ctx->total[0] >> 61)); |
| |
| /* Process last bytes. */ |
| sha512_process_block(ctx->buffer, bytes + pad + 16, ctx); |
| |
| /* Put result from CTX in first 64 bytes following RESBUF. */ |
| for (i = 0; i < 8; ++i) |
| ((uint64_t *) resbuf)[i] = SWAP(ctx->H[i]); |
| |
| return resbuf; |
| } |
| |
| static void |
| sha512_process_bytes(const void *buffer, size_t len, struct sha512_ctx *ctx) |
| { |
| /* When we already have some bits in our internal buffer concatenate |
| both inputs first. */ |
| if (ctx->buflen != 0) { |
| size_t left_over = ctx->buflen; |
| size_t add = 256 - left_over > len ? len : 256 - left_over; |
| |
| memcpy(&ctx->buffer[left_over], buffer, add); |
| ctx->buflen += add; |
| |
| if (ctx->buflen > 128) { |
| sha512_process_block(ctx->buffer, ctx->buflen & ~127, ctx); |
| |
| ctx->buflen &= 127; |
| /* The regions in the following copy operation cannot overlap. */ |
| memcpy(ctx->buffer, &ctx->buffer[(left_over + add) & ~127], |
| ctx->buflen); |
| } |
| |
| buffer = (const char *)buffer + add; |
| len -= add; |
| } |
| |
| /* Process available complete blocks. */ |
| if (len >= 128) { |
| #if !_STRING_ARCH_unaligned |
| /* To check alignment gcc has an appropriate operator. Other |
| compilers don't. */ |
| # if __GNUC__ >= 2 |
| # define UNALIGNED_P(p) (((uintptr_t) p) % __alignof__ (uint64_t) != 0) |
| # else |
| # define UNALIGNED_P(p) (((uintptr_t) p) % sizeof (uint64_t) != 0) |
| # endif |
| if (UNALIGNED_P(buffer)) |
| while (len > 128) { |
| sha512_process_block(memcpy(ctx->buffer, buffer, 128), 128, |
| ctx); |
| buffer = (const char *)buffer + 128; |
| len -= 128; |
| } else |
| #endif |
| { |
| sha512_process_block(buffer, len & ~127, ctx); |
| buffer = (const char *)buffer + (len & ~127); |
| len &= 127; |
| } |
| } |
| |
| /* Move remaining bytes into internal buffer. */ |
| if (len > 0) { |
| size_t left_over = ctx->buflen; |
| |
| memcpy(&ctx->buffer[left_over], buffer, len); |
| left_over += len; |
| if (left_over >= 128) { |
| sha512_process_block(ctx->buffer, 128, ctx); |
| left_over -= 128; |
| memcpy(ctx->buffer, &ctx->buffer[128], left_over); |
| } |
| ctx->buflen = left_over; |
| } |
| } |
| |
| /* Define our magic string to mark salt for SHA512 "encryption" |
| replacement. */ |
| static const char sha512_salt_prefix[] = "$6$"; |
| |
| /* Prefix for optional rounds specification. */ |
| static const char sha512_rounds_prefix[] = "rounds="; |
| |
| /* Maximum salt string length. */ |
| #define SALT_LEN_MAX 16U |
| /* Default number of rounds if not explicitly specified. */ |
| #define ROUNDS_DEFAULT 5000UL |
| /* Minimum number of rounds. */ |
| #define ROUNDS_MIN 1000UL |
| /* Maximum number of rounds. */ |
| #define ROUNDS_MAX 999999999UL |
| |
| /* Table with characters for base64 transformation. */ |
| static const char b64t[64] = |
| "./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz"; |
| |
| static char *sha512_crypt_r(const char *key, const char *salt, char *buffer, |
| int buflen) |
| { |
| unsigned char alt_result[64] |
| __attribute__ ((__aligned__(__alignof__(uint64_t)))); |
| unsigned char temp_result[64] |
| __attribute__ ((__aligned__(__alignof__(uint64_t)))); |
| struct sha512_ctx ctx; |
| struct sha512_ctx alt_ctx; |
| size_t salt_len; |
| size_t key_len; |
| size_t cnt; |
| char *cp; |
| char *copied_key = NULL; |
| char *copied_salt = NULL; |
| char *p_bytes; |
| char *s_bytes; |
| /* Default number of rounds. */ |
| size_t rounds = ROUNDS_DEFAULT; |
| bool rounds_custom = false; |
| |
| /* Find beginning of salt string. The prefix should normally always |
| be present. Just in case it is not. */ |
| if (strncmp(sha512_salt_prefix, salt, sizeof(sha512_salt_prefix) - 1) == 0) |
| /* Skip salt prefix. */ |
| salt += sizeof(sha512_salt_prefix) - 1; |
| |
| if (strncmp(salt, sha512_rounds_prefix, sizeof(sha512_rounds_prefix) - 1) |
| == 0) { |
| const char *num = salt + sizeof(sha512_rounds_prefix) - 1; |
| char *endp; |
| unsigned long int srounds = strtoul(num, &endp, 10); |
| if (*endp == '$') { |
| salt = endp + 1; |
| rounds = MAX(ROUNDS_MIN, MIN(srounds, ROUNDS_MAX)); |
| rounds_custom = true; |
| } |
| } |
| |
| salt_len = MIN(strcspn(salt, "$"), SALT_LEN_MAX); |
| key_len = strlen(key); |
| |
| if ((key - (char *)0) % __alignof__(uint64_t) != 0) { |
| char *tmp = (char *)alloca(key_len + __alignof__(uint64_t)); |
| key = copied_key = memcpy(tmp + __alignof__(uint64_t) |
| - (tmp - (char *)0) % __alignof__(uint64_t), |
| key, key_len); |
| } |
| |
| if ((salt - (char *)0) % __alignof__(uint64_t) != 0) { |
| char *tmp = (char *)alloca(salt_len + __alignof__(uint64_t)); |
| salt = copied_salt = memcpy(tmp + __alignof__(uint64_t) |
| - (tmp - (char *)0) % __alignof__(uint64_t), |
| salt, salt_len); |
| } |
| |
| /* Prepare for the real work. */ |
| sha512_init_ctx(&ctx); |
| |
| /* Add the key string. */ |
| sha512_process_bytes(key, key_len, &ctx); |
| |
| /* The last part is the salt string. This must be at most 8 |
| characters and it ends at the first `$' character (for |
| compatibility with existing implementations). */ |
| sha512_process_bytes(salt, salt_len, &ctx); |
| |
| /* Compute alternate SHA512 sum with input KEY, SALT, and KEY. The |
| final result will be added to the first context. */ |
| sha512_init_ctx(&alt_ctx); |
| |
| /* Add key. */ |
| sha512_process_bytes(key, key_len, &alt_ctx); |
| |
| /* Add salt. */ |
| sha512_process_bytes(salt, salt_len, &alt_ctx); |
| |
| /* Add key again. */ |
| sha512_process_bytes(key, key_len, &alt_ctx); |
| |
| /* Now get result of this (64 bytes) and add it to the other |
| context. */ |
| sha512_finish_ctx(&alt_ctx, alt_result); |
| |
| /* Add for any character in the key one byte of the alternate sum. */ |
| for (cnt = key_len; cnt > 64; cnt -= 64) |
| sha512_process_bytes(alt_result, 64, &ctx); |
| sha512_process_bytes(alt_result, cnt, &ctx); |
| |
| /* Take the binary representation of the length of the key and for every |
| 1 add the alternate sum, for every 0 the key. */ |
| for (cnt = key_len; cnt > 0; cnt >>= 1) |
| if ((cnt & 1) != 0) |
| sha512_process_bytes(alt_result, 64, &ctx); |
| else |
| sha512_process_bytes(key, key_len, &ctx); |
| |
| /* Create intermediate result. */ |
| sha512_finish_ctx(&ctx, alt_result); |
| |
| /* Start computation of P byte sequence. */ |
| sha512_init_ctx(&alt_ctx); |
| |
| /* For every character in the password add the entire password. */ |
| for (cnt = 0; cnt < key_len; ++cnt) |
| sha512_process_bytes(key, key_len, &alt_ctx); |
| |
| /* Finish the digest. */ |
| sha512_finish_ctx(&alt_ctx, temp_result); |
| |
| /* Create byte sequence P. */ |
| cp = p_bytes = alloca(key_len); |
| for (cnt = key_len; cnt >= 64; cnt -= 64) |
| cp = mempcpy(cp, temp_result, 64); |
| memcpy(cp, temp_result, cnt); |
| |
| /* Start computation of S byte sequence. */ |
| sha512_init_ctx(&alt_ctx); |
| |
| /* For every character in the password add the entire password. */ |
| for (cnt = 0; cnt < (size_t)16 + alt_result[0]; ++cnt) |
| sha512_process_bytes(salt, salt_len, &alt_ctx); |
| |
| /* Finish the digest. */ |
| sha512_finish_ctx(&alt_ctx, temp_result); |
| |
| /* Create byte sequence S. */ |
| cp = s_bytes = alloca(salt_len); |
| for (cnt = salt_len; cnt >= 64; cnt -= 64) |
| cp = mempcpy(cp, temp_result, 64); |
| memcpy(cp, temp_result, cnt); |
| |
| /* Repeatedly run the collected hash value through SHA512 to burn |
| CPU cycles. */ |
| for (cnt = 0; cnt < rounds; ++cnt) { |
| /* New context. */ |
| sha512_init_ctx(&ctx); |
| |
| /* Add key or last result. */ |
| if ((cnt & 1) != 0) |
| sha512_process_bytes(p_bytes, key_len, &ctx); |
| else |
| sha512_process_bytes(alt_result, 64, &ctx); |
| |
| /* Add salt for numbers not divisible by 3. */ |
| if (cnt % 3 != 0) |
| sha512_process_bytes(s_bytes, salt_len, &ctx); |
| |
| /* Add key for numbers not divisible by 7. */ |
| if (cnt % 7 != 0) |
| sha512_process_bytes(p_bytes, key_len, &ctx); |
| |
| /* Add key or last result. */ |
| if ((cnt & 1) != 0) |
| sha512_process_bytes(alt_result, 64, &ctx); |
| else |
| sha512_process_bytes(p_bytes, key_len, &ctx); |
| |
| /* Create intermediate result. */ |
| sha512_finish_ctx(&ctx, alt_result); |
| } |
| |
| /* Now we can construct the result string. It consists of three |
| parts. */ |
| cp = stpncpy(buffer, sha512_salt_prefix, MAX(0, buflen)); |
| buflen -= sizeof(sha512_salt_prefix) - 1; |
| |
| if (rounds_custom) { |
| int n = snprintf(cp, MAX(0, buflen), "%s%zu$", |
| sha512_rounds_prefix, rounds); |
| cp += n; |
| buflen -= n; |
| } |
| |
| cp = stpncpy(cp, salt, MIN((size_t) MAX(0, buflen), salt_len)); |
| buflen -= MIN((size_t) MAX(0, buflen), salt_len); |
| |
| if (buflen > 0) { |
| *cp++ = '$'; |
| --buflen; |
| } |
| #define b64_from_24bit(B2, B1, B0, N) \ |
| do { \ |
| unsigned int w = ((B2) << 16) | ((B1) << 8) | (B0); \ |
| int n = (N); \ |
| while (n-- > 0 && buflen > 0) \ |
| { \ |
| *cp++ = b64t[w & 0x3f]; \ |
| --buflen; \ |
| w >>= 6; \ |
| } \ |
| } while (0) |
| |
| b64_from_24bit(alt_result[0], alt_result[21], alt_result[42], 4); |
| b64_from_24bit(alt_result[22], alt_result[43], alt_result[1], 4); |
| b64_from_24bit(alt_result[44], alt_result[2], alt_result[23], 4); |
| b64_from_24bit(alt_result[3], alt_result[24], alt_result[45], 4); |
| b64_from_24bit(alt_result[25], alt_result[46], alt_result[4], 4); |
| b64_from_24bit(alt_result[47], alt_result[5], alt_result[26], 4); |
| b64_from_24bit(alt_result[6], alt_result[27], alt_result[48], 4); |
| b64_from_24bit(alt_result[28], alt_result[49], alt_result[7], 4); |
| b64_from_24bit(alt_result[50], alt_result[8], alt_result[29], 4); |
| b64_from_24bit(alt_result[9], alt_result[30], alt_result[51], 4); |
| b64_from_24bit(alt_result[31], alt_result[52], alt_result[10], 4); |
| b64_from_24bit(alt_result[53], alt_result[11], alt_result[32], 4); |
| b64_from_24bit(alt_result[12], alt_result[33], alt_result[54], 4); |
| b64_from_24bit(alt_result[34], alt_result[55], alt_result[13], 4); |
| b64_from_24bit(alt_result[56], alt_result[14], alt_result[35], 4); |
| b64_from_24bit(alt_result[15], alt_result[36], alt_result[57], 4); |
| b64_from_24bit(alt_result[37], alt_result[58], alt_result[16], 4); |
| b64_from_24bit(alt_result[59], alt_result[17], alt_result[38], 4); |
| b64_from_24bit(alt_result[18], alt_result[39], alt_result[60], 4); |
| b64_from_24bit(alt_result[40], alt_result[61], alt_result[19], 4); |
| b64_from_24bit(alt_result[62], alt_result[20], alt_result[41], 4); |
| b64_from_24bit(0, 0, alt_result[63], 2); |
| |
| if (buflen <= 0) { |
| errno = ERANGE; |
| buffer = NULL; |
| } else |
| *cp = '\0'; /* Terminate the string. */ |
| |
| /* Clear the buffer for the intermediate result so that people |
| attaching to processes or reading core dumps cannot get any |
| information. We do it in this way to clear correct_words[] |
| inside the SHA512 implementation as well. */ |
| sha512_init_ctx(&ctx); |
| sha512_finish_ctx(&ctx, alt_result); |
| memset(temp_result, '\0', sizeof(temp_result)); |
| memset(p_bytes, '\0', key_len); |
| memset(s_bytes, '\0', salt_len); |
| memset(&ctx, '\0', sizeof(ctx)); |
| memset(&alt_ctx, '\0', sizeof(alt_ctx)); |
| if (copied_key != NULL) |
| memset(copied_key, '\0', key_len); |
| if (copied_salt != NULL) |
| memset(copied_salt, '\0', salt_len); |
| |
| return buffer; |
| } |
| |
| /* This entry point is equivalent to the `crypt' function in Unix |
| libcs. */ |
| char *sha512_crypt(const char *key, const char *salt) |
| { |
| /* We don't want to have an arbitrary limit in the size of the |
| password. We can compute an upper bound for the size of the |
| result in advance and so we can prepare the buffer we pass to |
| `sha512_crypt_r'. */ |
| static char *buffer; |
| static int buflen; |
| int needed = (sizeof(sha512_salt_prefix) - 1 |
| + sizeof(sha512_rounds_prefix) + 9 + 1 |
| + strlen(salt) + 1 + 86 + 1); |
| |
| if (buflen < needed) { |
| char *new_buffer = (char *)realloc(buffer, needed); |
| if (new_buffer == NULL) |
| return NULL; |
| |
| buffer = new_buffer; |
| buflen = needed; |
| } |
| |
| return sha512_crypt_r(key, salt, buffer, buflen); |
| } |
| |
| #ifdef TEST |
| static const struct { |
| const char *input; |
| const char result[64]; |
| } tests[] = { |
| /* Test vectors from FIPS 180-2: appendix C.1. */ |
| { |
| "abc", |
| "\xdd\xaf\x35\xa1\x93\x61\x7a\xba\xcc\x41\x73\x49\xae\x20\x41\x31" |
| "\x12\xe6\xfa\x4e\x89\xa9\x7e\xa2\x0a\x9e\xee\xe6\x4b\x55\xd3\x9a" |
| "\x21\x92\x99\x2a\x27\x4f\xc1\xa8\x36\xba\x3c\x23\xa3\xfe\xeb\xbd" |
| "\x45\x4d\x44\x23\x64\x3c\xe8\x0e\x2a\x9a\xc9\x4f\xa5\x4c\xa4\x9f"}, |
| /* Test vectors from FIPS 180-2: appendix C.2. */ |
| { |
| "abcdefghbcdefghicdefghijdefghijkefghijklfghijklmghijklmn" |
| "hijklmnoijklmnopjklmnopqklmnopqrlmnopqrsmnopqrstnopqrstu", |
| "\x8e\x95\x9b\x75\xda\xe3\x13\xda\x8c\xf4\xf7\x28\x14\xfc\x14\x3f" |
| "\x8f\x77\x79\xc6\xeb\x9f\x7f\xa1\x72\x99\xae\xad\xb6\x88\x90\x18" |
| "\x50\x1d\x28\x9e\x49\x00\xf7\xe4\x33\x1b\x99\xde\xc4\xb5\x43\x3a" |
| "\xc7\xd3\x29\xee\xb6\xdd\x26\x54\x5e\x96\xe5\x5b\x87\x4b\xe9\x09"}, |
| /* Test vectors from the NESSIE project. */ |
| { |
| "", "\xcf\x83\xe1\x35\x7e\xef\xb8\xbd\xf1\x54\x28\x50\xd6\x6d\x80\x07" |
| "\xd6\x20\xe4\x05\x0b\x57\x15\xdc\x83\xf4\xa9\x21\xd3\x6c\xe9\xce" |
| "\x47\xd0\xd1\x3c\x5d\x85\xf2\xb0\xff\x83\x18\xd2\x87\x7e\xec\x2f" |
| "\x63\xb9\x31\xbd\x47\x41\x7a\x81\xa5\x38\x32\x7a\xf9\x27\xda\x3e"}, |
| { |
| "a", "\x1f\x40\xfc\x92\xda\x24\x16\x94\x75\x09\x79\xee\x6c\xf5\x82\xf2" |
| "\xd5\xd7\xd2\x8e\x18\x33\x5d\xe0\x5a\xbc\x54\xd0\x56\x0e\x0f\x53" |
| "\x02\x86\x0c\x65\x2b\xf0\x8d\x56\x02\x52\xaa\x5e\x74\x21\x05\x46" |
| "\xf3\x69\xfb\xbb\xce\x8c\x12\xcf\xc7\x95\x7b\x26\x52\xfe\x9a\x75"}, |
| { |
| "message digest", |
| "\x10\x7d\xbf\x38\x9d\x9e\x9f\x71\xa3\xa9\x5f\x6c\x05\x5b\x92\x51" |
| "\xbc\x52\x68\xc2\xbe\x16\xd6\xc1\x34\x92\xea\x45\xb0\x19\x9f\x33" |
| "\x09\xe1\x64\x55\xab\x1e\x96\x11\x8e\x8a\x90\x5d\x55\x97\xb7\x20" |
| "\x38\xdd\xb3\x72\xa8\x98\x26\x04\x6d\xe6\x66\x87\xbb\x42\x0e\x7c"}, |
| { |
| "abcdefghijklmnopqrstuvwxyz", |
| "\x4d\xbf\xf8\x6c\xc2\xca\x1b\xae\x1e\x16\x46\x8a\x05\xcb\x98\x81" |
| "\xc9\x7f\x17\x53\xbc\xe3\x61\x90\x34\x89\x8f\xaa\x1a\xab\xe4\x29" |
| "\x95\x5a\x1b\xf8\xec\x48\x3d\x74\x21\xfe\x3c\x16\x46\x61\x3a\x59" |
| "\xed\x54\x41\xfb\x0f\x32\x13\x89\xf7\x7f\x48\xa8\x79\xc7\xb1\xf1"}, |
| { |
| "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq", |
| "\x20\x4a\x8f\xc6\xdd\xa8\x2f\x0a\x0c\xed\x7b\xeb\x8e\x08\xa4\x16" |
| "\x57\xc1\x6e\xf4\x68\xb2\x28\xa8\x27\x9b\xe3\x31\xa7\x03\xc3\x35" |
| "\x96\xfd\x15\xc1\x3b\x1b\x07\xf9\xaa\x1d\x3b\xea\x57\x78\x9c\xa0" |
| "\x31\xad\x85\xc7\xa7\x1d\xd7\x03\x54\xec\x63\x12\x38\xca\x34\x45"}, |
| { |
| "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789", |
| "\x1e\x07\xbe\x23\xc2\x6a\x86\xea\x37\xea\x81\x0c\x8e\xc7\x80\x93" |
| "\x52\x51\x5a\x97\x0e\x92\x53\xc2\x6f\x53\x6c\xfc\x7a\x99\x96\xc4" |
| "\x5c\x83\x70\x58\x3e\x0a\x78\xfa\x4a\x90\x04\x1d\x71\xa4\xce\xab" |
| "\x74\x23\xf1\x9c\x71\xb9\xd5\xa3\xe0\x12\x49\xf0\xbe\xbd\x58\x94"}, |
| { |
| "123456789012345678901234567890123456789012345678901234567890" |
| "12345678901234567890", |
| "\x72\xec\x1e\xf1\x12\x4a\x45\xb0\x47\xe8\xb7\xc7\x5a\x93\x21\x95" |
| "\x13\x5b\xb6\x1d\xe2\x4e\xc0\xd1\x91\x40\x42\x24\x6e\x0a\xec\x3a" |
| "\x23\x54\xe0\x93\xd7\x6f\x30\x48\xb4\x56\x76\x43\x46\x90\x0c\xb1" |
| "\x30\xd2\xa4\xfd\x5d\xd1\x6a\xbb\x5e\x30\xbc\xb8\x50\xde\xe8\x43"} |
| }; |
| |
| #define ntests (sizeof (tests) / sizeof (tests[0])) |
| |
| static const struct { |
| const char *salt; |
| const char *input; |
| const char *expected; |
| } tests2[] = { |
| { |
| "$6$saltstring", "Hello world!", |
| "$6$saltstring$svn8UoSVapNtMuq1ukKS4tPQd8iKwSMHWjl/O817G3uBnIFNjnQJu" |
| "esI68u4OTLiBFdcbYEdFCoEOfaS35inz1"}, { |
| "$6$rounds=10000$saltstringsaltstring", "Hello world!", |
| "$6$rounds=10000$saltstringsaltst$OW1/O6BYHV6BcXZu8QVeXbDWra3Oeqh0sb" |
| "HbbMCVNSnCM/UrjmM0Dp8vOuZeHBy/YTBmSK6H9qs/y3RnOaw5v."}, { |
| "$6$rounds=5000$toolongsaltstring", "This is just a test", |
| "$6$rounds=5000$toolongsaltstrin$lQ8jolhgVRVhY4b5pZKaysCLi0QBxGoNeKQ" |
| "zQ3glMhwllF7oGDZxUhx1yxdYcz/e1JSbq3y6JMxxl8audkUEm0"}, { |
| "$6$rounds=1400$anotherlongsaltstring", |
| "a very much longer text to encrypt. This one even stretches over more" |
| "than one line.", |
| "$6$rounds=1400$anotherlongsalts$POfYwTEok97VWcjxIiSOjiykti.o/pQs.wP" |
| "vMxQ6Fm7I6IoYN3CmLs66x9t0oSwbtEW7o7UmJEiDwGqd8p4ur1"}, { |
| "$6$rounds=77777$short", |
| "we have a short salt string but not a short password", |
| "$6$rounds=77777$short$WuQyW2YR.hBNpjjRhpYD/ifIw05xdfeEyQoMxIXbkvr0g" |
| "ge1a1x3yRULJ5CCaUeOxFmtlcGZelFl5CxtgfiAc0"}, { |
| "$6$rounds=123456$asaltof16chars..", "a short string", |
| "$6$rounds=123456$asaltof16chars..$BtCwjqMJGx5hrJhZywWvt0RLE8uZ4oPwc" |
| "elCjmw2kSYu.Ec6ycULevoBK25fs2xXgMNrCzIMVcgEJAstJeonj1"}, { |
| "$6$rounds=10$roundstoolow", "the minimum number is still observed", |
| "$6$rounds=1000$roundstoolow$kUMsbe306n21p9R.FRkW3IGn.S9NPN0x50YhH1x" |
| "hLsPuWGsUSklZt58jaTfF4ZEQpyUNGc0dqbpBYYBaHHrsX."},}; |
| #define ntests2 (sizeof (tests2) / sizeof (tests2[0])) |
| |
| int main(void) |
| { |
| struct sha512_ctx ctx; |
| char sum[64]; |
| int result = 0; |
| int cnt; |
| |
| for (cnt = 0; cnt < (int)ntests; ++cnt) { |
| sha512_init_ctx(&ctx); |
| sha512_process_bytes(tests[cnt].input, strlen(tests[cnt].input), &ctx); |
| sha512_finish_ctx(&ctx, sum); |
| if (memcmp(tests[cnt].result, sum, 64) != 0) { |
| printf("test %d run %d failed\n", cnt, 1); |
| result = 1; |
| } |
| |
| sha512_init_ctx(&ctx); |
| for (int i = 0; tests[cnt].input[i] != '\0'; ++i) |
| sha512_process_bytes(&tests[cnt].input[i], 1, &ctx); |
| sha512_finish_ctx(&ctx, sum); |
| if (memcmp(tests[cnt].result, sum, 64) != 0) { |
| printf("test %d run %d failed\n", cnt, 2); |
| result = 1; |
| } |
| } |
| |
| /* Test vector from FIPS 180-2: appendix C.3. */ |
| char buf[1000]; |
| memset(buf, 'a', sizeof(buf)); |
| sha512_init_ctx(&ctx); |
| for (int i = 0; i < 1000; ++i) |
| sha512_process_bytes(buf, sizeof(buf), &ctx); |
| sha512_finish_ctx(&ctx, sum); |
| static const char expected[64] = |
| "\xe7\x18\x48\x3d\x0c\xe7\x69\x64\x4e\x2e\x42\xc7\xbc\x15\xb4\x63" |
| "\x8e\x1f\x98\xb1\x3b\x20\x44\x28\x56\x32\xa8\x03\xaf\xa9\x73\xeb" |
| "\xde\x0f\xf2\x44\x87\x7e\xa6\x0a\x4c\xb0\x43\x2c\xe5\x77\xc3\x1b" |
| "\xeb\x00\x9c\x5c\x2c\x49\xaa\x2e\x4e\xad\xb2\x17\xad\x8c\xc0\x9b"; |
| if (memcmp(expected, sum, 64) != 0) { |
| printf("test %d failed\n", cnt); |
| result = 1; |
| } |
| |
| for (cnt = 0; cnt < ntests2; ++cnt) { |
| char *cp = sha512_crypt(tests2[cnt].input, tests2[cnt].salt); |
| |
| if (strcmp(cp, tests2[cnt].expected) != 0) { |
| printf("test %d: expected \"%s\", got \"%s\"\n", |
| cnt, tests2[cnt].expected, cp); |
| result = 1; |
| } |
| } |
| |
| if (result == 0) |
| puts("all tests OK"); |
| |
| return result; |
| } |
| #endif |