| // This file was extracted from the TCG Published |
| // Trusted Platform Module Library |
| // Part 4: Supporting Routines |
| // Family "2.0" |
| // Level 00 Revision 01.16 |
| // October 30, 2014 |
| |
| #include <string.h> |
| |
| #include "OsslCryptoEngine.h" |
| |
| #ifdef TPM_ALG_ECC |
| #include "CpriDataEcc.h" |
| #include "CpriDataEcc.c" |
| // |
| // |
| // Functions |
| // |
| // _cpri__EccStartup() |
| // |
| // This function is called at TPM Startup to initialize the crypto units. |
| // In this implementation, no initialization is performed at startup but a future version may initialize the self- |
| // test functions here. |
| // |
| LIB_EXPORT BOOL |
| _cpri__EccStartup( |
| void |
| ) |
| { |
| return TRUE; |
| } |
| // |
| // |
| // _cpri__GetCurveIdByIndex() |
| // |
| // This function returns the number of the i-th implemented curve. The normal use would be to call this |
| // function with i starting at 0. When the i is greater than or equal to the number of implemented curves, |
| // TPM_ECC_NONE is returned. |
| // |
| LIB_EXPORT TPM_ECC_CURVE |
| _cpri__GetCurveIdByIndex( |
| UINT16 i |
| ) |
| { |
| if(i >= ECC_CURVE_COUNT) |
| return TPM_ECC_NONE; |
| return eccCurves[i].curveId; |
| } |
| LIB_EXPORT UINT32 |
| _cpri__EccGetCurveCount( |
| void |
| ) |
| { |
| return ECC_CURVE_COUNT; |
| } |
| // |
| // |
| // _cpri__EccGetParametersByCurveId() |
| // |
| // This function returns a pointer to the curve data that is associated with the indicated curveId. If there is no |
| // curve with the indicated ID, the function returns NULL. |
| // |
| // |
| // |
| // |
| // Return Value Meaning |
| // |
| // NULL curve with the indicated TPM_ECC_CURVE value is not |
| // implemented |
| // non-NULL pointer to the curve data |
| // |
| LIB_EXPORT const ECC_CURVE * |
| _cpri__EccGetParametersByCurveId( |
| TPM_ECC_CURVE curveId // IN: the curveID |
| ) |
| { |
| int i; |
| for(i = 0; i < ECC_CURVE_COUNT; i++) |
| { |
| if(eccCurves[i].curveId == curveId) |
| return &eccCurves[i]; |
| } |
| FAIL(FATAL_ERROR_INTERNAL); |
| |
| return NULL; // Never reached. |
| } |
| static const ECC_CURVE_DATA * |
| GetCurveData( |
| TPM_ECC_CURVE curveId // IN: the curveID |
| ) |
| { |
| const ECC_CURVE *curve = _cpri__EccGetParametersByCurveId(curveId); |
| return curve->curveData; |
| } |
| // |
| // |
| // Point2B() |
| // |
| // This function makes a TPMS_ECC_POINT from a BIGNUM EC_POINT. |
| // |
| static BOOL |
| Point2B( |
| EC_GROUP *group, // IN: group for the point |
| TPMS_ECC_POINT *p, // OUT: receives the converted point |
| EC_POINT *ecP, // IN: the point to convert |
| INT16 size, // IN: size of the coordinates |
| BN_CTX *context // IN: working context |
| ) |
| { |
| BIGNUM *bnX; |
| BIGNUM *bnY; |
| BN_CTX_start(context); |
| bnX = BN_CTX_get(context); |
| bnY = BN_CTX_get(context); |
| if( bnY == NULL |
| // Get the coordinate values |
| || EC_POINT_get_affine_coordinates_GFp(group, ecP, bnX, bnY, context) != 1 |
| // Convert x |
| || (!BnTo2B(&p->x.b, bnX, size)) |
| // Convert y |
| || (!BnTo2B(&p->y.b, bnY, size)) |
| ) |
| FAIL(FATAL_ERROR_INTERNAL); |
| BN_CTX_end(context); |
| return TRUE; |
| } |
| // |
| // |
| // EccCurveInit() |
| // |
| // This function initializes the OpenSSL() group definition structure |
| // This function is only used within this file. |
| // It is a fatal error if groupContext is not provided. |
| // |
| // Return Value Meaning |
| // |
| // NULL the TPM_ECC_CURVE is not valid |
| // non-NULL points to a structure in groupContext static EC_GROUP * |
| // |
| static EC_GROUP * |
| EccCurveInit( |
| TPM_ECC_CURVE curveId, // IN: the ID of the curve |
| BN_CTX *groupContext // IN: the context in which the group is to be |
| // created |
| ) |
| { |
| const ECC_CURVE_DATA *curveData = GetCurveData(curveId); |
| EC_GROUP *group = NULL; |
| EC_POINT *P = NULL; |
| BN_CTX *context; |
| BIGNUM *bnP; |
| BIGNUM *bnA; |
| BIGNUM *bnB; |
| BIGNUM *bnX; |
| BIGNUM *bnY; |
| BIGNUM *bnN; |
| BIGNUM *bnH; |
| int ok = FALSE; |
| // Context must be provided and curve selector must be valid |
| pAssert(groupContext != NULL && curveData != NULL); |
| context = BN_CTX_new(); |
| if(context == NULL) |
| FAIL(FATAL_ERROR_ALLOCATION); |
| BN_CTX_start(context); |
| bnP = BN_CTX_get(context); |
| bnA = BN_CTX_get(context); |
| bnB = BN_CTX_get(context); |
| bnX = BN_CTX_get(context); |
| bnY = BN_CTX_get(context); |
| bnN = BN_CTX_get(context); |
| bnH = BN_CTX_get(context); |
| if (bnH == NULL) |
| goto Cleanup; |
| // Convert the number formats |
| BnFrom2B(bnP, curveData->p); |
| BnFrom2B(bnA, curveData->a); |
| BnFrom2B(bnB, curveData->b); |
| BnFrom2B(bnX, curveData->x); |
| BnFrom2B(bnY, curveData->y); |
| BnFrom2B(bnN, curveData->n); |
| BnFrom2B(bnH, curveData->h); |
| // initialize EC group, associate a generator point and initialize the point |
| // from the parameter data |
| ok = ( (group = EC_GROUP_new_curve_GFp(bnP, bnA, bnB, groupContext)) != NULL |
| && (P = EC_POINT_new(group)) != NULL |
| && EC_POINT_set_affine_coordinates_GFp(group, P, bnX, bnY, groupContext) |
| && EC_GROUP_set_generator(group, P, bnN, bnH) |
| ); |
| Cleanup: |
| if (!ok && group != NULL) |
| { |
| EC_GROUP_free(group); |
| group = NULL; |
| } |
| if(P != NULL) |
| EC_POINT_free(P); |
| BN_CTX_end(context); |
| BN_CTX_free(context); |
| return group; |
| } |
| // |
| // |
| // PointFrom2B() |
| // |
| // This function sets the coordinates of an existing BN Point from a TPMS_ECC_POINT. |
| // |
| static EC_POINT * |
| PointFrom2B( |
| EC_GROUP *group, // IN: the group for the point |
| EC_POINT *ecP, // IN: an existing BN point in the group |
| TPMS_ECC_POINT *p, // IN: the 2B coordinates of the point |
| BN_CTX *context // IN: the BIGNUM context |
| ) |
| { |
| BIGNUM *bnX; |
| BIGNUM *bnY; |
| // If the point is not allocated then just return a NULL |
| if(ecP == NULL) |
| return NULL; |
| BN_CTX_start(context); |
| bnX = BN_CTX_get(context); |
| bnY = BN_CTX_get(context); |
| if( // Set the coordinates of the point |
| bnY == NULL |
| || BN_bin2bn(p->x.t.buffer, p->x.t.size, bnX) == NULL |
| || BN_bin2bn(p->y.t.buffer, p->y.t.size, bnY) == NULL |
| || !EC_POINT_set_affine_coordinates_GFp(group, ecP, bnX, bnY, context) |
| ) |
| FAIL(FATAL_ERROR_INTERNAL); |
| BN_CTX_end(context); |
| return ecP; |
| } |
| // |
| // |
| // EccInitPoint2B() |
| // |
| // This function allocates a point in the provided group and initializes it with the values in a |
| // TPMS_ECC_POINT. |
| // |
| static EC_POINT * |
| EccInitPoint2B( |
| EC_GROUP *group, // IN: group for the point |
| TPMS_ECC_POINT *p, // IN: the coordinates for the point |
| BN_CTX *context // IN: the BIGNUM context |
| ) |
| { |
| EC_POINT *ecP; |
| BN_CTX_start(context); |
| ecP = EC_POINT_new(group); |
| if(PointFrom2B(group, ecP, p, context) == NULL) |
| FAIL(FATAL_ERROR_INTERNAL); |
| BN_CTX_end(context); |
| return ecP; |
| } |
| // |
| // |
| // PointMul() |
| // |
| // This function does a point multiply and checks for the result being the point at infinity. Q = ([A]G + [B]P) |
| // |
| // Return Value Meaning |
| // |
| // CRYPT_NO_RESULT point is at infinity |
| // CRYPT_SUCCESS point not at infinity |
| // |
| static CRYPT_RESULT |
| PointMul( |
| EC_GROUP *group, // IN: group curve |
| EC_POINT *ecpQ, // OUT: result |
| BIGNUM *bnA, // IN: scalar for [A]G |
| EC_POINT *ecpP, // IN: point for [B]P |
| BIGNUM *bnB, // IN: scalar for [B]P |
| BN_CTX *context // IN: working context |
| ) |
| { |
| if(EC_POINT_mul(group, ecpQ, bnA, ecpP, bnB, context) != 1) |
| FAIL(FATAL_ERROR_INTERNAL); |
| if(EC_POINT_is_at_infinity(group, ecpQ)) |
| return CRYPT_NO_RESULT; |
| return CRYPT_SUCCESS; |
| } |
| // |
| // |
| // GetRandomPrivate() |
| // |
| // This function gets a random value (d) to use as a private ECC key and then qualifies the key so that it is |
| // between 0 < d < n. |
| // It is a fatal error if dOut or pIn is not provided or if the size of pIn is larger than MAX_ECC_KEY_BYTES |
| // (the largest buffer size of a TPM2B_ECC_PARAMETER) |
| // |
| static void |
| GetRandomPrivate( |
| TPM2B_ECC_PARAMETER *dOut, // OUT: the qualified random value |
| const TPM2B *pIn // IN: the maximum value for the key |
| ) |
| { |
| int i; |
| BYTE *pb; |
| pAssert(pIn != NULL && dOut != NULL && pIn->size <= MAX_ECC_KEY_BYTES); |
| // Set the size of the output |
| dOut->t.size = pIn->size; |
| // Get some random bits |
| while(TRUE) |
| { |
| _cpri__GenerateRandom(dOut->t.size, dOut->t.buffer); |
| // See if the d < n |
| if(memcmp(dOut->t.buffer, pIn->buffer, pIn->size) < 0) |
| { |
| // dOut < n so make sure that 0 < dOut |
| for(pb = dOut->t.buffer, i = dOut->t.size; i > 0; i--) |
| { |
| if(*pb++ != 0) |
| return; |
| } |
| } |
| } |
| } |
| // |
| // |
| // _cpri__EccPointMultiply |
| // |
| // This function computes 'R := [dIn]G + [uIn]QIn. Where dIn and uIn are scalars, G and QIn are points on |
| // the specified curve and G is the default generator of the curve. |
| // The xOut and yOut parameters are optional and may be set to NULL if not used. |
| // It is not necessary to provide uIn if QIn is specified but one of uIn and dIn must be provided. If dIn and |
| // QIn are specified but uIn is not provided, then R = [dIn]QIn. |
| // If the multiply produces the point at infinity, the CRYPT_NO_RESULT is returned. |
| // The sizes of xOut and yOut' will be set to be the size of the degree of the curve |
| // It is a fatal error if dIn and uIn are both unspecified (NULL) or if Qin or Rout is unspecified. |
| // |
| // |
| // |
| // |
| // Return Value Meaning |
| // |
| // CRYPT_SUCCESS point multiplication succeeded |
| // CRYPT_POINT the point Qin is not on the curve |
| // CRYPT_NO_RESULT the product point is at infinity |
| // |
| LIB_EXPORT CRYPT_RESULT |
| _cpri__EccPointMultiply( |
| TPMS_ECC_POINT *Rout, // OUT: the product point R |
| TPM_ECC_CURVE curveId, // IN: the curve to use |
| TPM2B_ECC_PARAMETER *dIn, // IN: value to multiply against the |
| // curve generator |
| TPMS_ECC_POINT *Qin, // IN: point Q |
| TPM2B_ECC_PARAMETER *uIn // IN: scalar value for the multiplier |
| // of Q |
| ) |
| { |
| BN_CTX *context; |
| BIGNUM *bnD; |
| BIGNUM *bnU; |
| EC_GROUP *group; |
| EC_POINT *R = NULL; |
| EC_POINT *Q = NULL; |
| CRYPT_RESULT retVal = CRYPT_SUCCESS; |
| // Validate that the required parameters are provided. |
| pAssert((dIn != NULL || uIn != NULL) && (Qin != NULL || dIn != NULL)); |
| // If a point is provided for the multiply, make sure that it is on the curve |
| if(Qin != NULL && !_cpri__EccIsPointOnCurve(curveId, Qin)) |
| return CRYPT_POINT; |
| context = BN_CTX_new(); |
| if(context == NULL) |
| FAIL(FATAL_ERROR_ALLOCATION); |
| BN_CTX_start(context); |
| bnU = BN_CTX_get(context); |
| bnD = BN_CTX_get(context); |
| group = EccCurveInit(curveId, context); |
| // There should be no path for getting a bad curve ID into this function. |
| pAssert(group != NULL); |
| // check allocations should have worked and allocate R |
| if( bnD == NULL |
| || (R = EC_POINT_new(group)) == NULL) |
| FAIL(FATAL_ERROR_ALLOCATION); |
| // If Qin is present, create the point |
| if(Qin != NULL) |
| { |
| // Assume the size variables do not overflow. This should not happen in |
| // the contexts in which this function will be called. |
| assert2Bsize(Qin->x.t); |
| assert2Bsize(Qin->x.t); |
| Q = EccInitPoint2B(group, Qin, context); |
| } |
| if(dIn != NULL) |
| { |
| // Assume the size variables do not overflow, which should not happen in |
| // the contexts that this function will be called. |
| assert2Bsize(dIn->t); |
| BnFrom2B(bnD, &dIn->b); |
| } |
| else |
| bnD = NULL; |
| // If uIn is specified, initialize its BIGNUM |
| if(uIn != NULL) |
| { |
| // Assume the size variables do not overflow, which should not happen in |
| // the contexts that this function will be called. |
| assert2Bsize(uIn->t); |
| BnFrom2B(bnU, &uIn->b); |
| } |
| // If uIn is not specified but Q is, then we are going to |
| // do R = [d]Q |
| else if(Qin != NULL) |
| { |
| bnU = bnD; |
| bnD = NULL; |
| } |
| // If neither Q nor u is specified, then null this pointer |
| else |
| bnU = NULL; |
| // Use the generator of the curve |
| if((retVal = PointMul(group, R, bnD, Q, bnU, context)) == CRYPT_SUCCESS) |
| Point2B(group, Rout, R, (INT16) ((EC_GROUP_get_degree(group)+7)/8), context); |
| if (Q) |
| EC_POINT_free(Q); |
| if(R) |
| EC_POINT_free(R); |
| if(group) |
| EC_GROUP_free(group); |
| BN_CTX_end(context); |
| BN_CTX_free(context); |
| return retVal; |
| } |
| #if defined TPM_ALG_ECDAA || defined TPM_ALG_SM2 //% |
| // |
| // |
| // ClearPoint2B() |
| // |
| // Initialize the size values of a point |
| // |
| static void |
| ClearPoint2B( |
| TPMS_ECC_POINT *p // IN: the point |
| ) |
| { |
| if(p != NULL) { |
| p->x.t.size = 0; |
| p->y.t.size = 0; |
| } |
| } |
| // |
| // |
| // _cpri__EccCommitCompute() |
| // |
| // This function performs the point multiply operations required by TPM2_Commit(). |
| // If B or M is provided, they must be on the curve defined by curveId. This routine does not check that they |
| // are on the curve and results are unpredictable if they are not. |
| // |
| // |
| // |
| // It is a fatal error if r or d is NULL. If B is not NULL, then it is a fatal error if K and L are both NULL. If M is |
| // not NULL, then it is a fatal error if E is NULL. |
| // |
| // Return Value Meaning |
| // |
| // CRYPT_SUCCESS computations completed normally |
| // CRYPT_NO_RESULT if K, L or E was computed to be the point at infinity |
| // CRYPT_CANCEL a cancel indication was asserted during this function |
| // |
| LIB_EXPORT CRYPT_RESULT |
| _cpri__EccCommitCompute( |
| TPMS_ECC_POINT *K, // OUT: [d]B or [r]Q |
| TPMS_ECC_POINT *L, // OUT: [r]B |
| TPMS_ECC_POINT *E, // OUT: [r]M |
| TPM_ECC_CURVE curveId, // IN: the curve for the computations |
| TPMS_ECC_POINT *M, // IN: M (optional) |
| TPMS_ECC_POINT *B, // IN: B (optional) |
| TPM2B_ECC_PARAMETER *d, // IN: d (required) |
| TPM2B_ECC_PARAMETER *r // IN: the computed r value (required) |
| ) |
| { |
| BN_CTX *context; |
| BIGNUM *bnY, *bnR, *bnD; |
| EC_GROUP *group; |
| EC_POINT *pK = NULL, *pL = NULL, *pE = NULL, *pM = NULL, *pB = NULL; |
| UINT16 keySizeInBytes; |
| CRYPT_RESULT retVal = CRYPT_SUCCESS; |
| // Validate that the required parameters are provided. |
| // Note: E has to be provided if computing E := [r]Q or E := [r]M. Will do |
| // E := [r]Q if both M and B are NULL. |
| |
| pAssert((r && (K || !B) && (L || !B)) || (E || (!M && B))); |
| context = BN_CTX_new(); |
| if(context == NULL) |
| FAIL(FATAL_ERROR_ALLOCATION); |
| BN_CTX_start(context); |
| bnR = BN_CTX_get(context); |
| bnD = BN_CTX_get(context); |
| bnY = BN_CTX_get(context); |
| if(bnY == NULL) |
| FAIL(FATAL_ERROR_ALLOCATION); |
| // Initialize the output points in case they are not computed |
| ClearPoint2B(K); |
| ClearPoint2B(L); |
| ClearPoint2B(E); |
| if((group = EccCurveInit(curveId, context)) == NULL) |
| { |
| retVal = CRYPT_PARAMETER; |
| goto Cleanup2; |
| } |
| keySizeInBytes = (UINT16) ((EC_GROUP_get_degree(group)+7)/8); |
| // Size of the r parameter may not be zero |
| pAssert((int) r->t.size > 0); |
| // Convert scalars to BIGNUM |
| BnFrom2B(bnR, &r->b); |
| // If B is provided, compute K=[d]B and L=[r]B |
| if(B != NULL) |
| { |
| // Size of the d parameter may not be zero |
| pAssert((int) d->t.size > 0); |
| BnFrom2B(bnD, &d->b); |
| |
| // Allocate the points to receive the value |
| if( (pK = EC_POINT_new(group)) == NULL |
| || (pL = EC_POINT_new(group)) == NULL) |
| FAIL(FATAL_ERROR_ALLOCATION); |
| // need to compute K = [d]B |
| // Allocate and initialize BIGNUM version of B |
| pB = EccInitPoint2B(group, B, context); |
| // do the math for K = [d]B |
| if((retVal = PointMul(group, pK, NULL, pB, bnD, context)) != CRYPT_SUCCESS) |
| goto Cleanup; |
| // Convert BN K to TPM2B K |
| Point2B(group, K, pK, (INT16)keySizeInBytes, context); |
| // compute L= [r]B after checking for cancel |
| if(_plat__IsCanceled()) |
| { |
| retVal = CRYPT_CANCEL; |
| goto Cleanup; |
| } |
| // compute L = [r]B |
| if((retVal = PointMul(group, pL, NULL, pB, bnR, context)) != CRYPT_SUCCESS) |
| goto Cleanup; |
| // Convert BN L to TPM2B L |
| Point2B(group, L, pL, (INT16)keySizeInBytes, context); |
| } |
| if(M != NULL || B == NULL) |
| { |
| // if this is the third point multiply, check for cancel first |
| if(B != NULL && _plat__IsCanceled()) |
| { |
| retVal = CRYPT_CANCEL; |
| goto Cleanup; |
| } |
| // Allocate E |
| if((pE = EC_POINT_new(group)) == NULL) |
| FAIL(FATAL_ERROR_ALLOCATION); |
| // Create BIGNUM version of M unless M is NULL |
| if(M != NULL) |
| { |
| // M provided so initialize a BIGNUM M and compute E = [r]M |
| pM = EccInitPoint2B(group, M, context); |
| retVal = PointMul(group, pE, NULL, pM, bnR, context); |
| } |
| else |
| // compute E = [r]G (this is only done if M and B are both NULL |
| retVal = PointMul(group, pE, bnR, NULL, NULL, context); |
| if(retVal == CRYPT_SUCCESS) |
| // Convert E to 2B format |
| Point2B(group, E, pE, (INT16)keySizeInBytes, context); |
| } |
| Cleanup: |
| EC_GROUP_free(group); |
| if(pK != NULL) EC_POINT_free(pK); |
| if(pL != NULL) EC_POINT_free(pL); |
| if(pE != NULL) EC_POINT_free(pE); |
| if(pM != NULL) EC_POINT_free(pM); |
| if(pB != NULL) EC_POINT_free(pB); |
| Cleanup2: |
| BN_CTX_end(context); |
| BN_CTX_free(context); |
| return retVal; |
| } |
| #endif //% |
| // |
| // |
| // _cpri__EccIsPointOnCurve() |
| // |
| // This function is used to test if a point is on a defined curve. It does this by checking that y^2 mod p = x^3 |
| // + a*x + b mod p |
| // It is a fatal error if Q is not specified (is NULL). |
| // |
| // Return Value Meaning |
| // |
| // TRUE point is on curve |
| // FALSE point is not on curve or curve is not supported |
| // |
| LIB_EXPORT BOOL |
| _cpri__EccIsPointOnCurve( |
| TPM_ECC_CURVE curveId, // IN: the curve selector |
| TPMS_ECC_POINT *Q // IN: the point. |
| ) |
| { |
| BN_CTX *context; |
| BIGNUM *bnX; |
| BIGNUM *bnY; |
| BIGNUM *bnA; |
| BIGNUM *bnB; |
| BIGNUM *bnP; |
| BIGNUM *bn3; |
| const ECC_CURVE_DATA *curveData = GetCurveData(curveId); |
| BOOL retVal; |
| pAssert(Q != NULL && curveData != NULL); |
| if((context = BN_CTX_new()) == NULL) |
| FAIL(FATAL_ERROR_ALLOCATION); |
| BN_CTX_start(context); |
| bnX = BN_CTX_get(context); |
| bnY = BN_CTX_get(context); |
| bnA = BN_CTX_get(context); |
| bnB = BN_CTX_get(context); |
| bn3 = BN_CTX_get(context); |
| bnP = BN_CTX_get(context); |
| if(bnP == NULL) |
| FAIL(FATAL_ERROR_ALLOCATION); |
| // Convert values |
| if ( !BN_bin2bn(Q->x.t.buffer, Q->x.t.size, bnX) |
| || !BN_bin2bn(Q->y.t.buffer, Q->y.t.size, bnY) |
| || !BN_bin2bn(curveData->p->buffer, curveData->p->size, bnP) |
| || !BN_bin2bn(curveData->a->buffer, curveData->a->size, bnA) |
| || !BN_set_word(bn3, 3) |
| || !BN_bin2bn(curveData->b->buffer, curveData->b->size, bnB) |
| ) |
| FAIL(FATAL_ERROR_INTERNAL); |
| // The following sequence is probably not optimal but it seems to be correct. |
| // compute x^3 + a*x + b mod p |
| // first, compute a*x mod p |
| if( !BN_mod_mul(bnA, bnA, bnX, bnP, context) |
| // |
| // next, compute a*x + b mod p |
| || !BN_mod_add(bnA, bnA, bnB, bnP, context) |
| // next, compute X^3 mod p |
| || !BN_mod_exp(bnX, bnX, bn3, bnP, context) |
| // finally, compute x^3 + a*x + b mod p |
| || !BN_mod_add(bnX, bnX, bnA, bnP, context) |
| // then compute y^2 |
| || !BN_mod_mul(bnY, bnY, bnY, bnP, context) |
| ) |
| FAIL(FATAL_ERROR_INTERNAL); |
| retVal = BN_cmp(bnX, bnY) == 0; |
| BN_CTX_end(context); |
| BN_CTX_free(context); |
| return retVal; |
| } |
| // |
| // |
| // _cpri__GenerateKeyEcc() |
| // |
| // This function generates an ECC key pair based on the input parameters. This routine uses KDFa() to |
| // produce candidate numbers. The method is according to FIPS 186-3, section B.4.1 "GKey() Pair |
| // Generation Using Extra Random Bits." According to the method in FIPS 186-3, the resulting private value |
| // d should be 1 <= d < n where n is the order of the base point. In this implementation, the range of the |
| // private value is further restricted to be 2^(nLen/2) <= d < n where nLen is the order of n. |
| // |
| // EXAMPLE: If the curve is NIST-P256, then nLen is 256 bits and d will need to be between 2^128 <= d < n |
| // |
| // It is a fatal error if Qout, dOut, or seed is not provided (is NULL). |
| // |
| // Return Value Meaning |
| // |
| // CRYPT_PARAMETER the hash algorithm is not supported |
| // |
| LIB_EXPORT CRYPT_RESULT |
| _cpri__GenerateKeyEcc( |
| TPMS_ECC_POINT *Qout, // OUT: the public point |
| TPM2B_ECC_PARAMETER *dOut, // OUT: the private scalar |
| TPM_ECC_CURVE curveId, // IN: the curve identifier |
| TPM_ALG_ID hashAlg, // IN: hash algorithm to use in the key |
| // generation process |
| TPM2B *seed, // IN: the seed to use |
| const char *label, // IN: A label for the generation |
| // process. |
| TPM2B *extra, // IN: Party 1 data for the KDF |
| UINT32 *counter // IN/OUT: Counter value to allow KDF |
| // iteration to be propagated across |
| // multiple functions |
| ) |
| { |
| const ECC_CURVE_DATA *curveData = GetCurveData(curveId); |
| INT16 keySizeInBytes; |
| UINT32 count = 0; |
| CRYPT_RESULT retVal; |
| UINT16 hLen = _cpri__GetDigestSize(hashAlg); |
| BIGNUM *bnNm1; // Order of the curve minus one |
| BIGNUM *bnD; // the private scalar |
| BN_CTX *context; // the context for the BIGNUM values |
| BYTE withExtra[MAX_ECC_KEY_BYTES + 8]; // trial key with |
| //extra bits |
| TPM2B_4_BYTE_VALUE marshaledCounter = {.t = {4}}; |
| UINT32 totalBits; |
| // Validate parameters (these are fatal) |
| pAssert( seed != NULL && dOut != NULL && Qout != NULL && curveData != NULL); |
| // Non-fatal parameter checks. |
| if(hLen <= 0) |
| return CRYPT_PARAMETER; |
| // allocate the local BN values |
| context = BN_CTX_new(); |
| if(context == NULL) |
| FAIL(FATAL_ERROR_ALLOCATION); |
| BN_CTX_start(context); |
| bnNm1 = BN_CTX_get(context); |
| bnD = BN_CTX_get(context); |
| // The size of the input scalars is limited by the size of the size of a |
| // TPM2B_ECC_PARAMETER. Make sure that it is not irrational. |
| pAssert((int) curveData->n->size <= MAX_ECC_KEY_BYTES); |
| if( bnD == NULL |
| || BN_bin2bn(curveData->n->buffer, curveData->n->size, bnNm1) == NULL |
| || (keySizeInBytes = (INT16) BN_num_bytes(bnNm1)) > MAX_ECC_KEY_BYTES) |
| FAIL(FATAL_ERROR_INTERNAL); |
| // get the total number of bits |
| totalBits = BN_num_bits(bnNm1) + 64; |
| // Reduce bnNm1 from 'n' to 'n' - 1 |
| BN_sub_word(bnNm1, 1); |
| // Initialize the count value |
| if(counter != NULL) |
| count = *counter; |
| if(count == 0) |
| count = 1; |
| // Start search for key (should be quick) |
| for(; count != 0; count++) |
| { |
| UINT32_TO_BYTE_ARRAY(count, marshaledCounter.t.buffer); |
| _cpri__KDFa(hashAlg, seed, label, extra, &marshaledCounter.b, |
| totalBits, withExtra, NULL, FALSE); |
| // Convert the result and modular reduce |
| // Assume the size variables do not overflow, which should not happen in |
| // the contexts that this function will be called. |
| pAssert(keySizeInBytes <= MAX_ECC_KEY_BYTES); |
| if ( BN_bin2bn(withExtra, keySizeInBytes+8, bnD) == NULL |
| || BN_mod(bnD, bnD, bnNm1, context) != 1) |
| FAIL(FATAL_ERROR_INTERNAL); |
| // Add one to get 0 < d < n |
| BN_add_word(bnD, 1); |
| if(BnTo2B(&dOut->b, bnD, keySizeInBytes) != 1) |
| FAIL(FATAL_ERROR_INTERNAL); |
| // Do the point multiply to create the public portion of the key. If |
| // the multiply generates the point at infinity (unlikely), do another |
| // iteration. |
| if( (retVal = _cpri__EccPointMultiply(Qout, curveId, dOut, NULL, NULL)) |
| != CRYPT_NO_RESULT) |
| break; |
| } |
| if(count == 0) // if counter wrapped, then the TPM should go into failure mode |
| FAIL(FATAL_ERROR_INTERNAL); |
| // Free up allocated BN values |
| BN_CTX_end(context); |
| BN_CTX_free(context); |
| if(counter != NULL) |
| *counter = count; |
| return retVal; |
| } |
| // |
| // |
| // _cpri__GetEphemeralEcc() |
| // |
| // This function creates an ephemeral ECC. It is ephemeral in that is expected that the private part of the |
| // key will be discarded |
| // |
| LIB_EXPORT CRYPT_RESULT |
| _cpri__GetEphemeralEcc( |
| TPMS_ECC_POINT *Qout, // OUT: the public point |
| TPM2B_ECC_PARAMETER *dOut, // OUT: the private scalar |
| TPM_ECC_CURVE curveId // IN: the curve for the key |
| ) |
| { |
| CRYPT_RESULT retVal; |
| const ECC_CURVE_DATA *curveData = GetCurveData(curveId); |
| pAssert(curveData != NULL); |
| // Keep getting random values until one is found that doesn't create a point |
| // at infinity. This will never, ever, ever, ever, ever, happen but if it does |
| // we have to get a next random value. |
| while(TRUE) |
| { |
| GetRandomPrivate(dOut, curveData->p); |
| // _cpri__EccPointMultiply does not return CRYPT_ECC_POINT if no point is |
| // provided. CRYPT_PARAMTER should not be returned because the curve ID |
| // has to be supported. Thus the only possible error is CRYPT_NO_RESULT. |
| retVal = _cpri__EccPointMultiply(Qout, curveId, dOut, NULL, NULL); |
| if(retVal != CRYPT_NO_RESULT) |
| return retVal; // Will return CRYPT_SUCCESS |
| } |
| } |
| #ifdef TPM_ALG_ECDSA //% |
| // |
| // |
| // SignEcdsa() |
| // |
| // This function implements the ECDSA signing algorithm. The method is described in the comments below. |
| // It is a fatal error if rOut, sOut, dIn, or digest are not provided. |
| // |
| LIB_EXPORT CRYPT_RESULT |
| SignEcdsa( |
| TPM2B_ECC_PARAMETER *rOut, // OUT: r component of the signature |
| TPM2B_ECC_PARAMETER *sOut, // OUT: s component of the signature |
| TPM_ECC_CURVE curveId, // IN: the curve used in the signature |
| // process |
| TPM2B_ECC_PARAMETER *dIn, // IN: the private key |
| TPM2B *digest // IN: the value to sign |
| ) |
| { |
| BIGNUM *bnK; |
| BIGNUM *bnIk; |
| BIGNUM *bnN; |
| BIGNUM *bnR; |
| // |
| BIGNUM *bnD; |
| BIGNUM *bnZ; |
| TPM2B_ECC_PARAMETER k; |
| TPMS_ECC_POINT R; |
| BN_CTX *context; |
| CRYPT_RESULT retVal = CRYPT_SUCCESS; |
| const ECC_CURVE_DATA *curveData = GetCurveData(curveId); |
| pAssert(rOut != NULL && sOut != NULL && dIn != NULL && digest != NULL); |
| context = BN_CTX_new(); |
| if(context == NULL) |
| FAIL(FATAL_ERROR_ALLOCATION); |
| BN_CTX_start(context); |
| bnN = BN_CTX_get(context); |
| bnZ = BN_CTX_get(context); |
| bnR = BN_CTX_get(context); |
| bnD = BN_CTX_get(context); |
| bnIk = BN_CTX_get(context); |
| bnK = BN_CTX_get(context); |
| // Assume the size variables do not overflow, which should not happen in |
| // the contexts that this function will be called. |
| pAssert(curveData->n->size <= MAX_ECC_PARAMETER_BYTES); |
| if( bnK == NULL |
| || BN_bin2bn(curveData->n->buffer, curveData->n->size, bnN) == NULL) |
| FAIL(FATAL_ERROR_INTERNAL); |
| // The algorithm as described in "Suite B Implementer's Guide to FIPS 186-3(ECDSA)" |
| // 1. Use one of the routines in Appendix A.2 to generate (k, k^-1), a per-message |
| // secret number and its inverse modulo n. Since n is prime, the |
| // output will be invalid only if there is a failure in the RBG. |
| // 2. Compute the elliptic curve point R = [k]G = (xR, yR) using EC scalar |
| // multiplication (see [Routines]), where G is the base point included in |
| // the set of domain parameters. |
| // 3. Compute r = xR mod n. If r = 0, then return to Step 1. 1. |
| // 4. Use the selected hash function to compute H = Hash(M). |
| // 5. Convert the bit string H to an integer e as described in Appendix B.2. |
| // 6. Compute s = (k^-1 * (e + d * r)) mod n. If s = 0, return to Step 1.2. |
| // 7. Return (r, s). |
| // Generate a random value k in the range 1 <= k < n |
| // Want a K value that is the same size as the curve order |
| k.t.size = curveData->n->size; |
| while(TRUE) // This implements the loop at step 6. If s is zero, start over. |
| { |
| while(TRUE) |
| { |
| // Step 1 and 2 -- generate an ephemeral key and the modular inverse |
| // of the private key. |
| while(TRUE) |
| { |
| GetRandomPrivate(&k, curveData->n); |
| // Do the point multiply to generate a point and check to see if |
| // the point it at infinity |
| if( _cpri__EccPointMultiply(&R, curveId, &k, NULL, NULL) |
| != CRYPT_NO_RESULT) |
| break; // can only be CRYPT_SUCCESS |
| } |
| // x coordinate is mod p. Make it mod n |
| // Assume the size variables do not overflow, which should not happen |
| // in the contexts that this function will be called. |
| assert2Bsize(R.x.t); |
| BN_bin2bn(R.x.t.buffer, R.x.t.size, bnR); |
| BN_mod(bnR, bnR, bnN, context); |
| // Make sure that it is not zero; |
| if(BN_is_zero(bnR)) |
| continue; |
| // Make sure that a modular inverse exists |
| // Assume the size variables do not overflow, which should not happen |
| // in the contexts that this function will be called. |
| assert2Bsize(k.t); |
| BN_bin2bn(k.t.buffer, k.t.size, bnK); |
| if( BN_mod_inverse(bnIk, bnK, bnN, context) != NULL) |
| break; |
| } |
| // Set z = leftmost bits of the digest |
| // NOTE: This is implemented such that the key size needs to be |
| // an even number of bytes in length. |
| if(digest->size > curveData->n->size) |
| { |
| // Assume the size variables do not overflow, which should not happen |
| // in the contexts that this function will be called. |
| pAssert(curveData->n->size <= MAX_ECC_KEY_BYTES); |
| // digest is larger than n so truncate |
| BN_bin2bn(digest->buffer, curveData->n->size, bnZ); |
| } |
| else |
| { |
| // Assume the size variables do not overflow, which should not happen |
| // in the contexts that this function will be called. |
| pAssert(digest->size <= MAX_DIGEST_SIZE); |
| // digest is same or smaller than n so use it all |
| BN_bin2bn(digest->buffer, digest->size, bnZ); |
| } |
| // Assume the size variables do not overflow, which should not happen in |
| // the contexts that this function will be called. |
| assert2Bsize(dIn->t); |
| if( bnZ == NULL |
| // need the private scalar of the signing key |
| || BN_bin2bn(dIn->t.buffer, dIn->t.size, bnD) == NULL) |
| FAIL(FATAL_ERROR_INTERNAL); |
| // NOTE: When the result of an operation is going to be reduced mod x |
| // any modular multiplication is done so that the intermediate values |
| // don't get too large. |
| // |
| // now have inverse of K (bnIk), z (bnZ), r (bnR), d (bnD) and n (bnN) |
| // Compute s = k^-1 (z + r*d)(mod n) |
| // first do d = r*d mod n |
| if( !BN_mod_mul(bnD, bnR, bnD, bnN, context) |
| // d = z + r * d |
| || !BN_add(bnD, bnZ, bnD) |
| // d = k^(-1)(z + r * d)(mod n) |
| || !BN_mod_mul(bnD, bnIk, bnD, bnN, context) |
| // convert to TPM2B format |
| || !BnTo2B(&sOut->b, bnD, curveData->n->size) |
| // and write the modular reduced version of r |
| // NOTE: this was deferred to reduce the number of |
| // error checks. |
| || !BnTo2B(&rOut->b, bnR, curveData->n->size)) |
| FAIL(FATAL_ERROR_INTERNAL); |
| if(!BN_is_zero(bnD)) |
| break; // signature not zero so done |
| // if the signature value was zero, start over |
| } |
| // Free up allocated BN values |
| BN_CTX_end(context); |
| BN_CTX_free(context); |
| return retVal; |
| } |
| #endif //% |
| #if defined TPM_ALG_ECDAA || defined TPM_ALG_ECSCHNORR //% |
| // |
| // |
| // EcDaa() |
| // |
| // This function is used to perform a modified Schnorr signature for ECDAA. |
| // This function performs s = k + T * d mod n where |
| // a) 'k is a random, or pseudo-random value used in the commit phase |
| // b) T is the digest to be signed, and |
| // c) d is a private key. |
| // If tIn is NULL then use tOut as T |
| // |
| // Return Value Meaning |
| // |
| // CRYPT_SUCCESS signature created |
| // |
| static CRYPT_RESULT |
| EcDaa( |
| TPM2B_ECC_PARAMETER *tOut, // OUT: T component of the signature |
| TPM2B_ECC_PARAMETER *sOut, // OUT: s component of the signature |
| TPM_ECC_CURVE curveId, // IN: the curve used in signing |
| TPM2B_ECC_PARAMETER *dIn, // IN: the private key |
| TPM2B *tIn, // IN: the value to sign |
| TPM2B_ECC_PARAMETER *kIn // IN: a random value from commit |
| ) |
| { |
| BIGNUM *bnN, *bnK, *bnT, *bnD; |
| BN_CTX *context; |
| const TPM2B *n; |
| const ECC_CURVE_DATA *curveData = GetCurveData(curveId); |
| BOOL OK = TRUE; |
| // Parameter checks |
| pAssert( sOut != NULL && dIn != NULL && tOut != NULL |
| && kIn != NULL && curveData != NULL); |
| // this just saves key strokes |
| n = curveData->n; |
| if(tIn != NULL) |
| Copy2B(&tOut->b, tIn); |
| // The size of dIn and kIn input scalars is limited by the size of the size |
| // of a TPM2B_ECC_PARAMETER and tIn can be no larger than a digest. |
| // Make sure they are within range. |
| pAssert( (int) dIn->t.size <= MAX_ECC_KEY_BYTES |
| && (int) kIn->t.size <= MAX_ECC_KEY_BYTES |
| // |
| && (int) tOut->t.size <= MAX_DIGEST_SIZE |
| ); |
| context = BN_CTX_new(); |
| if(context == NULL) |
| FAIL(FATAL_ERROR_ALLOCATION); |
| BN_CTX_start(context); |
| bnN = BN_CTX_get(context); |
| bnK = BN_CTX_get(context); |
| bnT = BN_CTX_get(context); |
| bnD = BN_CTX_get(context); |
| // Check for allocation problems |
| if(bnD == NULL) |
| FAIL(FATAL_ERROR_ALLOCATION); |
| // Convert values |
| if( BN_bin2bn(n->buffer, n->size, bnN) == NULL |
| || BN_bin2bn(kIn->t.buffer, kIn->t.size, bnK) == NULL |
| || BN_bin2bn(dIn->t.buffer, dIn->t.size, bnD) == NULL |
| || BN_bin2bn(tOut->t.buffer, tOut->t.size, bnT) == NULL) |
| FAIL(FATAL_ERROR_INTERNAL); |
| // Compute T = T mod n |
| OK = OK && BN_mod(bnT, bnT, bnN, context); |
| // compute (s = k + T * d mod n) |
| // d = T * d mod n |
| OK = OK && BN_mod_mul(bnD, bnT, bnD, bnN, context) == 1; |
| // d = k + T * d mod n |
| OK = OK && BN_mod_add(bnD, bnK, bnD, bnN, context) == 1; |
| // s = d |
| OK = OK && BnTo2B(&sOut->b, bnD, n->size); |
| // r = T |
| OK = OK && BnTo2B(&tOut->b, bnT, n->size); |
| if(!OK) |
| FAIL(FATAL_ERROR_INTERNAL); |
| // Cleanup |
| BN_CTX_end(context); |
| BN_CTX_free(context); |
| return CRYPT_SUCCESS; |
| } |
| #endif //% |
| #ifdef TPM_ALG_ECSCHNORR //% |
| // |
| // |
| // Mod2B() |
| // |
| // Function does modular reduction of TPM2B values. |
| // |
| static CRYPT_RESULT |
| Mod2B( |
| TPM2B *x, // IN/OUT: value to reduce |
| const TPM2B *n // IN: mod |
| ) |
| { |
| int compare; |
| compare = _math__uComp(x->size, x->buffer, n->size, n->buffer); |
| if(compare < 0) |
| // if x < n, then mod is x |
| return CRYPT_SUCCESS; |
| if(compare == 0) |
| { |
| // if x == n then mod is 0 |
| x->size = 0; |
| x->buffer[0] = 0; |
| return CRYPT_SUCCESS; |
| } |
| return _math__Div(x, n, NULL, x); |
| } |
| |
| // |
| // |
| // SchnorrEcc() |
| // |
| // This function is used to perform a modified Schnorr signature. |
| // This function will generate a random value k and compute |
| // a) (xR, yR) = [k]G |
| // b) r = hash(P || xR)(mod n) |
| // c) s= k + r * ds |
| // d) return the tuple T, s |
| // |
| // |
| // |
| // |
| // Return Value Meaning |
| // |
| // CRYPT_SUCCESS signature created |
| // CRYPT_SCHEME hashAlg can't produce zero-length digest |
| // |
| static CRYPT_RESULT |
| SchnorrEcc( |
| TPM2B_ECC_PARAMETER *rOut, // OUT: r component of the signature |
| TPM2B_ECC_PARAMETER *sOut, // OUT: s component of the signature |
| TPM_ALG_ID hashAlg, // IN: hash algorithm used |
| TPM_ECC_CURVE curveId, // IN: the curve used in signing |
| TPM2B_ECC_PARAMETER *dIn, // IN: the private key |
| TPM2B *digest, // IN: the digest to sign |
| TPM2B_ECC_PARAMETER *kIn // IN: for testing |
| ) |
| { |
| TPM2B_ECC_PARAMETER k; |
| BIGNUM *bnR, *bnN, *bnK, *bnT, *bnD; |
| BN_CTX *context; |
| const TPM2B *n; |
| EC_POINT *pR = NULL; |
| EC_GROUP *group = NULL; |
| CPRI_HASH_STATE hashState; |
| UINT16 digestSize = _cpri__GetDigestSize(hashAlg); |
| const ECC_CURVE_DATA *curveData = GetCurveData(curveId); |
| TPM2B_TYPE(T, MAX(MAX_DIGEST_SIZE, MAX_ECC_PARAMETER_BYTES)); |
| TPM2B_T T2b; |
| BOOL OK = TRUE; |
| // Parameter checks |
| // Must have a place for the 'r' and 's' parts of the signature, a private |
| // key ('d') |
| pAssert( rOut != NULL && sOut != NULL && dIn != NULL |
| && digest != NULL && curveData != NULL); |
| // to save key strokes |
| n = curveData->n; |
| // If the digest does not produce a hash, then null the signature and return |
| // a failure. |
| if(digestSize == 0) |
| { |
| rOut->t.size = 0; |
| sOut->t.size = 0; |
| return CRYPT_SCHEME; |
| } |
| // Allocate big number values |
| context = BN_CTX_new(); |
| if(context == NULL) |
| FAIL(FATAL_ERROR_ALLOCATION); |
| BN_CTX_start(context); |
| bnR = BN_CTX_get(context); |
| bnN = BN_CTX_get(context); |
| bnK = BN_CTX_get(context); |
| bnT = BN_CTX_get(context); |
| bnD = BN_CTX_get(context); |
| if( bnD == NULL |
| // initialize the group parameters |
| || (group = EccCurveInit(curveId, context)) == NULL |
| // allocate a local point |
| || (pR = EC_POINT_new(group)) == NULL |
| ) |
| FAIL(FATAL_ERROR_ALLOCATION); |
| if(BN_bin2bn(curveData->n->buffer, curveData->n->size, bnN) == NULL) |
| FAIL(FATAL_ERROR_INTERNAL); |
| while(OK) |
| { |
| // a) set k to a random value such that 1 k n-1 |
| if(kIn != NULL) |
| { |
| Copy2B(&k.b, &kIn->b); // copy input k if testing |
| OK = FALSE; // not OK to loop |
| } |
| else |
| // If get a random value in the correct range |
| GetRandomPrivate(&k, n); |
| // Convert 'k' and generate pR = ['k']G |
| BnFrom2B(bnK, &k.b); |
| // b) compute E (xE, yE) [k]G |
| if(PointMul(group, pR, bnK, NULL, NULL, context) == CRYPT_NO_RESULT) |
| // c) if E is the point at infinity, go to a) |
| continue; |
| // d) compute e xE (mod n) |
| // Get the x coordinate of the point |
| EC_POINT_get_affine_coordinates_GFp(group, pR, bnR, NULL, context); |
| // make (mod n) |
| BN_mod(bnR, bnR, bnN, context); |
| // e) if e is zero, go to a) |
| if(BN_is_zero(bnR)) |
| continue; |
| // Convert xR to a string (use T as a temp) |
| BnTo2B(&T2b.b, bnR, (UINT16)(BN_num_bits(bnR)+7)/8); |
| // f) compute r HschemeHash(P || e) (mod n) |
| _cpri__StartHash(hashAlg, FALSE, &hashState); |
| _cpri__UpdateHash(&hashState, digest->size, digest->buffer); |
| _cpri__UpdateHash(&hashState, T2b.t.size, T2b.t.buffer); |
| if(_cpri__CompleteHash(&hashState, digestSize, T2b.b.buffer) != digestSize) |
| FAIL(FATAL_ERROR_INTERNAL); |
| T2b.t.size = digestSize; |
| BnFrom2B(bnT, &T2b.b); |
| BN_div(NULL, bnT, bnT, bnN, context); |
| BnTo2B(&rOut->b, bnT, (UINT16)BN_num_bytes(bnT)); |
| // We have a value and we are going to exit the loop successfully |
| OK = TRUE; |
| break; |
| } |
| // Cleanup |
| EC_POINT_free(pR); |
| EC_GROUP_free(group); |
| BN_CTX_end(context); |
| BN_CTX_free(context); |
| // If we have a value, finish the signature |
| if(OK) |
| return EcDaa(rOut, sOut, curveId, dIn, NULL, &k); |
| else |
| return CRYPT_NO_RESULT; |
| } |
| #endif //% |
| #ifdef TPM_ALG_SM2 //% |
| #ifdef _SM2_SIGN_DEBUG //% |
| static int |
| cmp_bn2hex( |
| BIGNUM *bn, // IN: big number value |
| const char *c // IN: character string number |
| ) |
| { |
| int result; |
| BIGNUM *bnC = BN_new(); |
| pAssert(bnC != NULL); |
| BN_hex2bn(&bnC, c); |
| result = BN_ucmp(bn, bnC); |
| BN_free(bnC); |
| return result; |
| } |
| static int |
| cmp_2B2hex( |
| TPM2B *a, // IN: TPM2B number to compare |
| const char *c // IN: character string |
| ) |
| { |
| int result; |
| int sl = strlen(c); |
| BIGNUM *bnA; |
| result = (a->size * 2) - sl; |
| if(result != 0) |
| return result; |
| pAssert((bnA = BN_bin2bn(a->buffer, a->size, NULL)) != NULL); |
| result = cmp_bn2hex(bnA, c); |
| BN_free(bnA); |
| return result; |
| } |
| static void |
| cpy_hexTo2B( |
| TPM2B *b, // OUT: receives value |
| const char *c // IN: source string |
| ) |
| { |
| BIGNUM *bnB = BN_new(); |
| pAssert((strlen(c) & 1) == 0); // must have an even number of digits |
| b->size = strlen(c) / 2; |
| BN_hex2bn(&bnB, c); |
| pAssert(bnB != NULL); |
| BnTo2B(b, bnB, b->size); |
| BN_free(bnB); |
| } |
| #endif //% _SM2_SIGN_DEBUG |
| // |
| // |
| // SignSM2() |
| // |
| // This function signs a digest using the method defined in SM2 Part 2. The method in the standard will add |
| // a header to the message to be signed that is a hash of the values that define the key. This then hashed |
| // with the message to produce a digest (e) that is signed. This function signs e. |
| // |
| // |
| // |
| // |
| // Return Value Meaning |
| // |
| // CRYPT_SUCCESS sign worked |
| // |
| static CRYPT_RESULT |
| SignSM2( |
| TPM2B_ECC_PARAMETER *rOut, // OUT: r component of the signature |
| TPM2B_ECC_PARAMETER *sOut, // OUT: s component of the signature |
| TPM_ECC_CURVE curveId, // IN: the curve used in signing |
| TPM2B_ECC_PARAMETER *dIn, // IN: the private key |
| TPM2B *digest // IN: the digest to sign |
| ) |
| { |
| BIGNUM *bnR; |
| BIGNUM *bnS; |
| BIGNUM *bnN; |
| BIGNUM *bnK; |
| BIGNUM *bnX1; |
| BIGNUM *bnD; |
| BIGNUM *bnT; // temp |
| BIGNUM *bnE; |
| BN_CTX *context; |
| TPM2B_ECC_PARAMETER k; |
| TPMS_ECC_POINT p2Br; |
| const ECC_CURVE_DATA *curveData = GetCurveData(curveId); |
| pAssert(curveData != NULL); |
| context = BN_CTX_new(); |
| BN_CTX_start(context); |
| bnK = BN_CTX_get(context); |
| bnR = BN_CTX_get(context); |
| bnS = BN_CTX_get(context); |
| bnX1 = BN_CTX_get(context); |
| bnN = BN_CTX_get(context); |
| bnD = BN_CTX_get(context); |
| bnT = BN_CTX_get(context); |
| bnE = BN_CTX_get(context); |
| if(bnE == NULL) |
| FAIL(FATAL_ERROR_ALLOCATION); |
| BnFrom2B(bnE, digest); |
| BnFrom2B(bnN, curveData->n); |
| BnFrom2B(bnD, &dIn->b); |
| #ifdef _SM2_SIGN_DEBUG |
| BN_hex2bn(&bnE, "B524F552CD82B8B028476E005C377FB19A87E6FC682D48BB5D42E3D9B9EFFE76"); |
| BN_hex2bn(&bnD, "128B2FA8BD433C6C068C8D803DFF79792A519A55171B1B650C23661D15897263"); |
| #endif |
| // A3: Use random number generator to generate random number 1 <= k <= n-1; |
| // NOTE: Ax: numbers are from the SM2 standard |
| k.t.size = curveData->n->size; |
| loop: |
| { |
| // Get a random number |
| _cpri__GenerateRandom(k.t.size, k.t.buffer); |
| #ifdef _SM2_SIGN_DEBUG |
| BN_hex2bn(&bnK, "6CB28D99385C175C94F94E934817663FC176D925DD72B727260DBAAE1FB2F96F"); |
| BnTo2B(&k.b,bnK, 32); |
| k.t.size = 32; |
| #endif |
| //make sure that the number is 0 < k < n |
| BnFrom2B(bnK, &k.b); |
| if( BN_ucmp(bnK, bnN) >= 0 |
| || BN_is_zero(bnK)) |
| goto loop; |
| // A4: Figure out the point of elliptic curve (x1, y1)=[k]G, and according |
| // to details specified in 4.2.7 in Part 1 of this document, transform the |
| // data type of x1 into an integer; |
| if( _cpri__EccPointMultiply(&p2Br, curveId, &k, NULL, NULL) |
| == CRYPT_NO_RESULT) |
| goto loop; |
| BnFrom2B(bnX1, &p2Br.x.b); |
| // A5: Figure out r = (e + x1) mod n, |
| if(!BN_mod_add(bnR, bnE, bnX1, bnN, context)) |
| FAIL(FATAL_ERROR_INTERNAL); |
| #ifdef _SM2_SIGN_DEBUG |
| pAssert(cmp_bn2hex(bnR, |
| "40F1EC59F793D9F49E09DCEF49130D4194F79FB1EED2CAA55BACDB49C4E755D1") |
| == 0); |
| #endif |
| // if r=0 or r+k=n, return to A3; |
| if(!BN_add(bnT, bnK, bnR)) |
| FAIL(FATAL_ERROR_INTERNAL); |
| if(BN_is_zero(bnR) || BN_ucmp(bnT, bnN) == 0) |
| goto loop; |
| // A6: Figure out s = ((1 + dA)^-1 (k - r dA)) mod n, if s=0, return to A3; |
| // compute t = (1+d)-1 |
| BN_copy(bnT, bnD); |
| if( !BN_add_word(bnT, 1) |
| || !BN_mod_inverse(bnT, bnT, bnN, context) // (1 + dA)^-1 mod n |
| ) |
| FAIL(FATAL_ERROR_INTERNAL); |
| #ifdef _SM2_SIGN_DEBUG |
| pAssert(cmp_bn2hex(bnT, |
| "79BFCF3052C80DA7B939E0C6914A18CBB2D96D8555256E83122743A7D4F5F956") |
| == 0); |
| #endif |
| // compute s = t * (k - r * dA) mod n |
| if( !BN_mod_mul(bnS, bnD, bnR, bnN, context) // (r * dA) mod n |
| || !BN_mod_sub(bnS, bnK, bnS, bnN, context) // (k - (r * dA) mod n |
| || !BN_mod_mul(bnS, bnT, bnS, bnN, context))// t * (k - (r * dA) mod n |
| FAIL(FATAL_ERROR_INTERNAL); |
| #ifdef _SM2_SIGN_DEBUG |
| pAssert(cmp_bn2hex(bnS, |
| "6FC6DAC32C5D5CF10C77DFB20F7C2EB667A457872FB09EC56327A67EC7DEEBE7") |
| == 0); |
| #endif |
| if(BN_is_zero(bnS)) |
| goto loop; |
| } |
| // A7: According to details specified in 4.2.1 in Part 1 of this document, transform |
| // the data type of r, s into bit strings, signature of message M is (r, s). |
| BnTo2B(&rOut->b, bnR, curveData->n->size); |
| BnTo2B(&sOut->b, bnS, curveData->n->size); |
| #ifdef _SM2_SIGN_DEBUG |
| pAssert(cmp_2B2hex(&rOut->b, |
| "40F1EC59F793D9F49E09DCEF49130D4194F79FB1EED2CAA55BACDB49C4E755D1") |
| == 0); |
| pAssert(cmp_2B2hex(&sOut->b, |
| "6FC6DAC32C5D5CF10C77DFB20F7C2EB667A457872FB09EC56327A67EC7DEEBE7") |
| == 0); |
| #endif |
| BN_CTX_end(context); |
| BN_CTX_free(context); |
| return CRYPT_SUCCESS; |
| } |
| #endif //% TPM_ALG_SM2 |
| // |
| // |
| // _cpri__SignEcc() |
| // |
| // This function is the dispatch function for the various ECC-based signing schemes. |
| // |
| // Return Value Meaning |
| // |
| // CRYPT_SCHEME scheme is not supported |
| // |
| LIB_EXPORT CRYPT_RESULT |
| _cpri__SignEcc( |
| TPM2B_ECC_PARAMETER *rOut, // OUT: r component of the signature |
| TPM2B_ECC_PARAMETER *sOut, // OUT: s component of the signature |
| TPM_ALG_ID scheme, // IN: the scheme selector |
| TPM_ALG_ID hashAlg, // IN: the hash algorithm if need |
| TPM_ECC_CURVE curveId, // IN: the curve used in the signature |
| // process |
| TPM2B_ECC_PARAMETER *dIn, // IN: the private key |
| TPM2B *digest, // IN: the digest to sign |
| TPM2B_ECC_PARAMETER *kIn // IN: k for input |
| ) |
| { |
| switch (scheme) |
| { |
| case TPM_ALG_ECDSA: |
| // SignEcdsa always works |
| return SignEcdsa(rOut, sOut, curveId, dIn, digest); |
| break; |
| #ifdef TPM_ALG_ECDAA |
| case TPM_ALG_ECDAA: |
| if(rOut != NULL) |
| rOut->b.size = 0; |
| return EcDaa(rOut, sOut, curveId, dIn, digest, kIn); |
| break; |
| #endif |
| #ifdef TPM_ALG_ECSCHNORR |
| case TPM_ALG_ECSCHNORR: |
| return SchnorrEcc(rOut, sOut, hashAlg, curveId, dIn, digest, kIn); |
| break; |
| #endif |
| #ifdef TPM_ALG_SM2 |
| case TPM_ALG_SM2: |
| return SignSM2(rOut, sOut, curveId, dIn, digest); |
| break; |
| #endif |
| default: |
| return CRYPT_SCHEME; |
| } |
| } |
| #ifdef TPM_ALG_ECDSA //% |
| // |
| // |
| // ValidateSignatureEcdsa() |
| // |
| // This function validates an ECDSA signature. rIn and sIn shoudl have been checked to make sure that |
| // they are not zero. |
| // |
| // Return Value Meaning |
| // |
| // CRYPT_SUCCESS signature valid |
| // CRYPT_FAIL signature not valid |
| // |
| static CRYPT_RESULT |
| ValidateSignatureEcdsa( |
| TPM2B_ECC_PARAMETER *rIn, // IN: r component of the signature |
| TPM2B_ECC_PARAMETER *sIn, // IN: s component of the signature |
| TPM_ECC_CURVE curveId, // IN: the curve used in the signature |
| // process |
| TPMS_ECC_POINT *Qin, // IN: the public point of the key |
| TPM2B *digest // IN: the digest that was signed |
| ) |
| { |
| TPM2B_ECC_PARAMETER U1; |
| TPM2B_ECC_PARAMETER U2; |
| TPMS_ECC_POINT R; |
| const TPM2B *n; |
| BN_CTX *context; |
| EC_POINT *pQ = NULL; |
| EC_GROUP *group = NULL; |
| BIGNUM *bnU1; |
| BIGNUM *bnU2; |
| BIGNUM *bnR; |
| BIGNUM *bnS; |
| BIGNUM *bnW; |
| BIGNUM *bnV; |
| BIGNUM *bnN; |
| BIGNUM *bnE; |
| BIGNUM *bnQx; |
| BIGNUM *bnQy; |
| CRYPT_RESULT retVal = CRYPT_FAIL; |
| int t; |
| const ECC_CURVE_DATA *curveData = GetCurveData(curveId); |
| // The curve selector should have been filtered by the unmarshaling process |
| pAssert (curveData != NULL); |
| n = curveData->n; |
| // 1. If r and s are not both integers in the interval [1, n - 1], output |
| // INVALID. |
| // rIn and sIn are known to be greater than zero (was checked by the caller). |
| if( _math__uComp(rIn->t.size, rIn->t.buffer, n->size, n->buffer) >= 0 |
| || _math__uComp(sIn->t.size, sIn->t.buffer, n->size, n->buffer) >= 0 |
| ) |
| return CRYPT_FAIL; |
| context = BN_CTX_new(); |
| if(context == NULL) |
| FAIL(FATAL_ERROR_ALLOCATION); |
| BN_CTX_start(context); |
| bnR = BN_CTX_get(context); |
| bnS = BN_CTX_get(context); |
| bnN = BN_CTX_get(context); |
| bnE = BN_CTX_get(context); |
| bnV = BN_CTX_get(context); |
| bnW = BN_CTX_get(context); |
| bnQx = BN_CTX_get(context); |
| bnQy = BN_CTX_get(context); |
| bnU1 = BN_CTX_get(context); |
| bnU2 = BN_CTX_get(context); |
| // Assume the size variables do not overflow, which should not happen in |
| // the contexts that this function will be called. |
| assert2Bsize(Qin->x.t); |
| assert2Bsize(rIn->t); |
| assert2Bsize(sIn->t); |
| // BN_CTX_get() is sticky so only need to check the last value to know that |
| // all worked. |
| if( bnU2 == NULL |
| // initialize the group parameters |
| || (group = EccCurveInit(curveId, context)) == NULL |
| // allocate a local point |
| || (pQ = EC_POINT_new(group)) == NULL |
| // use the public key values (QxIn and QyIn) to initialize Q |
| || BN_bin2bn(Qin->x.t.buffer, Qin->x.t.size, bnQx) == NULL |
| || BN_bin2bn(Qin->x.t.buffer, Qin->x.t.size, bnQy) == NULL |
| || !EC_POINT_set_affine_coordinates_GFp(group, pQ, bnQx, bnQy, context) |
| // convert the signature values |
| || BN_bin2bn(rIn->t.buffer, rIn->t.size, bnR) == NULL |
| || BN_bin2bn(sIn->t.buffer, sIn->t.size, bnS) == NULL |
| // convert the curve order |
| || BN_bin2bn(curveData->n->buffer, curveData->n->size, bnN) == NULL) |
| FAIL(FATAL_ERROR_INTERNAL); |
| // 2. Use the selected hash function to compute H0 = Hash(M0). |
| // This is an input parameter |
| // 3. Convert the bit string H0 to an integer e as described in Appendix B.2. |
| t = (digest->size > rIn->t.size) ? rIn->t.size : digest->size; |
| if(BN_bin2bn(digest->buffer, t, bnE) == NULL) |
| FAIL(FATAL_ERROR_INTERNAL); |
| // 4. Compute w = (s')^-1 mod n, using the routine in Appendix B.1. |
| if (BN_mod_inverse(bnW, bnS, bnN, context) == NULL) |
| FAIL(FATAL_ERROR_INTERNAL); |
| // 5. Compute u1 = (e' * w) mod n, and compute u2 = (r' * w) mod n. |
| if( !BN_mod_mul(bnU1, bnE, bnW, bnN, context) |
| || !BN_mod_mul(bnU2, bnR, bnW, bnN, context)) |
| FAIL(FATAL_ERROR_INTERNAL); |
| BnTo2B(&U1.b, bnU1, (INT16) BN_num_bytes(bnU1)); |
| BnTo2B(&U2.b, bnU2, (INT16) BN_num_bytes(bnU2)); |
| // 6. Compute the elliptic curve point R = (xR, yR) = u1G+u2Q, using EC |
| // scalar multiplication and EC addition (see [Routines]). If R is equal to |
| // the point at infinity O, output INVALID. |
| if(_cpri__EccPointMultiply(&R, curveId, &U1, Qin, &U2) == CRYPT_SUCCESS) |
| { |
| // 7. Compute v = Rx mod n. |
| if( BN_bin2bn(R.x.t.buffer, R.x.t.size, bnV) == NULL |
| || !BN_mod(bnV, bnV, bnN, context)) |
| FAIL(FATAL_ERROR_INTERNAL); |
| // 8. Compare v and r0. If v = r0, output VALID; otherwise, output INVALID |
| if(BN_cmp(bnV, bnR) == 0) |
| retVal = CRYPT_SUCCESS; |
| } |
| if(pQ != NULL) EC_POINT_free(pQ); |
| if(group != NULL) EC_GROUP_free(group); |
| BN_CTX_end(context); |
| BN_CTX_free(context); |
| return retVal; |
| } |
| #endif //% TPM_ALG_ECDSA |
| #ifdef TPM_ALG_ECSCHNORR //% |
| // |
| // |
| // ValidateSignatureEcSchnorr() |
| // |
| // This function is used to validate an EC Schnorr signature. rIn and sIn are required to be greater than |
| // zero. This is checked in _cpri__ValidateSignatureEcc(). |
| // |
| // Return Value Meaning |
| // |
| // CRYPT_SUCCESS signature valid |
| // CRYPT_FAIL signature not valid |
| // CRYPT_SCHEME hashAlg is not supported |
| // |
| static CRYPT_RESULT |
| ValidateSignatureEcSchnorr( |
| TPM2B_ECC_PARAMETER *rIn, // IN: r component of the signature |
| TPM2B_ECC_PARAMETER *sIn, // IN: s component of the signature |
| TPM_ALG_ID hashAlg, // IN: hash algorithm of the signature |
| TPM_ECC_CURVE curveId, // IN: the curve used in the signature |
| // process |
| TPMS_ECC_POINT *Qin, // IN: the public point of the key |
| TPM2B *digest // IN: the digest that was signed |
| ) |
| { |
| TPMS_ECC_POINT pE; |
| const TPM2B *n; |
| CPRI_HASH_STATE hashState; |
| TPM2B_DIGEST rPrime; |
| TPM2B_ECC_PARAMETER minusR; |
| UINT16 digestSize = _cpri__GetDigestSize(hashAlg); |
| const ECC_CURVE_DATA *curveData = GetCurveData(curveId); |
| // The curve parameter should have been filtered by unmarshaling code |
| pAssert(curveData != NULL); |
| if(digestSize == 0) |
| return CRYPT_SCHEME; |
| // Input parameter validation |
| pAssert(rIn != NULL && sIn != NULL && Qin != NULL && digest != NULL); |
| n = curveData->n; |
| // if sIn or rIn are not between 1 and N-1, signature check fails |
| // sIn and rIn were verified to be non-zero by the caller |
| if( _math__uComp(sIn->b.size, sIn->b.buffer, n->size, n->buffer) >= 0 |
| || _math__uComp(rIn->b.size, rIn->b.buffer, n->size, n->buffer) >= 0 |
| ) |
| return CRYPT_FAIL; |
| //E = [s]InG - [r]InQ |
| _math__sub(n->size, n->buffer, |
| rIn->t.size, rIn->t.buffer, |
| &minusR.t.size, minusR.t.buffer); |
| if(_cpri__EccPointMultiply(&pE, curveId, sIn, Qin, &minusR) != CRYPT_SUCCESS) |
| return CRYPT_FAIL; |
| // Ex = Ex mod N |
| if(Mod2B(&pE.x.b, n) != CRYPT_SUCCESS) |
| FAIL(FATAL_ERROR_INTERNAL); |
| _math__Normalize2B(&pE.x.b); |
| // rPrime = h(digest || pE.x) mod n; |
| _cpri__StartHash(hashAlg, FALSE, &hashState); |
| _cpri__UpdateHash(&hashState, digest->size, digest->buffer); |
| _cpri__UpdateHash(&hashState, pE.x.t.size, pE.x.t.buffer); |
| if(_cpri__CompleteHash(&hashState, digestSize, rPrime.t.buffer) != digestSize) |
| FAIL(FATAL_ERROR_INTERNAL); |
| rPrime.t.size = digestSize; |
| // rPrime = rPrime (mod n) |
| if(Mod2B(&rPrime.b, n) != CRYPT_SUCCESS) |
| FAIL(FATAL_ERROR_INTERNAL); |
| // if the values don't match, then the signature is bad |
| if(_math__uComp(rIn->t.size, rIn->t.buffer, |
| rPrime.t.size, rPrime.t.buffer) != 0) |
| return CRYPT_FAIL; |
| else |
| return CRYPT_SUCCESS; |
| } |
| #endif //% TPM_ALG_ECSCHNORR |
| #ifdef TPM_ALG_SM2 //% |
| // |
| // |
| // ValidateSignatueSM2Dsa() |
| // |
| // This function is used to validate an SM2 signature. |
| // |
| // Return Value Meaning |
| // |
| // CRYPT_SUCCESS signature valid |
| // CRYPT_FAIL signature not valid |
| // |
| static CRYPT_RESULT |
| ValidateSignatureSM2Dsa( |
| TPM2B_ECC_PARAMETER *rIn, // IN: r component of the signature |
| TPM2B_ECC_PARAMETER *sIn, // IN: s component of the signature |
| TPM_ECC_CURVE curveId, // IN: the curve used in the signature |
| // process |
| TPMS_ECC_POINT *Qin, // IN: the public point of the key |
| TPM2B *digest // IN: the digest that was signed |
| ) |
| { |
| BIGNUM *bnR; |
| BIGNUM *bnRp; |
| BIGNUM *bnT; |
| BIGNUM *bnS; |
| BIGNUM *bnE; |
| BIGNUM *order; |
| EC_POINT *pQ; |
| BN_CTX *context; |
| EC_GROUP *group = NULL; |
| const ECC_CURVE_DATA *curveData = GetCurveData(curveId); |
| BOOL fail = FALSE; |
| // |
| if((context = BN_CTX_new()) == NULL || curveData == NULL) |
| FAIL(FATAL_ERROR_INTERNAL); |
| bnR = BN_CTX_get(context); |
| bnRp= BN_CTX_get(context); |
| bnE = BN_CTX_get(context); |
| bnT = BN_CTX_get(context); |
| bnS = BN_CTX_get(context); |
| order = BN_CTX_get(context); |
| if( order == NULL |
| || (group = EccCurveInit(curveId, context)) == NULL) |
| FAIL(FATAL_ERROR_INTERNAL); |
| #ifdef _SM2_SIGN_DEBUG |
| cpy_hexTo2B(&Qin->x.b, |
| "0AE4C7798AA0F119471BEE11825BE46202BB79E2A5844495E97C04FF4DF2548A"); |
| cpy_hexTo2B(&Qin->y.b, |
| "7C0240F88F1CD4E16352A73C17B7F16F07353E53A176D684A9FE0C6BB798E857"); |
| cpy_hexTo2B(digest, |
| "B524F552CD82B8B028476E005C377FB19A87E6FC682D48BB5D42E3D9B9EFFE76"); |
| #endif |
| pQ = EccInitPoint2B(group, Qin, context); |
| #ifdef _SM2_SIGN_DEBUG |
| pAssert(EC_POINT_get_affine_coordinates_GFp(group, pQ, bnT, bnS, context)); |
| pAssert(cmp_bn2hex(bnT, |
| "0AE4C7798AA0F119471BEE11825BE46202BB79E2A5844495E97C04FF4DF2548A") |
| == 0); |
| pAssert(cmp_bn2hex(bnS, |
| "7C0240F88F1CD4E16352A73C17B7F16F07353E53A176D684A9FE0C6BB798E857") |
| == 0); |
| #endif |
| BnFrom2B(bnR, &rIn->b); |
| BnFrom2B(bnS, &sIn->b); |
| BnFrom2B(bnE, digest); |
| #ifdef _SM2_SIGN_DEBUG |
| // Make sure that the input signature is the test signature |
| pAssert(cmp_2B2hex(&rIn->b, |
| "40F1EC59F793D9F49E09DCEF49130D4194F79FB1EED2CAA55BACDB49C4E755D1") == 0); |
| pAssert(cmp_2B2hex(&sIn->b, |
| "6FC6DAC32C5D5CF10C77DFB20F7C2EB667A457872FB09EC56327A67EC7DEEBE7") == 0); |
| #endif |
| // a) verify that r and s are in the inclusive interval 1 to (n 1) |
| if (!EC_GROUP_get_order(group, order, context)) goto Cleanup; |
| fail = (BN_ucmp(bnR, order) >= 0); |
| fail = (BN_ucmp(bnS, order) >= 0) || fail; |
| if(fail) |
| // There is no reason to continue. Since r and s are inputs from the caller, |
| // they can know that the values are not in the proper range. So, exiting here |
| // does not disclose any information. |
| goto Cleanup; |
| // b) compute t := (r + s) mod n |
| if(!BN_mod_add(bnT, bnR, bnS, order, context)) |
| FAIL(FATAL_ERROR_INTERNAL); |
| #ifdef _SM2_SIGN_DEBUG |
| pAssert(cmp_bn2hex(bnT, |
| "2B75F07ED7ECE7CCC1C8986B991F441AD324D6D619FE06DD63ED32E0C997C801") |
| == 0); |
| #endif |
| // c) verify that t > 0 |
| if(BN_is_zero(bnT)) { |
| fail = TRUE; |
| // set to a value that should allow rest of the computations to run without |
| // trouble |
| BN_copy(bnT, bnS); |
| } |
| // d) compute (x, y) := [s]G + [t]Q |
| if(!EC_POINT_mul(group, pQ, bnS, pQ, bnT, context)) |
| FAIL(FATAL_ERROR_INTERNAL); |
| // Get the x coordinate of the point |
| if(!EC_POINT_get_affine_coordinates_GFp(group, pQ, bnT, NULL, context)) |
| FAIL(FATAL_ERROR_INTERNAL); |
| #ifdef _SM2_SIGN_DEBUG |
| pAssert(cmp_bn2hex(bnT, |
| "110FCDA57615705D5E7B9324AC4B856D23E6D9188B2AE47759514657CE25D112") |
| == 0); |
| #endif |
| // e) compute r' := (e + x) mod n (the x coordinate is in bnT) |
| if(!BN_mod_add(bnRp, bnE, bnT, order, context)) |
| FAIL(FATAL_ERROR_INTERNAL); |
| // f) verify that r' = r |
| fail = BN_ucmp(bnR, bnRp) != 0 || fail; |
| Cleanup: |
| if(pQ) EC_POINT_free(pQ); |
| if(group) EC_GROUP_free(group); |
| BN_CTX_end(context); |
| BN_CTX_free(context); |
| if(fail) |
| return CRYPT_FAIL; |
| else |
| return CRYPT_SUCCESS; |
| } |
| #endif //% TPM_ALG_SM2 |
| // |
| // |
| // _cpri__ValidateSignatureEcc() |
| // |
| // This function validates |
| // |
| // Return Value Meaning |
| // |
| // CRYPT_SUCCESS signature is valid |
| // CRYPT_FAIL not a valid signature |
| // CRYPT_SCHEME unsupported scheme |
| // |
| LIB_EXPORT CRYPT_RESULT |
| _cpri__ValidateSignatureEcc( |
| TPM2B_ECC_PARAMETER *rIn, // IN: r component of the signature |
| TPM2B_ECC_PARAMETER *sIn, // IN: s component of the signature |
| TPM_ALG_ID scheme, // IN: the scheme selector |
| TPM_ALG_ID hashAlg, // IN: the hash algorithm used (not used |
| // in all schemes) |
| TPM_ECC_CURVE curveId, // IN: the curve used in the signature |
| // process |
| TPMS_ECC_POINT *Qin, // IN: the public point of the key |
| TPM2B *digest // IN: the digest that was signed |
| ) |
| { |
| CRYPT_RESULT retVal; |
| // return failure if either part of the signature is zero |
| if(_math__Normalize2B(&rIn->b) == 0 || _math__Normalize2B(&sIn->b) == 0) |
| return CRYPT_FAIL; |
| switch (scheme) |
| { |
| case TPM_ALG_ECDSA: |
| retVal = ValidateSignatureEcdsa(rIn, sIn, curveId, Qin, digest); |
| break; |
| #ifdef TPM_ALG_ECSCHNORR |
| case TPM_ALG_ECSCHNORR: |
| retVal = ValidateSignatureEcSchnorr(rIn, sIn, hashAlg, curveId, Qin, |
| digest); |
| break; |
| #endif |
| #ifdef TPM_ALG_SM2 |
| case TPM_ALG_SM2: |
| retVal = ValidateSignatureSM2Dsa(rIn, sIn, curveId, Qin, digest); |
| #endif |
| default: |
| retVal = CRYPT_SCHEME; |
| break; |
| } |
| return retVal; |
| } |
| #if CC_ZGen_2Phase == YES //% |
| #ifdef TPM_ALG_ECMQV |
| // |
| // |
| // avf1() |
| // |
| // This function does the associated value computation required by MQV key exchange. Process: |
| // a) Convert xQ to an integer xqi using the convention specified in Appendix C.3. |
| // b) Calculate xqm = xqi mod 2^ceil(f/2) (where f = ceil(log2(n)). |
| // c) Calculate the associate value function avf(Q) = xqm + 2ceil(f / 2) |
| // |
| static BOOL |
| avf1( |
| BIGNUM *bnX, // IN/OUT: the reduced value |
| BIGNUM *bnN // IN: the order of the curve |
| ) |
| { |
| // compute f = 2^(ceil(ceil(log2(n)) / 2)) |
| int f = (BN_num_bits(bnN) + 1) / 2; |
| // x' = 2^f + (x mod 2^f) |
| BN_mask_bits(bnX, f); // This is mod 2*2^f but it doesn't matter because |
| // the next operation will SET the extra bit anyway |
| BN_set_bit(bnX, f); |
| return TRUE; |
| } |
| // |
| // |
| // C_2_2_MQV() |
| // |
| // This function performs the key exchange defined in SP800-56A 6.1.1.4 Full MQV, C(2, 2, ECC MQV). |
| // CAUTION: Implementation of this function may require use of essential claims in patents not owned by |
| // TCG members. |
| // Points QsB() and QeB() are required to be on the curve of inQsA. The function will fail, possibly |
| // catastrophically, if this is not the case. |
| // |
| // |
| // |
| // Return Value Meaning |
| // |
| // CRYPT_SUCCESS results is valid |
| // CRYPT_NO_RESULT the value for dsA does not give a valid point on the curve |
| // |
| static CRYPT_RESULT |
| C_2_2_MQV( |
| TPMS_ECC_POINT *outZ, // OUT: the computed point |
| TPM_ECC_CURVE curveId, // IN: the curve for the computations |
| TPM2B_ECC_PARAMETER *dsA, // IN: static private TPM key |
| TPM2B_ECC_PARAMETER *deA, // IN: ephemeral private TPM key |
| TPMS_ECC_POINT *QsB, // IN: static public party B key |
| TPMS_ECC_POINT *QeB // IN: ephemeral public party B key |
| ) |
| { |
| BN_CTX *context; |
| EC_POINT *pQeA = NULL; |
| EC_POINT *pQeB = NULL; |
| EC_POINT *pQsB = NULL; |
| EC_GROUP *group = NULL; |
| BIGNUM *bnTa; |
| BIGNUM *bnDeA; |
| BIGNUM *bnDsA; |
| BIGNUM *bnXeA; // x coordinate of ephemeral party A key |
| BIGNUM *bnH; |
| BIGNUM *bnN; |
| BIGNUM *bnXeB; |
| const ECC_CURVE_DATA *curveData = GetCurveData(curveId); |
| CRYPT_RESULT retVal; |
| pAssert( curveData != NULL && outZ != NULL && dsA != NULL |
| && deA != NULL && QsB != NULL && QeB != NULL); |
| context = BN_CTX_new(); |
| if(context == NULL || curveData == NULL) |
| FAIL(FATAL_ERROR_ALLOCATION); |
| BN_CTX_start(context); |
| bnTa = BN_CTX_get(context); |
| bnDeA = BN_CTX_get(context); |
| bnDsA = BN_CTX_get(context); |
| bnXeA = BN_CTX_get(context); |
| bnH = BN_CTX_get(context); |
| bnN = BN_CTX_get(context); |
| bnXeB = BN_CTX_get(context); |
| if(bnXeB == NULL) |
| FAIL(FATAL_ERROR_ALLOCATION); |
| // Process: |
| // 1. implicitsigA = (de,A + avf(Qe,A)ds,A ) mod n. |
| // 2. P = h(implicitsigA)(Qe,B + avf(Qe,B)Qs,B). |
| // 3. If P = O, output an error indicator. |
| // 4. Z=xP, where xP is the x-coordinate of P. |
| // Initialize group parameters and local values of input |
| if((group = EccCurveInit(curveId, context)) == NULL) |
| FAIL(FATAL_ERROR_INTERNAL); |
| if((pQeA = EC_POINT_new(group)) == NULL) |
| FAIL(FATAL_ERROR_ALLOCATION); |
| BnFrom2B(bnDeA, &deA->b); |
| BnFrom2B(bnDsA, &dsA->b); |
| BnFrom2B(bnH, curveData->h); |
| BnFrom2B(bnN, curveData->n); |
| BnFrom2B(bnXeB, &QeB->x.b); |
| pQeB = EccInitPoint2B(group, QeB, context); |
| pQsB = EccInitPoint2B(group, QsB, context); |
| // Compute the public ephemeral key pQeA = [de,A]G |
| if( (retVal = PointMul(group, pQeA, bnDeA, NULL, NULL, context)) |
| != CRYPT_SUCCESS) |
| goto Cleanup; |
| if(EC_POINT_get_affine_coordinates_GFp(group, pQeA, bnXeA, NULL, context) != 1) |
| FAIL(FATAL_ERROR_INTERNAL); |
| // 1. implicitsigA = (de,A + avf(Qe,A)ds,A ) mod n. |
| // tA := (ds,A + de,A avf(Xe,A)) mod n (3) |
| // Compute 'tA' = ('deA' + 'dsA' avf('XeA')) mod n |
| // Ta = avf(XeA); |
| BN_copy(bnTa, bnXeA); |
| avf1(bnTa, bnN); |
| if(// do Ta = ds,A * Ta mod n = dsA * avf(XeA) mod n |
| !BN_mod_mul(bnTa, bnDsA, bnTa, bnN, context) |
| // now Ta = deA + Ta mod n = deA + dsA * avf(XeA) mod n |
| || !BN_mod_add(bnTa, bnDeA, bnTa, bnN, context) |
| ) |
| FAIL(FATAL_ERROR_INTERNAL); |
| // 2. P = h(implicitsigA)(Qe,B + avf(Qe,B)Qs,B). |
| // Put this in because almost every case of h is == 1 so skip the call when |
| // not necessary. |
| if(!BN_is_one(bnH)) |
| { |
| // Cofactor is not 1 so compute Ta := Ta * h mod n |
| if(!BN_mul(bnTa, bnTa, bnH, context)) |
| FAIL(FATAL_ERROR_INTERNAL); |
| } |
| // Now that 'tA' is (h * 'tA' mod n) |
| // 'outZ' = (tA)(Qe,B + avf(Qe,B)Qs,B). |
| // first, compute XeB = avf(XeB) |
| avf1(bnXeB, bnN); |
| // QsB := [XeB]QsB |
| if( !EC_POINT_mul(group, pQsB, NULL, pQsB, bnXeB, context) |
| // QeB := QsB + QeB |
| || !EC_POINT_add(group, pQeB, pQeB, pQsB, context) |
| ) |
| FAIL(FATAL_ERROR_INTERNAL); |
| // QeB := [tA]QeB = [tA](QsB + [Xe,B]QeB) and check for at infinity |
| if(PointMul(group, pQeB, NULL, pQeB, bnTa, context) == CRYPT_SUCCESS) |
| // Convert BIGNUM E to TPM2B E |
| Point2B(group, outZ, pQeB, (INT16)BN_num_bytes(bnN), context); |
| Cleanup: |
| if(pQeA != NULL) EC_POINT_free(pQeA); |
| if(pQeB != NULL) EC_POINT_free(pQeB); |
| if(pQsB != NULL) EC_POINT_free(pQsB); |
| if(group != NULL) EC_GROUP_free(group); |
| BN_CTX_end(context); |
| BN_CTX_free(context); |
| return retVal; |
| } |
| #endif // TPM_ALG_ECMQV |
| #ifdef TPM_ALG_SM2 //% |
| // |
| // |
| // avfSm2() |
| // |
| // This function does the associated value computation required by SM2 key exchange. This is different |
| // form the avf() in the international standards because it returns a value that is half the size of the value |
| // returned by the standard avf. For example, if n is 15, Ws (w in the standard) is 2 but the W here is 1. This |
| // means that an input value of 14 (1110b) would return a value of 110b with the standard but 10b with the |
| // scheme in SM2. |
| // |
| static BOOL |
| avfSm2( |
| BIGNUM *bnX, // IN/OUT: the reduced value |
| BIGNUM *bnN // IN: the order of the curve |
| ) |
| { |
| // a) set w := ceil(ceil(log2(n)) / 2) - 1 |
| int w = ((BN_num_bits(bnN) + 1) / 2) - 1; |
| // b) set x' := 2^w + ( x & (2^w - 1)) |
| // This is just like the avf for MQV where x' = 2^w + (x mod 2^w) |
| BN_mask_bits(bnX, w); // as wiht avf1, this is too big by a factor of 2 but |
| // it doesn't matter becasue we SET the extra bit anyway |
| BN_set_bit(bnX, w); |
| return TRUE; |
| } |
| // |
| // SM2KeyExchange() This function performs the key exchange defined in SM2. The first step is to compute |
| // tA = (dsA + deA avf(Xe,A)) mod n Then, compute the Z value from outZ = (h tA mod n) (QsA + |
| // [avf(QeB().x)](QeB())). The function will compute the ephemeral public key from the ephemeral private |
| // key. All points are required to be on the curve of inQsA. The function will fail catastrophically if this is not |
| // the case |
| // |
| // Return Value Meaning |
| // |
| // CRYPT_SUCCESS results is valid |
| // CRYPT_NO_RESULT the value for dsA does not give a valid point on the curve |
| // |
| static CRYPT_RESULT |
| SM2KeyExchange( |
| TPMS_ECC_POINT *outZ, // OUT: the computed point |
| TPM_ECC_CURVE curveId, // IN: the curve for the computations |
| TPM2B_ECC_PARAMETER *dsA, // IN: static private TPM key |
| TPM2B_ECC_PARAMETER *deA, // IN: ephemeral private TPM key |
| TPMS_ECC_POINT *QsB, // IN: static public party B key |
| TPMS_ECC_POINT *QeB // IN: ephemeral public party B key |
| ) |
| { |
| BN_CTX *context; |
| EC_POINT *pQeA = NULL; |
| EC_POINT *pQeB = NULL; |
| EC_POINT *pQsB = NULL; |
| EC_GROUP *group = NULL; |
| BIGNUM *bnTa; |
| BIGNUM *bnDeA; |
| BIGNUM *bnDsA; |
| BIGNUM *bnXeA; // x coordinate of ephemeral party A key |
| BIGNUM *bnH; |
| BIGNUM *bnN; |
| BIGNUM *bnXeB; |
| // |
| const ECC_CURVE_DATA *curveData = GetCurveData(curveId); |
| CRYPT_RESULT retVal; |
| pAssert( curveData != NULL && outZ != NULL && dsA != NULL |
| && deA != NULL && QsB != NULL && QeB != NULL); |
| context = BN_CTX_new(); |
| if(context == NULL || curveData == NULL) |
| FAIL(FATAL_ERROR_ALLOCATION); |
| BN_CTX_start(context); |
| bnTa = BN_CTX_get(context); |
| bnDeA = BN_CTX_get(context); |
| bnDsA = BN_CTX_get(context); |
| bnXeA = BN_CTX_get(context); |
| bnH = BN_CTX_get(context); |
| bnN = BN_CTX_get(context); |
| bnXeB = BN_CTX_get(context); |
| if(bnXeB == NULL) |
| FAIL(FATAL_ERROR_ALLOCATION); |
| // Initialize group parameters and local values of input |
| if((group = EccCurveInit(curveId, context)) == NULL) |
| FAIL(FATAL_ERROR_INTERNAL); |
| if((pQeA = EC_POINT_new(group)) == NULL) |
| FAIL(FATAL_ERROR_ALLOCATION); |
| BnFrom2B(bnDeA, &deA->b); |
| BnFrom2B(bnDsA, &dsA->b); |
| BnFrom2B(bnH, curveData->h); |
| BnFrom2B(bnN, curveData->n); |
| BnFrom2B(bnXeB, &QeB->x.b); |
| pQeB = EccInitPoint2B(group, QeB, context); |
| pQsB = EccInitPoint2B(group, QsB, context); |
| // Compute the public ephemeral key pQeA = [de,A]G |
| if( (retVal = PointMul(group, pQeA, bnDeA, NULL, NULL, context)) |
| != CRYPT_SUCCESS) |
| goto Cleanup; |
| if(EC_POINT_get_affine_coordinates_GFp(group, pQeA, bnXeA, NULL, context) != 1) |
| FAIL(FATAL_ERROR_INTERNAL); |
| // tA := (ds,A + de,A avf(Xe,A)) mod n (3) |
| // Compute 'tA' = ('dsA' + 'deA' avf('XeA')) mod n |
| // Ta = avf(XeA); |
| BN_copy(bnTa, bnXeA); |
| avfSm2(bnTa, bnN); |
| if(// do Ta = de,A * Ta mod n = deA * avf(XeA) mod n |
| !BN_mod_mul(bnTa, bnDeA, bnTa, bnN, context) |
| // now Ta = dsA + Ta mod n = dsA + deA * avf(XeA) mod n |
| || !BN_mod_add(bnTa, bnDsA, bnTa, bnN, context) |
| ) |
| FAIL(FATAL_ERROR_INTERNAL); |
| // outZ ? [h tA mod n] (Qs,B + [avf(Xe,B)](Qe,B)) (4) |
| // Put this in because almost every case of h is == 1 so skip the call when |
| // not necessary. |
| if(!BN_is_one(bnH)) |
| { |
| // Cofactor is not 1 so compute Ta := Ta * h mod n |
| if(!BN_mul(bnTa, bnTa, bnH, context)) |
| FAIL(FATAL_ERROR_INTERNAL); |
| } |
| // Now that 'tA' is (h * 'tA' mod n) |
| // 'outZ' = ['tA'](QsB + [avf(QeB.x)](QeB)). |
| // first, compute XeB = avf(XeB) |
| avfSm2(bnXeB, bnN); |
| // QeB := [XeB]QeB |
| if( !EC_POINT_mul(group, pQeB, NULL, pQeB, bnXeB, context) |
| // QeB := QsB + QeB |
| || !EC_POINT_add(group, pQeB, pQeB, pQsB, context) |
| ) |
| FAIL(FATAL_ERROR_INTERNAL); |
| // QeB := [tA]QeB = [tA](QsB + [Xe,B]QeB) and check for at infinity |
| if(PointMul(group, pQeB, NULL, pQeB, bnTa, context) == CRYPT_SUCCESS) |
| // Convert BIGNUM E to TPM2B E |
| Point2B(group, outZ, pQeB, (INT16)BN_num_bytes(bnN), context); |
| Cleanup: |
| if(pQeA != NULL) EC_POINT_free(pQeA); |
| if(pQeB != NULL) EC_POINT_free(pQeB); |
| if(pQsB != NULL) EC_POINT_free(pQsB); |
| if(group != NULL) EC_GROUP_free(group); |
| BN_CTX_end(context); |
| BN_CTX_free(context); |
| return retVal; |
| } |
| #endif //% TPM_ALG_SM2 |
| // |
| // |
| // C_2_2_ECDH() |
| // |
| // This function performs the two phase key exchange defined in SP800-56A, 6.1.1.2 Full Unified Model, |
| // C(2, 2, ECC CDH). |
| // |
| static CRYPT_RESULT |
| C_2_2_ECDH( |
| TPMS_ECC_POINT *outZ1, // OUT: Zs |
| TPMS_ECC_POINT *outZ2, // OUT: Ze |
| TPM_ECC_CURVE curveId, // IN: the curve for the computations |
| TPM2B_ECC_PARAMETER *dsA, // IN: static private TPM key |
| TPM2B_ECC_PARAMETER *deA, // IN: ephemeral private TPM key |
| TPMS_ECC_POINT *QsB, // IN: static public party B key |
| TPMS_ECC_POINT *QeB // IN: ephemeral public party B key |
| ) |
| { |
| BIGNUM *order; |
| BN_CTX *context; |
| EC_POINT *pQ = NULL; |
| EC_GROUP *group = NULL; |
| BIGNUM *bnD; |
| INT16 size; |
| const ECC_CURVE_DATA *curveData = GetCurveData(curveId); |
| context = BN_CTX_new(); |
| if(context == NULL || curveData == NULL) |
| FAIL(FATAL_ERROR_ALLOCATION); |
| BN_CTX_start(context); |
| order = BN_CTX_get(context); |
| if((bnD = BN_CTX_get(context)) == NULL) |
| FAIL(FATAL_ERROR_INTERNAL); |
| // Initialize group parameters and local values of input |
| if((group = EccCurveInit(curveId, context)) == NULL) |
| FAIL(FATAL_ERROR_INTERNAL); |
| if (!EC_GROUP_get_order(group, order, context)) |
| FAIL(FATAL_ERROR_INTERNAL); |
| size = (INT16)BN_num_bytes(order); |
| // Get the static private key of A |
| BnFrom2B(bnD, &dsA->b); |
| // Initialize the static public point from B |
| pQ = EccInitPoint2B(group, QsB, context); |
| // Do the point multiply for the Zs value |
| if(PointMul(group, pQ, NULL, pQ, bnD, context) != CRYPT_NO_RESULT) |
| // Convert the Zs value |
| Point2B(group, outZ1, pQ, size, context); |
| // Get the ephemeral private key of A |
| BnFrom2B(bnD, &deA->b); |
| // Initalize the ephemeral public point from B |
| PointFrom2B(group, pQ, QeB, context); |
| // Do the point multiply for the Ze value |
| if(PointMul(group, pQ, NULL, pQ, bnD, context) != CRYPT_NO_RESULT) |
| // Convert the Ze value. |
| Point2B(group, outZ2, pQ, size, context); |
| if(pQ != NULL) EC_POINT_free(pQ); |
| if(group != NULL) EC_GROUP_free(group); |
| BN_CTX_end(context); |
| BN_CTX_free(context); |
| return CRYPT_SUCCESS; |
| } |
| // |
| // |
| // _cpri__C_2_2_KeyExchange() |
| // |
| // This function is the dispatch routine for the EC key exchange function that use two ephemeral and two |
| // static keys. |
| // |
| // Return Value Meaning |
| // |
| // CRYPT_SCHEME scheme is not defined |
| // |
| LIB_EXPORT CRYPT_RESULT |
| _cpri__C_2_2_KeyExchange( |
| TPMS_ECC_POINT *outZ1, // OUT: a computed point |
| TPMS_ECC_POINT *outZ2, // OUT: and optional second point |
| TPM_ECC_CURVE curveId, // IN: the curve for the computations |
| TPM_ALG_ID scheme, // IN: the key exchange scheme |
| TPM2B_ECC_PARAMETER *dsA, // IN: static private TPM key |
| TPM2B_ECC_PARAMETER *deA, // IN: ephemeral private TPM key |
| TPMS_ECC_POINT *QsB, // IN: static public party B key |
| TPMS_ECC_POINT *QeB // IN: ephemeral public party B key |
| ) |
| { |
| pAssert( outZ1 != NULL |
| && dsA != NULL && deA != NULL |
| && QsB != NULL && QeB != NULL); |
| // Initalize the output points so that they are empty until one of the |
| // functions decides otherwise |
| outZ1->x.b.size = 0; |
| outZ1->y.b.size = 0; |
| if(outZ2 != NULL) |
| { |
| outZ2->x.b.size = 0; |
| outZ2->y.b.size = 0; |
| } |
| switch (scheme) |
| { |
| case TPM_ALG_ECDH: |
| return C_2_2_ECDH(outZ1, outZ2, curveId, dsA, deA, QsB, QeB); |
| break; |
| #ifdef TPM_ALG_ECMQV |
| case TPM_ALG_ECMQV: |
| return C_2_2_MQV(outZ1, curveId, dsA, deA, QsB, QeB); |
| break; |
| #endif |
| #ifdef TPM_ALG_SM2 |
| case TPM_ALG_SM2: |
| return SM2KeyExchange(outZ1, curveId, dsA, deA, QsB, QeB); |
| break; |
| #endif |
| default: |
| return CRYPT_SCHEME; |
| } |
| } |
| #else //% |
| // |
| // Stub used when the 2-phase key exchange is not defined so that the linker has something to associate |
| // with the value in the .def file. |
| // |
| LIB_EXPORT CRYPT_RESULT |
| _cpri__C_2_2_KeyExchange( |
| void |
| ) |
| { |
| return CRYPT_FAIL; |
| } |
| #endif //% CC_ZGen_2Phase |
| #endif // TPM_ALG_ECC |