| /* |
| * Copyright (c) 1990, 1991, 1993, 1994, 1995, 1996, 1997 |
| * The Regents of the University of California. All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that: (1) source code distributions |
| * retain the above copyright notice and this paragraph in its entirety, (2) |
| * distributions including binary code include the above copyright notice and |
| * this paragraph in its entirety in the documentation or other materials |
| * provided with the distribution, and (3) all advertising materials mentioning |
| * features or use of this software display the following acknowledgement: |
| * ``This product includes software developed by the University of California, |
| * Lawrence Berkeley Laboratory and its contributors.'' Neither the name of |
| * the University nor the names of its contributors may be used to endorse |
| * or promote products derived from this software without specific prior |
| * written permission. |
| * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED |
| * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF |
| * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. |
| */ |
| |
| /* |
| * txtproto_print() derived from original code by Hannes Gredler |
| * ([email protected]): |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that: (1) source code |
| * distributions retain the above copyright notice and this paragraph |
| * in its entirety, and (2) distributions including binary code include |
| * the above copyright notice and this paragraph in its entirety in |
| * the documentation or other materials provided with the distribution. |
| * THIS SOFTWARE IS PROVIDED ``AS IS'' AND |
| * WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, WITHOUT |
| * LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
| * FOR A PARTICULAR PURPOSE. |
| */ |
| |
| #ifdef HAVE_CONFIG_H |
| #include <config.h> |
| #endif |
| |
| #include "netdissect-stdinc.h" |
| |
| #include <sys/stat.h> |
| |
| #ifdef HAVE_FCNTL_H |
| #include <fcntl.h> |
| #endif |
| #include <ctype.h> |
| #include <stdio.h> |
| #include <stdarg.h> |
| #include <stdlib.h> |
| #include <string.h> |
| |
| #include "netdissect.h" |
| #include "extract.h" |
| #include "ascii_strcasecmp.h" |
| #include "timeval-operations.h" |
| |
| int32_t thiszone; /* seconds offset from gmt to local time */ |
| /* invalid string to print '(invalid)' for malformed or corrupted packets */ |
| const char istr[] = " (invalid)"; |
| |
| /* |
| * timestamp display buffer size, the biggest size of both formats is needed |
| * sizeof("0000000000.000000000") > sizeof("00:00:00.000000000") |
| */ |
| #define TS_BUF_SIZE sizeof("0000000000.000000000") |
| |
| #define TOKBUFSIZE 128 |
| |
| /* |
| * Print out a character, filtering out the non-printable ones |
| */ |
| void |
| fn_print_char(netdissect_options *ndo, u_char c) |
| { |
| if (!ND_ISASCII(c)) { |
| c = ND_TOASCII(c); |
| ND_PRINT("M-"); |
| } |
| if (!ND_ISPRINT(c)) { |
| c ^= 0x40; /* DEL to ?, others to alpha */ |
| ND_PRINT("^"); |
| } |
| ND_PRINT("%c", c); |
| } |
| |
| /* |
| * Print out a null-terminated filename (or other ASCII string). |
| * If ep is NULL, assume no truncation check is needed. |
| * Return true if truncated. |
| * Stop at ep (if given) or before the null char, whichever is first. |
| */ |
| int |
| fn_print(netdissect_options *ndo, |
| const u_char *s, const u_char *ep) |
| { |
| int ret; |
| u_char c; |
| |
| ret = 1; /* assume truncated */ |
| while (ep == NULL || s < ep) { |
| c = *s++; |
| if (c == '\0') { |
| ret = 0; |
| break; |
| } |
| if (!ND_ISASCII(c)) { |
| c = ND_TOASCII(c); |
| ND_PRINT("M-"); |
| } |
| if (!ND_ISPRINT(c)) { |
| c ^= 0x40; /* DEL to ?, others to alpha */ |
| ND_PRINT("^"); |
| } |
| ND_PRINT("%c", c); |
| } |
| return(ret); |
| } |
| |
| /* |
| * Print out a null-terminated filename (or other ASCII string) from |
| * a fixed-length buffer. |
| * If ep is NULL, assume no truncation check is needed. |
| * Return the number of bytes of string processed, including the |
| * terminating null, if not truncated. Return 0 if truncated. |
| */ |
| u_int |
| fn_printztn(netdissect_options *ndo, |
| const u_char *s, u_int n, const u_char *ep) |
| { |
| u_int bytes; |
| u_char c; |
| |
| bytes = 0; |
| for (;;) { |
| if (n == 0 || (ep != NULL && s >= ep)) { |
| /* |
| * Truncated. This includes "no null before we |
| * got to the end of the fixed-length buffer". |
| * |
| * XXX - BOOTP says "null-terminated", which |
| * means the maximum length of the string, in |
| * bytes, is 1 less than the size of the buffer, |
| * as there must always be a terminating null. |
| */ |
| bytes = 0; |
| break; |
| } |
| |
| c = *s++; |
| bytes++; |
| n--; |
| if (c == '\0') { |
| /* End of string */ |
| break; |
| } |
| if (!ND_ISASCII(c)) { |
| c = ND_TOASCII(c); |
| ND_PRINT("M-"); |
| } |
| if (!ND_ISPRINT(c)) { |
| c ^= 0x40; /* DEL to ?, others to alpha */ |
| ND_PRINT("^"); |
| } |
| ND_PRINT("%c", c); |
| } |
| return(bytes); |
| } |
| |
| /* |
| * Print out a counted filename (or other ASCII string). |
| * If ep is NULL, assume no truncation check is needed. |
| * Return true if truncated. |
| * Stop at ep (if given) or after n bytes, whichever is first. |
| */ |
| int |
| fn_printn(netdissect_options *ndo, |
| const u_char *s, u_int n, const u_char *ep) |
| { |
| u_char c; |
| |
| while (n > 0 && (ep == NULL || s < ep)) { |
| n--; |
| c = *s++; |
| if (!ND_ISASCII(c)) { |
| c = ND_TOASCII(c); |
| ND_PRINT("M-"); |
| } |
| if (!ND_ISPRINT(c)) { |
| c ^= 0x40; /* DEL to ?, others to alpha */ |
| ND_PRINT("^"); |
| } |
| ND_PRINT("%c", c); |
| } |
| return (n == 0) ? 0 : 1; |
| } |
| |
| /* |
| * Print out a null-padded filename (or other ASCII string). |
| * If ep is NULL, assume no truncation check is needed. |
| * Return true if truncated. |
| * Stop at ep (if given) or after n bytes or before the null char, |
| * whichever is first. |
| */ |
| int |
| fn_printzp(netdissect_options *ndo, |
| const u_char *s, u_int n, |
| const u_char *ep) |
| { |
| int ret; |
| u_char c; |
| |
| ret = 1; /* assume truncated */ |
| while (n > 0 && (ep == NULL || s < ep)) { |
| n--; |
| c = *s++; |
| if (c == '\0') { |
| ret = 0; |
| break; |
| } |
| if (!ND_ISASCII(c)) { |
| c = ND_TOASCII(c); |
| ND_PRINT("M-"); |
| } |
| if (!ND_ISPRINT(c)) { |
| c ^= 0x40; /* DEL to ?, others to alpha */ |
| ND_PRINT("^"); |
| } |
| ND_PRINT("%c", c); |
| } |
| return (n == 0) ? 0 : ret; |
| } |
| |
| /* |
| * Format the timestamp |
| */ |
| static char * |
| ts_format(netdissect_options *ndo |
| #ifndef HAVE_PCAP_SET_TSTAMP_PRECISION |
| _U_ |
| #endif |
| , int sec, int usec, char *buf) |
| { |
| const char *format; |
| |
| #ifdef HAVE_PCAP_SET_TSTAMP_PRECISION |
| switch (ndo->ndo_tstamp_precision) { |
| |
| case PCAP_TSTAMP_PRECISION_MICRO: |
| format = "%02d:%02d:%02d.%06u"; |
| break; |
| |
| case PCAP_TSTAMP_PRECISION_NANO: |
| format = "%02d:%02d:%02d.%09u"; |
| break; |
| |
| default: |
| format = "%02d:%02d:%02d.{unknown}"; |
| break; |
| } |
| #else |
| format = "%02d:%02d:%02d.%06u"; |
| #endif |
| |
| snprintf(buf, TS_BUF_SIZE, format, |
| sec / 3600, (sec % 3600) / 60, sec % 60, usec); |
| |
| return buf; |
| } |
| |
| /* |
| * Format the timestamp - Unix timeval style |
| */ |
| static char * |
| ts_unix_format(netdissect_options *ndo |
| #ifndef HAVE_PCAP_SET_TSTAMP_PRECISION |
| _U_ |
| #endif |
| , int sec, int usec, char *buf) |
| { |
| const char *format; |
| |
| #ifdef HAVE_PCAP_SET_TSTAMP_PRECISION |
| switch (ndo->ndo_tstamp_precision) { |
| |
| case PCAP_TSTAMP_PRECISION_MICRO: |
| format = "%u.%06u"; |
| break; |
| |
| case PCAP_TSTAMP_PRECISION_NANO: |
| format = "%u.%09u"; |
| break; |
| |
| default: |
| format = "%u.{unknown}"; |
| break; |
| } |
| #else |
| format = "%u.%06u"; |
| #endif |
| |
| snprintf(buf, TS_BUF_SIZE, format, |
| (unsigned)sec, (unsigned)usec); |
| |
| return buf; |
| } |
| |
| /* |
| * Print the timestamp |
| */ |
| void |
| ts_print(netdissect_options *ndo, |
| const struct timeval *tvp) |
| { |
| int s; |
| struct tm *tm; |
| time_t Time; |
| char buf[TS_BUF_SIZE]; |
| static struct timeval tv_ref; |
| struct timeval tv_result; |
| int negative_offset; |
| int nano_prec; |
| |
| switch (ndo->ndo_tflag) { |
| |
| case 0: /* Default */ |
| s = (tvp->tv_sec + thiszone) % 86400; |
| ND_PRINT("%s ", ts_format(ndo, s, tvp->tv_usec, buf)); |
| break; |
| |
| case 1: /* No time stamp */ |
| break; |
| |
| case 2: /* Unix timeval style */ |
| ND_PRINT("%s ", ts_unix_format(ndo, |
| tvp->tv_sec, tvp->tv_usec, buf)); |
| break; |
| |
| case 3: /* Microseconds/nanoseconds since previous packet */ |
| case 5: /* Microseconds/nanoseconds since first packet */ |
| #ifdef HAVE_PCAP_SET_TSTAMP_PRECISION |
| switch (ndo->ndo_tstamp_precision) { |
| case PCAP_TSTAMP_PRECISION_MICRO: |
| nano_prec = 0; |
| break; |
| case PCAP_TSTAMP_PRECISION_NANO: |
| nano_prec = 1; |
| break; |
| default: |
| nano_prec = 0; |
| break; |
| } |
| #else |
| nano_prec = 0; |
| #endif |
| if (!(netdissect_timevalisset(&tv_ref))) |
| tv_ref = *tvp; /* set timestamp for first packet */ |
| |
| negative_offset = netdissect_timevalcmp(tvp, &tv_ref, <); |
| if (negative_offset) |
| netdissect_timevalsub(&tv_ref, tvp, &tv_result, nano_prec); |
| else |
| netdissect_timevalsub(tvp, &tv_ref, &tv_result, nano_prec); |
| |
| ND_PRINT((negative_offset ? "-" : " ")); |
| |
| ND_PRINT("%s ", ts_format(ndo, |
| tv_result.tv_sec, tv_result.tv_usec, buf)); |
| |
| if (ndo->ndo_tflag == 3) |
| tv_ref = *tvp; /* set timestamp for previous packet */ |
| break; |
| |
| case 4: /* Default + Date */ |
| s = (tvp->tv_sec + thiszone) % 86400; |
| Time = (tvp->tv_sec + thiszone) - s; |
| tm = gmtime (&Time); |
| if (!tm) |
| ND_PRINT("Date fail "); |
| else |
| ND_PRINT("%04d-%02d-%02d %s ", |
| tm->tm_year+1900, tm->tm_mon+1, tm->tm_mday, |
| ts_format(ndo, s, tvp->tv_usec, buf)); |
| break; |
| } |
| } |
| |
| /* |
| * Print an unsigned relative number of seconds (e.g. hold time, prune timer) |
| * in the form 5m1s. This does no truncation, so 32230861 seconds |
| * is represented as 1y1w1d1h1m1s. |
| */ |
| void |
| unsigned_relts_print(netdissect_options *ndo, |
| uint32_t secs) |
| { |
| static const char *lengths[] = {"y", "w", "d", "h", "m", "s"}; |
| static const u_int seconds[] = {31536000, 604800, 86400, 3600, 60, 1}; |
| const char **l = lengths; |
| const u_int *s = seconds; |
| |
| if (secs == 0) { |
| ND_PRINT("0s"); |
| return; |
| } |
| while (secs > 0) { |
| if (secs >= *s) { |
| ND_PRINT("%u%s", secs / *s, *l); |
| secs -= (secs / *s) * *s; |
| } |
| s++; |
| l++; |
| } |
| } |
| |
| /* |
| * Print a signed relative number of seconds (e.g. hold time, prune timer) |
| * in the form 5m1s. This does no truncation, so 32230861 seconds |
| * is represented as 1y1w1d1h1m1s. |
| */ |
| void |
| signed_relts_print(netdissect_options *ndo, |
| int32_t secs) |
| { |
| if (secs < 0) { |
| ND_PRINT("-"); |
| if (secs == INT32_MIN) { |
| /* |
| * -2^31; you can't fit its absolute value into |
| * a 32-bit signed integer. |
| * |
| * Just directly pass said absolute value to |
| * unsigned_relts_print() directly. |
| * |
| * (XXX - does ISO C guarantee that -(-2^n), |
| * when calculated and cast to an n-bit unsigned |
| * integer type, will have the value 2^n?) |
| */ |
| unsigned_relts_print(ndo, 2147483648U); |
| } else { |
| /* |
| * We now know -secs will fit into an int32_t; |
| * negate it and pass that to unsigned_relts_print(). |
| */ |
| unsigned_relts_print(ndo, -secs); |
| } |
| return; |
| } |
| unsigned_relts_print(ndo, secs); |
| } |
| |
| /* |
| * this is a generic routine for printing unknown data; |
| * we pass on the linefeed plus indentation string to |
| * get a proper output - returns 0 on error |
| */ |
| |
| int |
| print_unknown_data(netdissect_options *ndo, const u_char *cp,const char *ident,int len) |
| { |
| if (len < 0) { |
| ND_PRINT("%sDissector error: print_unknown_data called with negative length", |
| ident); |
| return(0); |
| } |
| if (ndo->ndo_snapend - cp < len) |
| len = ndo->ndo_snapend - cp; |
| if (len < 0) { |
| ND_PRINT("%sDissector error: print_unknown_data called with pointer past end of packet", |
| ident); |
| return(0); |
| } |
| hex_print(ndo, ident,cp,len); |
| return(1); /* everything is ok */ |
| } |
| |
| /* |
| * Convert a token value to a string; use "fmt" if not found. |
| */ |
| const char * |
| tok2strbuf(const struct tok *lp, const char *fmt, |
| u_int v, char *buf, size_t bufsize) |
| { |
| if (lp != NULL) { |
| while (lp->s != NULL) { |
| if (lp->v == v) |
| return (lp->s); |
| ++lp; |
| } |
| } |
| if (fmt == NULL) |
| fmt = "#%d"; |
| |
| (void)snprintf(buf, bufsize, fmt, v); |
| return (const char *)buf; |
| } |
| |
| /* |
| * Convert a token value to a string; use "fmt" if not found. |
| * Uses tok2strbuf() on one of four local static buffers of size TOKBUFSIZE |
| * in round-robin fashion. |
| */ |
| const char * |
| tok2str(const struct tok *lp, const char *fmt, |
| u_int v) |
| { |
| static char buf[4][TOKBUFSIZE]; |
| static int idx = 0; |
| char *ret; |
| |
| ret = buf[idx]; |
| idx = (idx+1) & 3; |
| return tok2strbuf(lp, fmt, v, ret, sizeof(buf[0])); |
| } |
| |
| /* |
| * Convert a bit token value to a string; use "fmt" if not found. |
| * this is useful for parsing bitfields, the output strings are seperated |
| * if the s field is positive. |
| */ |
| static char * |
| bittok2str_internal(const struct tok *lp, const char *fmt, |
| u_int v, const char *sep) |
| { |
| static char buf[1024+1]; /* our string buffer */ |
| char *bufp = buf; |
| size_t space_left = sizeof(buf), string_size; |
| u_int rotbit; /* this is the bit we rotate through all bitpositions */ |
| u_int tokval; |
| const char * sepstr = ""; |
| |
| while (lp != NULL && lp->s != NULL) { |
| tokval=lp->v; /* load our first value */ |
| rotbit=1; |
| while (rotbit != 0) { |
| /* |
| * lets AND the rotating bit with our token value |
| * and see if we have got a match |
| */ |
| if (tokval == (v&rotbit)) { |
| /* ok we have found something */ |
| if (space_left <= 1) |
| return (buf); /* only enough room left for NUL, if that */ |
| string_size = strlcpy(bufp, sepstr, space_left); |
| if (string_size >= space_left) |
| return (buf); /* we ran out of room */ |
| bufp += string_size; |
| space_left -= string_size; |
| if (space_left <= 1) |
| return (buf); /* only enough room left for NUL, if that */ |
| string_size = strlcpy(bufp, lp->s, space_left); |
| if (string_size >= space_left) |
| return (buf); /* we ran out of room */ |
| bufp += string_size; |
| space_left -= string_size; |
| sepstr = sep; |
| break; |
| } |
| rotbit=rotbit<<1; /* no match - lets shift and try again */ |
| } |
| lp++; |
| } |
| |
| if (bufp == buf) |
| /* bummer - lets print the "unknown" message as advised in the fmt string if we got one */ |
| (void)snprintf(buf, sizeof(buf), fmt == NULL ? "#%08x" : fmt, v); |
| return (buf); |
| } |
| |
| /* |
| * Convert a bit token value to a string; use "fmt" if not found. |
| * this is useful for parsing bitfields, the output strings are not seperated. |
| */ |
| char * |
| bittok2str_nosep(const struct tok *lp, const char *fmt, |
| u_int v) |
| { |
| return (bittok2str_internal(lp, fmt, v, "")); |
| } |
| |
| /* |
| * Convert a bit token value to a string; use "fmt" if not found. |
| * this is useful for parsing bitfields, the output strings are comma seperated. |
| */ |
| char * |
| bittok2str(const struct tok *lp, const char *fmt, |
| u_int v) |
| { |
| return (bittok2str_internal(lp, fmt, v, ", ")); |
| } |
| |
| /* |
| * Convert a value to a string using an array; the macro |
| * tok2strary() in <netdissect.h> is the public interface to |
| * this function and ensures that the second argument is |
| * correct for bounds-checking. |
| */ |
| const char * |
| tok2strary_internal(const char **lp, int n, const char *fmt, |
| int v) |
| { |
| static char buf[TOKBUFSIZE]; |
| |
| if (v >= 0 && v < n && lp[v] != NULL) |
| return lp[v]; |
| if (fmt == NULL) |
| fmt = "#%d"; |
| (void)snprintf(buf, sizeof(buf), fmt, v); |
| return (buf); |
| } |
| |
| /* |
| * Convert a 32-bit netmask to prefixlen if possible |
| * the function returns the prefix-len; if plen == -1 |
| * then conversion was not possible; |
| */ |
| |
| int |
| mask2plen(uint32_t mask) |
| { |
| uint32_t bitmasks[33] = { |
| 0x00000000, |
| 0x80000000, 0xc0000000, 0xe0000000, 0xf0000000, |
| 0xf8000000, 0xfc000000, 0xfe000000, 0xff000000, |
| 0xff800000, 0xffc00000, 0xffe00000, 0xfff00000, |
| 0xfff80000, 0xfffc0000, 0xfffe0000, 0xffff0000, |
| 0xffff8000, 0xffffc000, 0xffffe000, 0xfffff000, |
| 0xfffff800, 0xfffffc00, 0xfffffe00, 0xffffff00, |
| 0xffffff80, 0xffffffc0, 0xffffffe0, 0xfffffff0, |
| 0xfffffff8, 0xfffffffc, 0xfffffffe, 0xffffffff |
| }; |
| int prefix_len = 32; |
| |
| /* let's see if we can transform the mask into a prefixlen */ |
| while (prefix_len >= 0) { |
| if (bitmasks[prefix_len] == mask) |
| break; |
| prefix_len--; |
| } |
| return (prefix_len); |
| } |
| |
| int |
| mask62plen(const u_char *mask) |
| { |
| u_char bitmasks[9] = { |
| 0x00, |
| 0x80, 0xc0, 0xe0, 0xf0, |
| 0xf8, 0xfc, 0xfe, 0xff |
| }; |
| int byte; |
| int cidr_len = 0; |
| |
| for (byte = 0; byte < 16; byte++) { |
| u_int bits; |
| |
| for (bits = 0; bits < (sizeof (bitmasks) / sizeof (bitmasks[0])); bits++) { |
| if (mask[byte] == bitmasks[bits]) { |
| cidr_len += bits; |
| break; |
| } |
| } |
| |
| if (mask[byte] != 0xff) |
| break; |
| } |
| return (cidr_len); |
| } |
| |
| /* |
| * Routine to print out information for text-based protocols such as FTP, |
| * HTTP, SMTP, RTSP, SIP, .... |
| */ |
| #define MAX_TOKEN 128 |
| |
| /* |
| * Fetch a token from a packet, starting at the specified index, |
| * and return the length of the token. |
| * |
| * Returns 0 on error; yes, this is indistinguishable from an empty |
| * token, but an "empty token" isn't a valid token - it just means |
| * either a space character at the beginning of the line (this |
| * includes a blank line) or no more tokens remaining on the line. |
| */ |
| static int |
| fetch_token(netdissect_options *ndo, const u_char *pptr, u_int idx, u_int len, |
| u_char *tbuf, size_t tbuflen) |
| { |
| size_t toklen = 0; |
| |
| for (; idx < len; idx++) { |
| if (!ND_TTEST_1(pptr + idx)) { |
| /* ran past end of captured data */ |
| return (0); |
| } |
| if (!isascii(*(pptr + idx))) { |
| /* not an ASCII character */ |
| return (0); |
| } |
| if (isspace(*(pptr + idx))) { |
| /* end of token */ |
| break; |
| } |
| if (!isprint(*(pptr + idx))) { |
| /* not part of a command token or response code */ |
| return (0); |
| } |
| if (toklen + 2 > tbuflen) { |
| /* no room for this character and terminating '\0' */ |
| return (0); |
| } |
| tbuf[toklen] = *(pptr + idx); |
| toklen++; |
| } |
| if (toklen == 0) { |
| /* no token */ |
| return (0); |
| } |
| tbuf[toklen] = '\0'; |
| |
| /* |
| * Skip past any white space after the token, until we see |
| * an end-of-line (CR or LF). |
| */ |
| for (; idx < len; idx++) { |
| if (!ND_TTEST_1(pptr + idx)) { |
| /* ran past end of captured data */ |
| break; |
| } |
| if (*(pptr + idx) == '\r' || *(pptr + idx) == '\n') { |
| /* end of line */ |
| break; |
| } |
| if (!isascii(*(pptr + idx)) || !isprint(*(pptr + idx))) { |
| /* not a printable ASCII character */ |
| break; |
| } |
| if (!isspace(*(pptr + idx))) { |
| /* beginning of next token */ |
| break; |
| } |
| } |
| return (idx); |
| } |
| |
| /* |
| * Scan a buffer looking for a line ending - LF or CR-LF. |
| * Return the index of the character after the line ending or 0 if |
| * we encounter a non-ASCII or non-printable character or don't find |
| * the line ending. |
| */ |
| static u_int |
| print_txt_line(netdissect_options *ndo, const char *protoname, |
| const char *prefix, const u_char *pptr, u_int idx, u_int len) |
| { |
| u_int startidx; |
| u_int linelen; |
| |
| startidx = idx; |
| while (idx < len) { |
| ND_TCHECK_1(pptr + idx); |
| if (*(pptr+idx) == '\n') { |
| /* |
| * LF without CR; end of line. |
| * Skip the LF and print the line, with the |
| * exception of the LF. |
| */ |
| linelen = idx - startidx; |
| idx++; |
| goto print; |
| } else if (*(pptr+idx) == '\r') { |
| /* CR - any LF? */ |
| if ((idx+1) >= len) { |
| /* not in this packet */ |
| return (0); |
| } |
| ND_TCHECK_1(pptr + idx + 1); |
| if (*(pptr+idx+1) == '\n') { |
| /* |
| * CR-LF; end of line. |
| * Skip the CR-LF and print the line, with |
| * the exception of the CR-LF. |
| */ |
| linelen = idx - startidx; |
| idx += 2; |
| goto print; |
| } |
| |
| /* |
| * CR followed by something else; treat this |
| * as if it were binary data, and don't print |
| * it. |
| */ |
| return (0); |
| } else if (!isascii(*(pptr+idx)) || |
| (!isprint(*(pptr+idx)) && *(pptr+idx) != '\t')) { |
| /* |
| * Not a printable ASCII character and not a tab; |
| * treat this as if it were binary data, and |
| * don't print it. |
| */ |
| return (0); |
| } |
| idx++; |
| } |
| |
| /* |
| * All printable ASCII, but no line ending after that point |
| * in the buffer; treat this as if it were truncated. |
| */ |
| trunc: |
| linelen = idx - startidx; |
| ND_PRINT("%s%.*s[!%s]", prefix, (int)linelen, pptr + startidx, |
| protoname); |
| return (0); |
| |
| print: |
| ND_PRINT("%s%.*s", prefix, (int)linelen, pptr + startidx); |
| return (idx); |
| } |
| |
| void |
| txtproto_print(netdissect_options *ndo, const u_char *pptr, u_int len, |
| const char *protoname, const char **cmds, u_int flags) |
| { |
| u_int idx, eol; |
| u_char token[MAX_TOKEN+1]; |
| const char *cmd; |
| int print_this = 0; |
| const char *pnp; |
| |
| if (cmds != NULL) { |
| /* |
| * This protocol has more than just request and |
| * response lines; see whether this looks like a |
| * request or response and, if so, print it and, |
| * in verbose mode, print everything after it. |
| * |
| * This is for HTTP-like protocols, where we |
| * want to print requests and responses, but |
| * don't want to print continuations of request |
| * or response bodies in packets that don't |
| * contain the request or response line. |
| */ |
| idx = fetch_token(ndo, pptr, 0, len, token, sizeof(token)); |
| if (idx != 0) { |
| /* Is this a valid request name? */ |
| while ((cmd = *cmds++) != NULL) { |
| if (ascii_strcasecmp((const char *)token, cmd) == 0) { |
| /* Yes. */ |
| print_this = 1; |
| break; |
| } |
| } |
| |
| /* |
| * No - is this a valid response code (3 digits)? |
| * |
| * Is this token the response code, or is the next |
| * token the response code? |
| */ |
| if (flags & RESP_CODE_SECOND_TOKEN) { |
| /* |
| * Next token - get it. |
| */ |
| idx = fetch_token(ndo, pptr, idx, len, token, |
| sizeof(token)); |
| } |
| if (idx != 0) { |
| if (isdigit(token[0]) && isdigit(token[1]) && |
| isdigit(token[2]) && token[3] == '\0') { |
| /* Yes. */ |
| print_this = 1; |
| } |
| } |
| } |
| } else { |
| /* |
| * Either: |
| * |
| * 1) This protocol has only request and response lines |
| * (e.g., FTP, where all the data goes over a different |
| * connection); assume the payload is a request or |
| * response. |
| * |
| * or |
| * |
| * 2) This protocol is just text, so that we should |
| * always, at minimum, print the first line and, |
| * in verbose mode, print all lines. |
| */ |
| print_this = 1; |
| } |
| |
| /* Capitalize the protocol name */ |
| for (pnp = protoname; *pnp != '\0'; pnp++) |
| ND_PRINT("%c", toupper((u_char)*pnp)); |
| |
| if (print_this) { |
| /* |
| * In non-verbose mode, just print the protocol, followed |
| * by the first line. |
| * |
| * In verbose mode, print lines as text until we run out |
| * of characters or see something that's not a |
| * printable-ASCII line. |
| */ |
| if (ndo->ndo_vflag) { |
| /* |
| * We're going to print all the text lines in the |
| * request or response; just print the length |
| * on the first line of the output. |
| */ |
| ND_PRINT(", length: %u", len); |
| for (idx = 0; |
| idx < len && (eol = print_txt_line(ndo, protoname, "\n\t", pptr, idx, len)) != 0; |
| idx = eol) |
| ; |
| } else { |
| /* |
| * Just print the first text line. |
| */ |
| print_txt_line(ndo, protoname, ": ", pptr, 0, len); |
| } |
| } |
| } |
| |
| void |
| safeputs(netdissect_options *ndo, |
| const u_char *s, const u_int maxlen) |
| { |
| u_int idx = 0; |
| |
| while (idx < maxlen && *s) { |
| safeputchar(ndo, *s); |
| idx++; |
| s++; |
| } |
| } |
| |
| void |
| safeputchar(netdissect_options *ndo, |
| const u_char c) |
| { |
| ND_PRINT((c < 0x80 && ND_ISPRINT(c)) ? "%c" : "\\0x%02x", c); |
| } |
| |
| #if (defined(__i386__) || defined(_M_IX86) || defined(__X86__) || defined(__x86_64__) || defined(_M_X64)) || \ |
| (defined(__arm__) || defined(_M_ARM) || defined(__aarch64__)) || \ |
| (defined(__m68k__) && (!defined(__mc68000__) && !defined(__mc68010__))) || \ |
| (defined(__ppc__) || defined(__ppc64__) || defined(_M_PPC) || defined(_ARCH_PPC) || defined(_ARCH_PPC64)) || \ |
| (defined(__s390__) || defined(__s390x__) || defined(__zarch__)) || \ |
| defined(__vax__) |
| /* |
| * The procesor natively handles unaligned loads, so just use memcpy() |
| * and memcmp(), to enable those optimizations. |
| * |
| * XXX - are those all the x86 tests we need? |
| * XXX - do we need to worry about ARMv1 through ARMv5, which didn't |
| * support unaligned loads, and, if so, do we need to worry about all |
| * of them, or just some of them, e.g. ARMv5? |
| * XXX - are those the only 68k tests we need not to generated |
| * unaligned accesses if the target is the 68000 or 68010? |
| * XXX - are there any tests we don't need, because some definitions are for |
| * compilers that also predefine the GCC symbols? |
| * XXX - do we need to test for both 32-bit and 64-bit versions of those |
| * architectures in all cases? |
| */ |
| #else |
| /* |
| * The processor doesn't natively handle unaligned loads, |
| * and the compiler might "helpfully" optimize memcpy() |
| * and memcmp(), when handed pointers that would normally |
| * be properly aligned, into sequences that assume proper |
| * alignment. |
| * |
| * Do copies and compares of possibly-unaligned data by |
| * calling routines that wrap memcpy() and memcmp(), to |
| * prevent that optimization. |
| */ |
| void |
| unaligned_memcpy(void *p, const void *q, size_t l) |
| { |
| memcpy(p, q, l); |
| } |
| |
| /* As with memcpy(), so with memcmp(). */ |
| int |
| unaligned_memcmp(const void *p, const void *q, size_t l) |
| { |
| return (memcmp(p, q, l)); |
| } |
| #endif |
| |